Identification of AFLP Marker Associated with Stress Tolerance Index in Sardari Wheat Ecotypes

A. Siosemardeh^{1*}, Z. Osmani², B. Bahramnejad¹, Kh. Vahabi¹, and E. Roohi³

ABSTRACT

that is mainly cultivated in drylands and mountainous area of Iran. Moreover, it show high level of geneit diversity. In the present research a total of 73 Sardari wheat ecosistanic comminimations. Of the 2,431 AFLP bunder **Sardari is one of the most important landraces of common wheat (***Triticum aestivum* **L.) that is mainly cultivated in drylands and mountainous area of Iran. Moreover, it shows a high level of genetic diversity. In the present research a total of 73 Sardari wheat ecotypes were evaluated for drought tolerance. Genetic diversity was analyzed using amplified fragment length polymorphism (AFLP) marker based on three pairs of primer combinations. Of the 2,431 AFLP bands detected, 1,582 (73.92%) were polymorphic. Cluster analysis divided all ecotypes into eight major groups. Ecotypes also showed genetic diversity for drought tolerance and were classified into three groups. The first group consisted of forty-two of the 73 landraces and had a low stress tolerance index (STI), ranging from 0.165 to 0.401, while the second (23 landraces) and the third group (7 landraces) had a medium and high STI ranging from 0.425 to 0.640 and 0.662 to 0.817, respectively. Discriminant analysis (DA) identified twenty-four markers selected from 218 AFLP markers that accounted for the difference between the three phenotypic groups** . **By using the selected markers, DA validated the phenotypic grouping, with a zero error rate. The results showed a high degree of genetic diversity between the Sardari ecotypes, suggesting that Sardari can be used as a germplasm source for wheat improvement toward releasing more desirable cultivars.**

Keywords: AFLP, Discriminate analysis, Genetic diversity, Sardari wheat, STI.

INTRODUCTION

Sardari is a heterogeneous common wheat landrace that has been cultivated in dry lands and mountainous area of Iran for more than three decades. It has been selected and improved from Iranian native landraces. Sardari has the mean height of 105 cm and is semi-winter, awned spike and elliptical shape, yellow seed, resistant to cold, susceptible to smuts, resistant to rusts, good baking quality, and susceptible to lodging in wet years. Also, Sardari is resistant to shattering and its yield under desirable condition is 1.5 to 2 t ha⁻¹ (Khodabandeh, 1992).

As a predominant dry land landrace in Iran, Sardari has received great attention and its genetic diversity of different set of ecotypes from different area has been previously studied. Sadeghzadeh *et al*. (2004) showed that yield, rust resistance, spikelets per spike, stem height, spikelet number, 1000 grain weight, seed protein $(\%)$, lodging resistance, and earliness traits vary in Sardari derived lines. In another investigation by Pirseyedi *et al*. (2006), Sardari derivates showed high level of genetic variation based on both

¹Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Islamic Republic of Iran.

Corresponding author, e-mail: a33@uok.ac.ir

² Department of Agronomy and plant breeding, Faculty of Agriculture, University of Zabol, Islamic Republic of Iran.
³Agricultural Research Institute of Kurdistan, Sanandaj, Islamic Republic of Iran.

morphological character and SSR markers and they concluded that the high levels of variation might be caused by stress conditions, or incorrect selection and single spike selection.

Archive of Markens (Capdevielle, 2001; McCh

indice loci (Vos *et al.*, 1995). Some of any constrained are

intages of this method are applying DA in this particular condity, insensitivity to DNA identify molecular marke Molecular markers provide an excellent tool for obtaining genetic information and their use in the assessment of genetic divergence in wheat has increased in the last few years (Almanza- Pinzon *et al*., 2003; Roy *et al*., 2004; Sofalian *et al*., 2008; Naghavi *et al*., 2009). AFLP markers have proved useful for assessing large numbers of polymorphic loci (Vos *et al*., 1995). Some of the advantages of this method are reproducibility, insensitivity to DNA concentration, speed, and reproducibility of assays, without the need for primary sequence information to design primers (Mackill *et al*., 1996; Tohme *et al*., 1996; Rouppe *et al*., 1997). AFLP markers have been compared with other available marker systems in wheat genetic diversity assessment (Barrett *et al*., 1998; Bohn *et al*., 1999; Soleimani *et al*., 2002; Almanza-Pinzon *et al*., 2003). Based on these studies and DNA marker analyses in other selfpollinating crop species (Maughan *et al*., 1996; Powell *et al*., 1996; Qi *et al*., 1997; Van Toai *et al*., 1997), AFLPs offered high efficiency in terms of polymorphism rate.

A number of stress indices have been developed for evaluation of drought stress in plants. Stress tolerance index, *STI=* $[(Yp)\times (Ys)/(Y_p)^2]$, which can be used to identify genotypes that produce high yield under both stress and non-stress environments (Fernandez, 1992; Saba *et al*., 2001). Previous studies showed that STI is a useful yield-based drought tolerance index to be employed in plant breeding programs for wheat (Clark *et al*., 1992; Fernandez, 1992; Hassanpanah *et al*., 1998; Tarinejad *et al*., 1998; Moghaddam *et al*., 2000). Sio-Se Mardeh *et al.* (2006) evaluated drought resistance indices under various resistance indices under various environmental conditions in bread wheat and the results showed that, under moderate stress, *STI* was more effective in identifying

high yielding cultivars under both droughtstressed and irrigated conditions.

Discriminant analysis (DA) has been used to combine molecular marker data with phenotypic performance of genotypes to identify meaningful markers (Capdevielle, 2001; Zhang *et al*., 2005). This method was first used to identify RAPD markers associated with disease resistance in rice (Capdevielle *et al*., 2000). Then, it was extended to other marker types such as SSR markers (Zhang *et al*., 2005), and AFLP markers (Capdevielle, 2001; McCharo *et al*., 2005; Miano *et al*., 2008). The idea of applying DA in this particular context is to identify molecular markers significantly associated with a classification of plant material into groups of extreme performance based on an agronomical trait such as *STI*. These markers could be used for genotypic classification, i.e. to allocate new individuals to a predefined (STI) group.

