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Agronomic and Physiological Characteristics and Proteomic
Expression in Near-isogenic Lines of Bt and
Non-Bt Glandless Cotton

X. H. Chen', Z. Q. Jin%, Z. H. Chen !, S.J. Zhu ', F. B. Wu"*

ABSTRACT

Agronomic and physiological traits and protein expression were compared between
non-Bt glandless upland cotton variety-Zhong5629 and its Bt-transgenic near-isogenic
lines differing in cryIAc gene. Results showed that the Bt isogenic line had higher plant
height and rate of effective bolls, more internal bolls but lower yield, than the non-Bt line.
The Bt isogenic line had lower chlorophyll content and transpiration rate relative to the
non-Bt line, but had higher Chl a/b, F, and Fm. Soluble protein content in the Bt isogenic
line was significantly higher at boll setting stage (BSS) but lower at initial flowering stage
(IFS) compared with the non-Bt line. The Bt isogenic line had significantly higher
concentrations of Ca, Mg, Cu, Zn, Mn and Fe at IFS, and P.and Cu at BSS, whereas it
had lower in concentrations of P, K and B at IFS, and K, S, Zn and Fe at BSS. The Bt-
isogenic line exhibited less malondialdehyde content at BSS and lower superoxide
dismutase activity at IFS and BSS. Furthermore, proteomic analysis of the two NILs
detected 20 differentially expressed proteins. The 4 up- regulated proteins in Bt vs non-Bt-
isogenic line were attributed to signal transduction, photosynthetic carbon assimilation
and defense response, whereas the 16 down- regulated proteins were attributed to signal
transduction and protein metabolism.

Keywords: Bacillus thuringiensis (Bt), Glandless upland cotton (Gossypium hirsutum L.),
Near-isogenic line, Two-dimensional electrophoresis

INTRODUCTION and Chen, 2005). However, a major problem
hindering the production and growing areas of
glandless cotton is its susceptibility to pests
mainly due to the absence of gossypol and
other terpenoid aldehydes (Foster et al., 1994).
Therefore, it is imperative to develop glandless
varieties with high insect-resistance. Cotton
(Gossypium hirsutum L.) cultivars containing
the Bacillus thuringiensis subsp. kurstaki (Bt)
gene are commercially known as Bollgard® or
Bt cotton (Perlak et al., 2001). In China, Bt
cotton was widely grown and accounted for
more than 38.1% of cotton production in 2009
(Mao, 2010).

Premature senescence of cotton has been
occurring at an increasing scale in China,
directly influencing both yield and fiber

Cotton, one of world’s most important
economic crops, is cultivated mainly for fibers,
and is also the potential source of edible oil
and food since “every kilogram of fiber
production is'accompanied by about 1.65 kg of
oil- and protein-rich seeds (Gerasimidis et al.,
2007). The seed meal is a protein-rich
byproduct useful to feed ruminant livestock,
but toxic to non-ruminant animals and humans
because of the existence of pigment glands of
gossypol, a terpenoid aldehyde (Gerasimidis et
al., 2007). Breeding glandless cotton is a cost
effective approach to considerably reduce or
even eliminate gossypol in cotton seeds in
order to widen its use for feed and food (Zhu
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quality (Hao er al., 2011). Based on the
changes and genetic development of
biochemical traits associated with antioxidant
systems such as superoxide dismutase (SOD,
EC 1.15.1.1) and peroxidase (POD, EC
1.11.1.7) activities as well as malondialdehyde
(MDA) and minerals, soluble sugar and
soluble protein, the biochemical assistant
breeding technology has been established and
the relative selective standards to select
promising parents have been developed (Yu ef
al., 2005) to be used to investigate how Bt
gene affects glandless cotton lines in a short
time.

Proteomics attempts to study the structure,
function, and control of biological systems and
processes by the systematic and quantitative
analysis of the many properties of proteins.
Although research efforts on conventional
upland cotton with glandless seeds and foliage
glands, and insect resistant transgenic cultivars
are widely published (Gaufichon et al., 2010),
there is little investigation using 2-DE/MS
technique to explore the protein expression
imposed by Bt transgene in glandless cotton.
Also the physiological characteristics of low
gossypol  content and  insect-resistant
transgenic varieties are still less known.