 The present research is the first study of the genetic diversity among a large set of Sardari ecotypes based on AFLP analysis and drought tolerance. The objectives of the study were to examine the genetic diversity and phylogenetic relationship among Sardari ecotypes and to use this information for developing strategies in breeding programs.

MATERIALS AND METHODS

Experimental Material

Seventy three Sardari wheat ecotypes were used. Seeds were provided by the Dryland Agriculture Research Institute, Sanandaj, Iran. All ecotypes were collected from Maraghe, Kurdistan and Zanjan in Northwest Iran. Of these 73 ecotypes, 41 ecotypes belonged to Maraghe, 23 ecotypes to Kurdistan and the remaining nine wheat ecotypes belonged to Zanjan.

The experiment was conducted at Ghamloo, in Kurdistan Province (northwest of Iran) from November 2005 to July 2006. Ghamloo (1,850 m above sea level, 35°23' N, 47°14 ′E) has an annual average rainfall of 350 mm. The soil texture was clay-loam (37% clay, 27% silt and 36% sand) with 0.62% organic matter and a pH of 7.5. Available P and K were 14 and 320 ppm, respectively. The experimental design was split plot arrangement of treatments within a randomized complete block design with three replications. Water regimes, i.e. irrigated and non irrigated (rainfed), were allocated to the main plots and Sardari wheat ecotypes to the subplots. The irrigated plots were watered at planting, tillering, jointing, flowering and grain filling stages. Non irrigated plots received no water other than rainfall. Each plot consisted of four 5 m rows, spaced 20 cm apart with seed density of 300 seeds m-2. STIs were calculated using the following relationship (Fernandez, 1992): $STI = \frac{[(Y_p \times Y_s) / (\hat{Y}_p)^2]}{[Y_p + Y_s^2]}$

Where, Y_s is the yield of ecotype under stress, Y_p the yield of ecotype under irrigated condition, and \hat{Y}_p is the mean yields of all ecotypes under irrigated condition.

For DNA extraction, seeds were germinated in pots and young leaves at 6-7 leaf stage were harvested and stored at -80˚C until DNA extraction.

AFLP Analysis

Leaf tissue was sampled from ten plants

were ground together. DNA was isolated using the Dellaporta method (Dellaporta *et al*., 1983). The concentration of the extracted DNA was checked in 1% agarose gel by comparing with a *Hind* III marker (Fermentas, Canada Inc.) followed by ethidium bromide staining.

per ecotype before flowering and was frozen and lyophilized. All samples per ecotype

ing and grain filling stages. Non

restriction enzymes (BIORON
 A Lead plots received no water other than

1. Each plot consisted of four 5 m

ligated to 5 pmol *EcoRI* and 5

spaced 20 cm apart with seed ensity

algato AFLP analysis was done according to Vos *et al*. (1995). Genomic DNA, 300 ng, was digested with 5U each *Mse*I and *EcoR*I restriction enzymes (BIORON, Germany). The double-digested DNA fragments were ligated to 5 pmol *EcoR*I and 50 pmol *Mse*I adaptors (Table 1). The adaptor-legated DNA was subjected to pre-amplifications with *Mse*I and *EcoR*I primers. (Bio-RAD Thermal cycler) and the concentration of the amplified DNA was checked in 1.5% agarose gels. Selective amplifications were performed with the primers containing three additional bases in the 3'-end. Three-primer combinations used for selective amplifications are reported in Table 1. Among the primers, only those three primer combination produced strong and clear bands. Amplified products were mixed with equal volume of formamide loading buffer, denatured at 95˚C for 5 minutes, and resolved on 6% denaturing polyacrylamide

Table 1. *EcoR*I- and *Mse*I-selective nucleotide combinations used for AFLP analysis. Sequences of the adaptors and primers used in the pre-amplification indicated at the bottom rows.

^{*a*} Mean PIC value observed for AFLPs of the particular PC; ^{*b*} Standard deviation, ^{*c*} Marker index.

gels [acrylamide-bis-acrylamide (29:1)]. AFLP bands were visualized by silver staining protocol (Bassam *et al*., 1991).

Statistical Analysis

Although many bands were detected, only strong and clear bands were scored (Figure 1). Distinction of bands was performed using Cross Checker software (Buntjer, 1999) and also manually. AFLP fragments were read from the gels, and data were entered into a matrix of observations and scored as present (1) or absent (0) for each marker. The data were transformed to a matrix of similarity coefficients using the Jaccard (Johns *et al*., 1997), Dice (Nei and Li, 1973), and simple matching (Rohlf,

1997) methods. All matrices were compared using the matrix comparison function of NTSYS. Since the three similarity matrices were highly similar $(R^2> 0.97)$, only the Jaccard coefficient matrix was used for further calculations. The similarities between ecotypes were displayed in dendrograms using the UPGMA clustering algorithm. Statistical calculations were done using NTSYSpc 2.02 (Rohlf, 1997). Discriminate function analysis and PCA were performed by SAS Ver 8.2 software to complement the cluster analysis method for the confirmation of results. To determine heterozygosity, Popgene Ver1.31 software (Yeh *et al*., 1999) and to determine Shannon's Information Index, MVSP Ver 3.13 software (Kovach, 2003) was used.

Figure 1 *.* AFLP polyacrylamide gel profile of 73 Sardari wheat ecotypes using primer combination *EcoRI-GCC* and *MseI-GCG*. M is lane of 1 kb molecular ladder .

Percentage of polymorphism was calculated as the proportion of polymorphic bands over the total number of bands. Variability at each locus was measured by the PIC index (Anderson *et al*., 1993). Also, the Marker index (MI) was calculated for each AFLP primer combination as *MI= PIC×nb*, where *PIC* is the mean *PIC* value, *n* the number of bands, and b is the proportion of polymorphic bands (Powell *et al*., 1996).

TSYSPC 2.02. Due to the numerous

regenerated, it was necessary to use a CGC.

is exercuted, it was necessary to use a CGC CGC.

discriminating markers. STEPDISC values among 35 Saradari cul

ure (SAS, 2001) was used to Phenotypic grouping of the ecotypes was done by cluster analysis via application of the NTSYSpc 2.02. Due to the numerous markers generated, it was necessary to use a variable reduction technique to select the most discriminating markers. STEPDISC procedure (SAS, 2001) was used to select the most informative markers from the original set of markers. The forward selection option in STEPDISC was applied to select markers to be included in the classification model. A significance level of 0.1 was imposed to choose the most discriminating markers (SAS, 1990). The level of significance was based on a study by Costanza and Afifi (1979). Wilk's lambda was used as the criterion to determine the classification efficiency with the entry of each marker. The selected markers were then used with the DA, DISCRIM option (SAS, 2001), to develop and validate a phenotypic group prediction model and to predict group membership of the test genotypes. The performance of the discriminant criterion was evaluated by posterior probability error rate and group specific error count estimates during crossvalidation.

RESULTS AND DISCUSSIONS

Six different primers (Table 1) were used in three combinations to generate AFLP fingerprints. A total of 2431 AFLP bands were identified, of which 1582 were polymorphic with clear and reliable reading. The mean percentage of polymorphism was 73.92%. The *PIC* mean in Sardari wheat ecotypes was 0.23±0.17, but *E-CAC/M-CAT* primer combination showed higher value compared to the mean (Table 1). The *PIC* values were very close for the primer combinations used so that the higher *MI* values were detected for combinations presenting the higher number of polymorphic bands. *MI* in *E-CAC/M-CAT* primer combination was the highest (194.32) (Table 1). The combination producing the highest number of polymorphic bands (694) was *M-GCG/E-GCC* while the combination producing the lowest number of polymorphic bands (365) was *M-GGA/E-CGG*.

Pirseyedi *et al*. (2006) reported that *PIC* values among 35 Saradari cultivars ranged from 0.107 to 0.829 with an average of 0.447 by SSR markers. Thus, the level of microsatellite polymorphism and the number of allele per locus in Sardari landraces is much lower than the other crops. One possible reason presented by them was that the materials used were all from a particular area in dry lands of the country; therefore, they had a relatively narrow genetic base (Pirseyedi *et al*., 2006).

In our investigation, there was a high level of genetic diversity between the Sardari ecotypes. Probably, cultivation of native Sardari masses over many years and combination of genotypes screened by natural selection to be compatible with their stressful environmental condition in different areas caused such genetic diversity. Sadeghzadeh *et al*. (2004) reported that residual impurity in initial purified lines, cross-fertilization (although limited), genetic mutation, mechanical mixture, exchange among fields and single spike selection can have important role in development of genetic diversity of these Sardari ecotypes. This diversity can be justified by the yield stability and compatibility of Sardari with diversified environmental conditions in cold dryland regions.

AFLP analysis was clearly demonstrated as a powerful means of DNA profiling in wheat, with substantial polymorphisms between 73 ecotypes. The low number of monomorphic bands obtained from all primer combinations showed that AFLP analysis has a high potential for detecting the genetic variability present in these wheat genotypes. A similar result was reported by Corbellini *et al*. (2002) who analyzed 40 wheat genotypes from Central and Southern Europe by testing five AFLP primer combinations. They obtained an average of 40 polymorphic bands per primer combination and a total of 200 polymorphic bands. Slightly lower levels of polymorphism have also been detected in wheat, such as the 59% reported by Almanza-Pizon *et al*. (2003) and the 47% reported by Roy *et al*. (2004).

The 73 ecotypes were grouped into 8 clusters. The similarity coefficient value of Jaccard between the 73 Sardari wheat ecotypes ranged from 0.50 to 0.89. The genetic similarity estimated with AFLP markers showed that the most similar ecotypes were 16 and 17 and the most

different were 23 and 24. Most ecotypes were located in Cluster 2 (38.35 percent). and Cluster 4 (36.98 percent). Also, the least numbers were located in cluster 5, 6, 8 (each 2.73 percent) (Figure 2).

Discriminant analysis was used to determine the distance between the clusters and the degree of grouping. The result showed that the fifth and eighth cluster had the most distances (1.1580) followed by the first and the eighth cluster (1.05287). The second and third clusters had the least distance (0.20031) and there was no grouping mistake.

The AFLP data were also used for conducting PCA to further study the genetic diversity among the 73 wheat ecotypes. Eigen vector of about forty-one Eigen value was bigger than the vertical vector. These forty-one components of PCA accounted for 90.38% of the total variation. The whole diversity was explained by the first seventy

Figure 2. Dendrogram generated for 73 Sardari wheat ecotypes using UPGMA cluster analysis based on Jaccard´s Similarity estimates for AFLP data. Brackets subjectively identify grouping of genetically similar accessions.

components. Among them, the first two components accounted for most of the variance (18%). This clustering pattern of ecotypes obtained on the basis of PCA largely resembled the clustering of genotypes in the dendrograms obtained through UPGMA analysis (Figures 3 and 4).

Sardari ecotypes showed diversity for drought tolerance based on *STI* (Table 2). By using cluster analysis (Figure5), the 73 ecotypes were divided into three groups. The first group consisting of 42 ecotypes with low

Figure 3. The distribution vector of group revealed by PCA for the first and second component based on AFLP data. Circles identify grouping of genetically similar accessions**.**

Figure 4. The density vector of group revealed by PCA and as a result of the first and second component based on AFLP data. Numbers show the clusters with high density.