The present work was carried ‘out by
comparing a pair of near-isogenic lines (NILs)
of Bt and non-Bt glandless upland cottons
differing only by the presence of the crylAc
gene to: (1) evaluate the effects of Bt gene on
agronomic characters such as boll distribution
patterns, yield and some physiological traits;
(2) identify candidate proteins associated with
the insertion of Bt gene using 2-DE coupled
with MS. The results can lay important basis
and serve as a guide for further protein/gene
function research in Bt glandless upland
cotton.

MATERIALS AND METHODS

Plant Materials and Experimental
Design

Non-Bt glandless cotton variety
(Zhong5629) and its Bt-transgenic NIL were

grown in a designated area for transgenic
crops in the experimental farm of Huajiachi
Campus, Zhejiang University, China in 2009.
The Bt-isogenic line was derived after five
backcrossing of Zhong5629xZhongzhe905
with non-Bt glandless cotton variety,
Zhong5629. Zhongzhe905 was the donor of Bt
trait (CrylAc). Zhong5629 and its Bt NIL were
described as non-Bt and Bt-isogenic lines.

The soil is relatively fertile containing
typical nutrient levels of the top 30 cm soil
are: total soil N 0.072%, organic C 1.73%,
rapidly available P 85.11 mg kg, rapidly
available K 265.47 mgkg "' and pH 6.43. All
seeds were sown in pots on April 20, 2010
and seedlings were transplanted to the field
on May 12 with a density of 37500 plants
ha'. A completely random block design
with 6 replications was used and the plot
size was 27 m’ (45 mx6 m). All plots
received 150 kg P,Os ha” and 150 kg K ha™
and..were well-watered through furrow
irrigation when necessary. Pesticides were
sprayed. as required for the non-Bt line.
Other conventional practices of cultivation
were the same as those used locally.

Measurement of Agronomic Traits

At initial flowering stage (IFS), 10 plants
were tagged in each plot, and plant height,
fruiting branches, buds, flowers and bolls
per plant were investigated in 10 day
intervals. In this text, BL refers to the branch
position of vertical boll distribution on the
plants and BN is the node position of
horizontal distribution of bolls on fruiting
branches. BL, 5, BLs o, and BL,¢_;5, represent
boll number at each level per plant, i.e. the
number of bolls borne by the 1% - 5% 6™ -
9" and 10™ - 15™ fruiting branches,
respectively, from the bottom to the top of
the plant. BN, and BN; represent the bolls
per plant on the 1% - 2", and >3" nodes of
fruiting branches with position 1 being the
closest to the main stem.

On September 15, 50 bolls in the central
position of plants were randomly harvested
in each plot for the measurements of boll



Effects of Bt Insertion on Glandless Cotton

JAST

weight and lint index. During boll opening
stage, seed cotton in each plot was
harvested, and then seed index, lint yield and
lint percentage were calculated after ginning
of seed cotton.

Measurement of Chlorophyll a
Fluorescence and Photosynthetic
Parameters

Photosynthesis and chlorophyll fluorescence
parameters were performed with intact fully
expanded functional leaves (the 3" or 4" up-
most leaves). Photosynthetic parameters were
measured at the beginning of boll opening
stage (BBOS, September 5) by using a
Portable Photosynthesis System LI-6400 (LI-
COR, Lincoln, NE, USA) (Cai et al., 2011).
Chlorophyll fluorescence measurements were
performed at IFS and boll setting stage (BSS)

using pulse-modulated chlorophyll
fluorometer (IMAGING-PAM, Walz,
Effeltrich, Germany; Cai et al, 2011).

Chlorophyll (Chl) content was measured by
the method of Arnon (Zhang, 1992).

Determination of SOD, POD Activities
and MDA Content

Ten functional leaves_collected at IFS and
BSS from each plot in three replicates, were
used to determine superoxide dismutase
(SOD, EC 1.15.1.1), peroxidase (POD, EC
1.11.1.7) ‘activities and malondialdehyde
(MDA) content according to Wu et al.
(2003).

Assay of Soluble Sugar, Soluble Protein
and Mineral Contents

Soluble protein and sugar content of
functional leaves were measured according
to Zhang (1992). Total nitrogen was
quantified according to the micro-Kjeldahl
method wusing Kjeflex K-306 (BUCHI
Labortechnik AG, Flawil, Switzerland). P
content was determined by phosphorus
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vanadium molybdate yellow colorimetric
method, and other minerals were determined
by ICP Optical Emission Spectrometer
(Thermo iCAP 6000 SERIES ICP-OES,
Waltham, England).