No.	Ecotypes No.	STI	STI group	No.	Ecotypes No.	STI	STI group
$\overline{1}$	22	0.165	Low	38	14	0.370	Low
\overline{c}	28	0.191	Low	39	34	0.370	$_{\text{Low}}$
\mathfrak{Z}	58	0.197	$_{\rm Low}$	40	$48\,$	0.376	$_{\text{Low}}$
$\overline{4}$	26	0.199	$_{\text{Low}}$	41	49	0.377	$_{\text{Low}}$
$\mathfrak s$	53	0.222	Low	42	$72\,$	0.401	$_{\text{Low}}$
ϵ	46	0.225	$_{\rm Low}$	43	12	0.425	Medium
$\boldsymbol{7}$	55	0.228	$_{\text{Low}}$	44	$70\,$	0.426	Medium
$\,$ 8 $\,$	51	0.235	$_{\rm Low}$	45	32	0.438	Medium
9	19	0.260	$_{\text{Low}}$	46	$71\,$	0.441	Medium
$10\,$	27	0.260	$_{\text{Low}}$	47	60	0.459	Medium
11	44	0.268	$_{\text{Low}}$	48	64	0.463	Medium
12	18	0.268	$_{\text{Low}}$	49	36	0.466	Medium
13	$10\,$	0.270	$_{\rm Low}$	50	45	0.472	Medium
14	21	0.272	$_{\text{Low}}$	51	$\overline{7}$	0.478	Medium
15	\mathfrak{S}	0.274	$_{\rm Low}$	52	11	0.479	Medium
16	\mathfrak{Z}	0.287	Low	53	37	0.503	Medium
$17\,$	41	0.297	$_{\rm Low}$	54	52	0.514	Medium
$18\,$	50	0.297	$_{\rm Low}$	55	38	0.530	Medium
19	40	0.306	Low	56	16	0.534	Medium
$20\,$	$17\,$	0.314	Low	57	29	0.543	Medium
21	$\,1\,$	0.315	Low	58	66	0.548	Medium
22	$\sqrt{6}$	0.325	Low	59	54	0.586	Medium
23	15	0.327	Low	60	$8\,$	0.596	Medium
$24\,$	25	0.337	$_{\rm Low}$	61	69	0.597	Medium
25	35	0.338	$_{\text{Low}}$	62	67	0.598	Medium
$26\,$	39	0.344	$_{\rm Low}$	63	42	0.604	Medium
$27\,$	$\overline{2}$	0.346	$_{\rm Low}$	64	56	0.606	Medium
28	59	0.346	Low	65	57	0.632	Medium
29	73	0.347	$_{\text{Low}}$	66	43	0.640	Medium
$30\,$	47	0.350	$_{\text{Low}}$	67	23	0.662	High
31	24	0.353	$_{\rm Low}$	68	63	0.665	High
32	33	0.353	$_{\text{Low}}$	69	65	0.720	High
33	$\overline{4}$	0.356	$_{\text{Low}}$	$70\,$	62	0.734	High
34	61	0.358	$_{\rm Low}$	$71\,$	68	0.757	High
35	20	0.360	$_{\text{Low}}$	$72\,$	31	0.786	High
36	9	0.366	$_{\rm Low}$	73	30	0.817	High
37	13	0.368	Low				

Table 2. No. and STI of Sardari wheat ecotypes obtained from Agricultural Research Institute, Sanandaj, Iran.

STI (0.165 to 0.401), the second group were 42 ecotypes with Medium *STI* (0.425 to 0.640), and the third group had 15 ecotypes with high *STI* (0.662 to 0.817). Based on the discriminant function analysis for *STI*, ecotype 72 was transported to the first group and ecotypes 23 and 63 were transported to the third group. A training sample consisting of 68 low *STI* and 15 high *STI* ecotypes from

the original 73 was used for the development of a phenotypic group prediction model.

STEPDISC analysis with the stepwise selection option was used to reduce the number of polymorphic markers generated by the three primer combinations. STEPDISC was further used to reduce the number of markers and to form classification models of up to 24 markers

Figure 5. Dendrogram using the *DIST* coefficient and single-link clustering method between high, medium and low STI Sardari wheat ecotypes groups. Upper cluster consists of low *STI* (1), middle cluster consists of medium *STI* (2) and lower cluster consists of high *STI* ecotypes (3).

(Table 3). During evaluation by crossvalidation, no more than 24 markers were required to achieve a 100% correct classification. As the number of predictor markers decreased, an increase in misclassification arose, e.g. five markers misclassified 17 clones out of 73 (Table 4). The error rates were calculated using the misclassified ecotype. The total error rate is the mean of the group error rates. The significant result by applying fewer markers, suggests that the STEPDISC procedure is useful in selecting a critical subset of markers. Concentrating on the selected markers could reduce the resources needed in investigating trait marker relationships without compromising the information gained.

The aim of our study was to identify a combination of molecular markers that could be assigned to different *STIs* for the cultivars, and to verify the predictive power of the selected markers or model. Application of DA to a molecular marker data set enables one to determine which markers can discriminate between groups and, then, use the information to predict group membership. Several successful QTL analyses have been conducted to identify loci associated with drought tolerance (Dashti *et al*., 2007; Kordenaeej *et al*., 2008). Ciuca *et al*. (2009) presented preliminary results of the association of several SSR markers with membrane stability after water stress in a set of doubled haploid (DH) lines derived from a cross between two wheat cultivars. Results showed that SSR markers wmc9, wmc596, wmc603 and barc108 were weakly, but significantly, associated with cell membrane

Table 3. AFLP predictor markers in Sardari wheat ecotypes as selected by the STEPDISC procedure.

Table 4. Rate of correct classification of 73 ecotypes of Sardari wheat after cross-validation using nearest neighbor in discriminant analysis.

$PC1 - 60$		12	0.16140206	< .0001						
$PC_{2} - 160$		13	0.14476052		< .0001					
$PC_1 - 77$		14	0.12610657		< .0001					
PC_2-92		15	0.11397167		< .0001					
PC_2-97		16	0.10339237	< .0001						
$PC_3 - 207$		17	0.08727860	< .0001						
$PC_2 - 101$		18	0.07528012	< .0001						
$PC1 - 28$		19	0.06762493	< .0001						
$PC1-82$		20	0.06058330	< .0001						
$PC2-93$		21	0.05411930		< .0001					
$PC1 - 17$		22	0.04813311	< .0001						
PC_2-88		23	0.04225301	< .0001						
$PC1 - 48$		24	0.03696983	< .0001						
a PC1, PC2 and PC3 Primer combination $E + CAC/M + CAT$, E+GCC/M+GCG are and $E+CGG/M+GGA$, respectively. The numbers beside the primer combination indicate the molecular weight of the marker that they were arranged from heavy to light.										
Table 4. Rate of correct classification of 73 ecotypes of Sardari wheat after cross-validation using nearest neighbor in discriminant analysis.										
Number of	Error type	Low STI group	Medium STI group	High STI group	Total					
predictor		error rate	error rate	error rate						
markers										
5	PPER a	$0.2273(10)^c$	0.2273(5)	0.2857(2)	0.2468					
	APER b	0.2380	0.2173	0.2857	0.2328					
$\,8\,$	PPER	0.2273(10)	0.0455(1)	0.0000	0.0909					
	APER	0.2380	0.0434	0.0000	0.1506					
11	PPER	0.1136(5)	0.0455(1)	0.0000	0.0530					
	APER	0.11900	0.0430	0.0000	0.0822					
	PPER		0.0000	0.0000	0.0152					
14		0.0455(2)								
	APER	0.0476	0.0000	0.0000	0.0273					
15										
	PPER	0.0455(2)	0.0000	0.0000	0.0152					
	APER	0.0476	0.0000	0.0000	0.0273					
24	PPER	0.0000	0.0000	0.0000	0.0000					

^{*a*} Posterior probability error rate estimates; ^{*b*} Apparent error rate estimates, ^{*c*} Number in parenthesis is the number of misclassified clones in group.

stability after water stress and could be used for increasing the frequency of progenies with better performance under drought in a wheat breeding program. Nachit *et al*. (2000) showed that grain yield, yield components, physiological traits were associated with some RFLP markers in durum wheat (*Triticum turgidum* L. var.

durum), and markers *CDO395* and *BCD1661* were associated with higher grain yield. Molecular markers are particularly useful for traits that are highly affected by environmental variations.

ivielle, 2001; Mcharo *et al.*, 2005; novel techniques like d

2005; Miano *et al.*, 2008). Results functions combined with mole

this work indicate the possibility of data could accelerate progress

DA for selecting marke However, few studies using DA procedure has been applied for this purpose (Capdevielle 2001). A series of agricultural applications of DA to combine molecular marker and agronomic data from cultivar field trials has suggested a connection between QTL analysis and marker selection (Capdevielle, 2001; Mcharo *et al*., 2005; Zhang, 2005; Miano *et al*., 2008). Results from this work indicate the possibility of using DA for selecting markers that may be useful to breeders. This is a new tool for germplasm improvement providing a discriminative model to integrate the information from markers selected to classify *STIs*. The model can be used to facilitate the allocation of new genotypes into groups with distinct performance for drought tolerance, as well as to identify additional markers associated with the trait. Results obtained to date suggest that the complementation of DA and QTL analysis in STIs could be a good strategy to identify informative markers. Young (1999) argues the need for caution when approaching crop improvement through marker assistance and more so through QTL analysis. *STI* as a quantitative trait is likely to be influenced by several loci. Our results suggest that there are dominant AFLP markers associated with low, medium, and high *STI*. Although this was not a gene mapping study, the markers identified were expected to be closely associated with QTLs responsible for expression of this trait. This is supported by Capdevielle (2001) who investigated the linkage between marker classification and differential response of rice to sheath blight disease and Mc Haro *et al*. (2005) that showed log regression and discriminative analysis for AFLP markers that had a strong and significant association with the southern root-knot nematode resistance in sweet potato. Bonamico *et al*. (2009) also identified an array of SSR markers

associated with traits related to common symptoms of Mal De Rio Cuarto virus by means of DA analysis. In this study, maize Recombinant Inbreed Lines (RILs) with distinct reactions to disease were analyzed and results suggest that the complementation of DA and QTL analysis would provide a good strategy to identify informative markers. However, accuracy was slightly compromised when classification models were based on two or three markers. For a crop whose genome has not been mapped, novel techniques like discriminative functions combined with molecular marker data could accelerate progress in breeding. Applications of such protocols include screening of large germplasm collections for desired quantitative traits, phenotypic class identification, and verification of clones assigned to particular classes.

AFLP, simple sequence repeat (SSR), sequence tagged site (STS), sequence characterized amplified region (SCAR) or single nucleotide polymorphism (SNP) markers that are linked to a gene or quantitative trait locus (QTL) are extremely useful for marker assisted selection (MAS) (Shan *et al*., 1999; Sanchez *et al*., 2000; Sharp *et al*., 2001). AFLP markers were used extensively for MAS in cereals (van Berloo *et al*., 2001; Chen *et al*., 2001; Zhou *et al*., 2005). Zhou *et al*. (2001) applied AFLP marker, associated with powdery mildew resistance, as a selection marker and concluded that the AFLP method was more efficient. Quarrie *et al*. (2003) studied marker-assisted selection of improved drought responses in wheat with a number of simple-sequence repeat (SSR) microsatellites. They found justified associations between specific alleles and variation in the expression of traits important for drought resistance.

In conclusion, remarkable genetic variation in the so called Sardari cultivar has been shown. Although DARI ′s breeder released Saradari as a pure cultivar three decades ago, this cultivar is clearly based on a complex mixture of genotypes. This variation might have resulted from selection made by farmers in response to stressful growing conditions in the various cultivation areas of Iran.

ACKNOWLEDGEMENTS

The authors are grateful to Mohamad Sharif Khaledian for excellent technical assistance, and also thank DARI Genebank and Agricultural Research Center of Sanandaj for providing the materials and facilities for the experiments.

Abbreviations

For the experiments.
 Abbreviations
 Abbreviations
 Abbreviations
 Abbreviations
 Abbreviations
 Archive of Singlet Conservant Conservant
 Archive of Singlet Conservant Conservant
 Archive of Singlet Singlet DA: Discriminant analysis; AFLP: Amplified fragment length polymorphism; SSR: Simple sequence repeat; STI: Stress tolerance index; UPGMA: Un-weighted pair-group method with arithmetic averages; MVSP: Multivariate statistical package; PCA: Principle component analysis: Popgene: Population genetic analysis; PIC: Polymorphism index content; MI: Marker index; QTL: Quantitative trait loci, DARI: Dry land agricultural research institute.

REFERENCES

- 1. Almanza-Pinzon, M. I., Khairallah, M., Fox P. N. and Warburton, M. L. 2003. Comparison of Molecular Markers and Coefficients of Parentage for the Analysis among Spring Bread Wheat Accessions. *Euphytica*, **130:** 77–86
- 2. Anderson, J. A., Churchill, J. E., Autrique, S. D., Tanksley, S. and Sorrells, M. E. 1993. Optimizing Parental Selection for Genetic Linkage Maps. *Genome,* **36:** 181-188
- 3. Barrett, B. A., Kidwell, K. K. and Fox, P. N. 1998. Comparison of AFLP and Pedigree-
Based Genetic Diversity Assessment Based Genetic Diversity Methods Using Wheat Cultivars from the Pacific Northwest. *Crop Sci.,* **38:** 1271-1278
- 4. Bassam, B. J., Caetano-Anolles, G. and Greshoff, P. M. 1991. Fast and Sensitive Silver Staining of DNA in Polyacrylamide Gel. *Anal Biochem.,* **196:** 80-83
- 5. Bohn, M., Utz, H. F. and Melchinger, A. E. 1999. Genetic Similarities among Winter Wheat Cultivars Determined on the Basis of *Rflps, Aflps, and Ssrs* and Their Use for Predicting Progeny Variance. *Crop Sci.,* **39:** 228-237
- 6. Bonamico, N. C., Arroyo, A. T., Balzarini, M. G., Ibañez, M. A., Borghi, M. L., Díaz, D. G., Salerno J. C. and Renzo, M. A. D. 2009. Discriminant Analysis for Identify Molecular Markers Associated with Male De Rio Cuarto Resistance. *Maize Gen. Coop. News,* **83:** 42-44.
- 7. Buntjer, J. 1999. *Cross Checker Software to Analyze AFLP Data*. Ver. 2.91. Wageningen Uni, The Netherlands.
- 8. Capdevielle, F. M. 2001. Evaluation of Discriminant Analysis Procedure Combining Agronomic and Molecular Marker Information for Germplasm Improvement in Rice. MSc. Thesis, Louisiana State University, Baton Rouge, LA, USA.
- 9. Capdevielle, F. M., Aluko, G. K., Balzarini, M. and Oard, J. H. 2000. Application of Molecular Markers and Discriminant Analysis to Identify Rice Lines with Contrasting Phenotypes for Agronomic Traits. In: *Proceedings of the Fourth International Rice Genetics Symposium*, (Eds): Khush, G. S., Brar, D. S. and Hardy, B.. International Rice Research Institute, Los Baños, Philippines, 216 PP.
- 10. Chen, S., Xu, C. G., Lin, X. H. and Zhang, Q. 2001. Improving Bacterial Blight Resistance of '6078', an Elite Restorer Line of Hybrid Rice, by Molecular Markerassisted Selection*. Plant Breed.,* **120:** 133– 137.
- 11. Ciuca, M. and Petcu, E. 2009. SSR Markers Associated with Membrane Stability in Wheat (*Triticum aestivum* L.). *Roman. Agric. Res.,* **26**: 21-24
- 12. Clark, J. M., Depauw, R. M. and Townley-Smith, T. F. 1992. Evaluation of Methods for Quantification of Drought Tolerance in Wheat. *Crop Sci.,* **32:** 723-728
- 13. Corbellini, M., Perenzin, M., Accerbi, M., Vaccino, P. and Borghi, B. 2002. Genetic Diversity in Bread Wheat, as Revealed by Coefficient of Parentage and Molecular Markers, and Its Relationship to Hybrid Performance. *Euphytica,* **123:** 273-285
- 14. Costanza, M. C. and Afifi, A. A. 1979. Comparison of Stopping Rules in Forward

Stepwise Discriminant Analysis. *J. Amer. Sta. Ana.,* **74:** 777-785

- 15. Dashti, H., Yazdi-Samadi, B., Ghanadha, M., Naghavi, M. R. and Quarri, S. 2007. QTL Analysis for Drought Resistance in Wheat Using Doubled Haploid Lines. *Int. J. of Agric. Biol.,* **9:** 98-101
- 16. Dellaporta, S. L., Wood, J. and Hicks, J. B. 1983. A Plant DNA Mini-preparation: Version II. *Plant Mol. Biol. Rep.,* **4:** 19- 21
- 17. Fernandez, G. C. 1992. Effective Selection Criteria for Assessing Plant Stress Tolerance. In: *Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress*, (Ed.): Kuo, C. G. Tainan, Taiwan, PP. 257-270.
- 18. Hassanpanah, D., Moghaddam, M., Valizadeh, M. and Mahfoozi, S. 1998. Evaluation of Wheat Varieties with Respect to Drought Resistance Criteria. In: *Abstracts of 5th Iranian Congress of Crop Production and Plant Breeding*. 31 August–4 Septembre, SPII, Karaj, Iran, PP. 290-291.
- *Archives and Demonstantine and Maptation of*
 Archives and Other Food Crops in
 Archive and Water Stress, (Ed.): Kuo,
 Archive and Water Stress, (Ed.): Kuo,
 Archive and Mahfroozi, S. 1998.
 Archive and Nishabour 19. Jones, C. J., Edwards, K. J., Castaglione, S., Winfield, M. O., Sala, F., Van de Wiel, C., Bredemeijer, G., Vosman, B., Matthes, M., Daly, A., Brettschneider, R., Bettini, P., Buiatti, M., Maestri, E., Malcevschi, A., Marmiroli, N., Aert, R., Volckaert, G., Rueda, J., Linacero, R., Vazquez, A. and Karp, A. 1997. Reproducibility Testing of RAPD, AFLP and SSR Markers in Plants by Network of European Laboratories. *Mol. Breed.,* **3:** 381-390.
- 20. Khodabandeh, N. 1992. *Cereals.* Academic Publication Center, Tehran, PP.398 (in Persian)
- 21. Kordenaeej, A., Nasrollah Nejad, A. A., Shojaeian, A. A. and Lelley, T. 2008. Mapping QTLs for Yield and Yield Components under Drought Stress in Bread Wheat. Dissertation for a Doctorate Degree, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria, 97 PP.
- 22. Kovach, W. 2003. *Multivariate Statistical Package Ver. 3.13m*. Kovach Computing Services, Anglesey, Wales, UK.
- 23. Mackill, D. J., Zhang, Z., Redona, E. D. and Colowit, P. M. 1996. Level of Polymorphism and Genetic Mapping of AFLP Markers in Rice. *Genome,* **39:** 969- 977.
- 24. Maughan, P. J., Saghai, Maroof, M. A., Buss, G. R. and Huestis, G. M. 1996. Amplified Fragment Length Polymorphism (AFLP) in Soybean: Species Diversity, Inheritance, and Near-Isogenic Line Analysis. *Theor. Appl. Genet.,* **93:** 392-401
- 25. Mc Haro, M., Labonte, D. R., Clark, C., Hoy, M. and Oard, J. H. 2005. Molecular Marker Variability for Southern Root-Knot Nematode Resistance in Sweet Potato. *Euphytica,* **144:** 125−132.
- 26. Miano, D. W., Labont, D. R. and Clark, C. A. 2008. Identification of Molecular Markers Associated with Sweet Potato Resistance to Sweet Potato Virus Disease in Kenya. *Euphytica,* **160:** 15−24.
- 27. Moghaddam, M., Alavikia, S. S., Shakiba, M. R. and Nishabouri, M. R. 2000. Evaluation of Iranian Wheat Landraces for Stem Reserve Mobilization under Normal and Drought Conditions. In: "*Book of Abstracts*". *3 rd International Crop Science Congress* (ICSC), 17-22 August, Hamburg, Germany, 80 PP.
- 28. Nachit, M. M., Monneveux, P., Araus, J. L. and Sorrells, M. E. 2000. Relationship of Dryland Productivity and Drought Tolerance with Some Molecular Markers for Possible MAS in Durum (*Triticum turgidum* L. var. durum). *CIHEAM-Options Mediterranean's*, 203-206
- 29. Naghavi, M. R., Maleki, M. and Tabatabaei, S. F. 2009. Efficiency of Floristic and Molecular Markers to Determine Diversity in Iranian Populations of *T. boeoticum*. *Int. J. Biol. Life Sci.,* 5(1): 71-73
- 30. Nei, M. and Li W. H. 1973. Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases. *Proc. Natl. Acad. Sci.* (USA), **76:** 5269-5273
- 31. Pirseyedi, S. M., Mardi, M., Naghavi, M. R., Iran Doost, H. P., Sadeghzadeh, D., Mohammadi, S. A. and Ghareyazie, B. 2006. Evaluation of Genetic Diversity and Identification of Informative Markers for Morphological Characters in Sardari Derivative Wheat Lines. *Pak. J. Biol. Sci.,* **9:** 2411-2418
- 32. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalsky, A. 1996. The Comparison of RFLP, RAPD, AFLP and Ssrs (Microsatellite) Markers for Germplasm Analysis. *Mol. Breed.,* **2:** 225-238

- 33. Qi, X., Stam, P. andLindhout, P. 1998. Use of Locus-specific AFLP Markers to Construct a High Density Molecular Map in Barley. *Theor. Appl. Genet.,* **96:** 376 -384
- 34. Quarrie, S. A., Dodig, D., Pekiç, S., Kirby, J. and Kobiljski, B. 2003. Prospects for Marker- Assisted Selection of Improved Responses in Wheat. *Bulga. J. Plant Physiol.,* **3-4**(Special Issue)**:** 83–95.
- 35. Rohlf, F. J. 1997. NTSYS-pc Ver. 2.02: Numerical Taxonomy and Multivariate Analysis Exeter Software. Setauket, New York.
- 36. Rouppe van der Voort, J. N., van Zandvoort, P., van Eck, H. J., Folkertsma, R. T., Hutten, R. C. B., Draaistra, J., Gommers, F. J., Jacobsen, E., Helder, J. and Bakker, J. 1997. Use of Allele Specificity of Co-migrating AFLP Markers to Align Genetic Maps from Different Potato Genotypes. *Mol. Gen. Genet.,* **255:** 438-447
- 37. Roy, J. K., Lakshmikumaran, M. S., Balyan, H. S. and Gupta, P. K. 2004. AFLP-based genetic Diversity and its Comparison with Diversity Based on SSR, SAMPL and Phenotypic Traits in Bread Wheat. *Biochem. Gen.,* **42:** 43-59
- 38. Saba, J., Moghaddam, M., Ghassemi, K. and Nishabouri, M. R. 2001. Genetic Properties of Drought Resistance Indices. *J. Agric. Sci. Technol.,* **3:** 43-49
- 39. Sadegh Zadeh Ahari, D., Katata, H. and Roustai, M. 2004. Evaluation of Genetic Diversity in Agronomic Traits on Sardari Wheat. *J. Agric. Sci.,* **10(2):** 27-38
- 40. Sanchez, A. C., Brar, D. S., Huang, N., Li, Z. and Khush, G. S. 2000. Sequence Tagged Site Marker-assisted Selection for Three Bacterial Blight Resistance Genes in Rice. *Crop Sci.,* **40:** 792–797.
- 41. SAS Institute Inc. 1990. *SAS/STAT User's Guide*. SAS Institute Inc., Cary, North Carolina.
- 42. SAS Institute Inc. 2001. *The SAS System for Windows v8*. SAS Institute Inc, Cary, North Carolina.
- 43. SAS Institute. 2002. *SAS User Guide Statics*. Version 8.2 Edition, SAS institute Inc, Cary, N.C
- 44. Shan, X., Blake, T. K. and Talbert, L. E. 1999. Conversion of AFLP Markers to Sequence-Specific PCR Markers in Barley and Wheat. *Theor, Appl, Genet.,* **98:** 1072– 1078.
- 45. Sharp, P. J. 2001. Validation of Molecular Markers for Wheat Breeding. *Aust. J. Agric. Res.,* **52:** 1357–1366.
- 46. Sio-se Mardeh, A., Ahmadi, A., Poustini, K. and Mohammadi, V. 2006. Evaluation of Drought Resistance Indices under Various Environmental Conditions. *Field Crop Res.,* **98:** 222-229.
- 47. Soleimani, V. D., Baum, B. R. and Jonson, D. A. 2002. AFLP and Pedigree- based Genetic Diversity Estimates in Modern Cultivars of Durum Wheat [*Triticum turgidum L*. subsp durum (Desf.) Husn.]. *Theor. Appl. Genet.,* **104:** 350-357
- 48. Sofalian, O., Chaparzadeh, N., Javanmard, A. and Hejazi, M. S. 2008. Study the Genetic Diversity of Wheat Landraces from Northwest of Iran Based on ISSR Molecular Markers. *Int. J. Agric. Biol.,* **10:** 466-468
- **Exact North Internal Represention of Changers and Nikle, H.J., Folkerisma, R. T., Huten, A. S. Chaparzalch, N. J. Solarism, R. Huten, H. S. David SIDR, D. Chaparzalch, N. S. 2008.

A. and Hejazi, M. S. 2008.

A. and Hejaz** 49. Tarinejad, A., Moghadam, M., Shakiba, M. R., Kazemi, H. and Sadr-Moossavi, M. H. 1998. Response of Lines Derived from Winter Wheat Landraces to Drought and Irrigated Conditions. In: *Abstracts of 5th Iranian Congress of Crop Production and Plant Breeding*, 31 August-4 Septembre, SPII, Karaj, Iran, PP. 27-28.
	- 50. Tohme, J., Gonzalez, D. O., Beebe, S. and Duque, M. C. 1996. AFLP Analysis of Gene Pools of a Wild Bean Core Collection. *Crop Sci.,* **36:** 1375-1384.
	- 51. Van Berloo, R., Aalbers, H., Werkman, A. and Niks, R. E. 2001. Resistance QTL Confirmed Through Development of QTL– nils for Barley Leaf Rust Resistance. *Mol. Breed.,* **8:** 187–195.
	- 52. Van Toai, T. T., Peng, J. and Martin, S. K. 1997. Using AFLP Markers to Determine the Genomic Contributions of Parents to Populations. *Crop Sci.,* **37:** 1370-1373
	- 53. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Theovan, D. L., Hornes, M., Frijers, A., Kuiper, M. and Zabeau, M. 1995. AFLP: A New Technique for DNA Fingerprinting. Nucleic Acid Res., **23:** 4407-4414
	- 54. Yeh, F. C., Yang, R. and Boyle, T. 1999. *POPGENE: Microsoft Windows Based Freeware for Population Genetic Analysis.* Version 1.31. University of Alberta, Edmonton.
	- 55. Young, N. D. 1999. A Cautiously Optimistic Vision for Marker-assisted Breeding. *Mol. Breed.,* **5:** 505-510.
	- 56. Zhang, N., Xu, Y., Ahash, M., McCouch, S. and Oard, J. H. 2005. Identification of

Candidate Markers Associated with Agronomic Traits in Rice Using Discriminant Analysis. *Theor. Appl. Genet.,* **110:** 721−729.

57. Zhou, R. H., Zhu, Z. D., Kong, X. Y., Huo, N. X., Tian, Q. Z., Li, P., Jin, C. Y., Dong,

Y. C. and Jia, J. Z. 2005. Development of Wheat Near-isogenic Lines for Powdery Mildew Resistance. *Theor, Appl, Genet.,* 110: 640–648.

شناسايي نشانگر **AFLP** مرتبط با شاخص مقاومت به خشكي در اكوتيپ هاي گندم سرداري

ع. سي وسه مرده، ژ. عثماني، ب. بهرام نژاد، خ. وهابي، ا. روحي

چكيده

ع . **می وسد هرده، ژ. عثمانی، ب. بهرام نژاد. خ. وهایی، ا. روحی**
م سرداری یکی از مهمهرین نژادهای گندم معمولی (...I Triticum aestivum L
مهای خشک و نواحی کوهستانی ایران کشت می شود. علاوه بر این سطح بالایی از تنوع را نشان
ست. است كه كه گندم سرداري يكي از مهمترين نژادهاي گندم معمولي (.L *aestivum Triticum*(در زمينهاي خشك و نواحي كوهستاني ايران كشت مي شود. علاوه بر اين سطح بالايي از تنوع را نشان داده است. در اين پژوهش مقاومت به تنش حشكي مجموعهاي از 73 اكوتيپ گندم سرداري ارزيابي شده است. تنوع ژنتيكي توسط نشانگر AFLP با به كار بردن سه جفت تركيب پرايمري اندازه گيري شد. از حدود 2431باند AFLP پيدا شده، 1582 مورد چند شكل بود، با ميانگين درصد چند شكلي 92/ .%73 تجزيه خوشه اي بر اساس نتايج AFLP، همه اكوتيپها را به 8 گروه اصلي تقسيم كرد. همچنين اكوتيپها در ارتباط با مقاومت به خشكي تنوع زنتيكي نشان دادند. اولين گروه 42 مورد از 73 نژاد را تشكيل داد كه شاخص مقاومت به خشكي (STI (پاييني با دامنهاي از 165 تا /0 401 /0 را دارا بودند، در حاليكه دومين (23 نژاد) و سومين گروه (7 نژاد) به ترتيب شاخص مقاومت به خشكي متوسط و بالا با دامنه 425 تا /0 640 و /0 662 تا /0 817 /0 داشتند. تجزيه تابع تشخيص 24 نشانگر مولكولي از 218 نشانگر AFLP بر مبناي اختلاف حاصل از 3 گروه فنوتيپي را تشخيص داد. با به كار بردن ماركرهاي انتخاب شده، تجزيه تابع تشخيص گروههاي فنوتيپي را با ميزان اشتباه صفر تاييد كرد. نتايج مشاهده شده از درجه بالا تنوع ژنتيكي ميان اكوتيپهاي گندم سرداري، نشان مي دهد كه سرداري حاوي اكوتيپهاي مختلف است و بنابراين ميتواند به عنوان يك منبع اصلاحي در جهت آزادسازي كولتيوارهاي مطلوبتر به كار برده شود.