One-way ANOVA was carried out with
Data Processing System (DPS) statistical
software package (Tang and Feng, 1997).
The Duncan’s Multiple Range Test was
applied to evaluate significant differences
between two isogenic lines at P<0.05.

Proteome Analysis

Total protein extracts from functional
leaves were prepared essentially according
to the phenol extraction method described
by Carpentier et al. (2005) with minor
modification (Bah er al, 2010). Two-
dimensional gel electrophoresis, mass
spectral analysis and protein identification
were performed as reported previously (Bah
et al., 2010). For each sample, two
independent protein extracts and at least
three 2-DE analyses of each protein extract
were performed. Fold increase and decrease
in Bt vs. non Bt line were calculated as
Bt/non-Bt and non-Bt/Bt for up- and down-
regulated proteins, respectively. For single-
peptide identified proteins, positive/negative
proteins were assigned when it was shown
that the regulation factors were above 1.5 (p
< 0.05).

RESULTS

Agronomic Traits

Plant height was significantly higher in the
Bt-transgenic glandless cotton isogenic line
than the non-Bt one (Figure 1), however,
this was reversed for buds per plant,
regardless of plant growing stages. At boll
opening stage, plant height of the Bt-
isogenic line was 9.2% higher than that of
the non-Bt-isogenic line, while reproductive
nodes per plant was 26.6% less in the Bt-
isogenic line respectively (Table 1).
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Figure 1. Comparison of the dynamics of growth parameters between Bt transgenic glandless cotton (Bt
isogenic line, A) and its non-Bt isogenic line (m). Means + SE (n = 10), * and **,significant at 0.05 and
0.01 levels, respectively. IFS= initial flowering stage; FFS=full flowering stage; BSS=boll setting stage.

Table 1. Comparison of plant height, yield and boll distribution on the plants between Bt and non-Bt

glandless isogenic line at boll opening stage.

Horizontal distribution

Plant Fruiting Vertical boll distribution ..
. Seed cotton of bolls on fruiting
NILs height -1 branches on the plants branch
(cm) (g plant ) per plant ranches
BL_s BLg.o BLg.15 BN, BN3
Non-Bt
isogenic 85.5% 78.6* 13.4 7.4 6.7 4.1 5.5 12.7%
line
Bt
isogenic 934 61.5 13.0 7.2 4.8 3.6 7.8% 7.5
line

* Significant at 0.05 level between the two NILs (n=10). BL,_s, BLs 9, and BL,(_;s, represent the bolls
per plant on the 1* — 5", 6™ - 9" and 10™ = 15" fruiting branches from the bottom to the top of the plant.
BN, and BN.; represent the bolls per plant on the 1* - 2™, and >3™ nodes of fruiting branches, position 1

is the closest to the main stem.

There was no difference between the two
NILs in terms.-of bolls at the lower levels
(BL,_s) (Table 1), however, at the middle
and upper parts of plants (BLs 9 and BL;,_
15)» thw non-Bt line gained more bolls. Seed
cotton per plant was 21.8% lower
significantly (P<0.05) in the Bt-isogenic line
than the non-Bt-isogenic line (Table 1), but
no differences were observed in boll weight,
bolls per plant, lint percent, seed index, or
fiber length (data not shown).

Photosynthetic Parameters

Leaf fresh weight based Chl contents
differed significantly between the two NILs
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at IFS, but not at BSS (Figure 2 a-c). When
calculating these contents on a leaf area
basis, Chl a, Chl b and Chl a+b contents of
the Bt-isogenic line were 8.9%, 6.6% and
10.3% less; but Chl a/b was higher than that
in the non-Bt line at BSS. Transpiration rate
(E) in the Bt-isogenic line was 11.0% higher
than that in the non-Bt line at BBOS, but no
significant difference was found in net
photosynthetic ~ rate  (Pn), stomatal
conductance (g;) or intercellular CO,
concentration (Ci) (Table 2).

Images of the initial fluorescence (Fy)
showed 5.2% (IFS) and 10.8% (BSS) higher
values in the Bt-isogenic line than the non-
Bt-isogenic line (Figure 3 e, f, E, F, and h).
The maximal fluorescence (F,,) at BSS was
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Table 2. Photosynthetic parameters in functional leaves of the two NILs at the beginning of boll

opening stage.

NILs

Non-Bt isogenic line

Bt isogenic line

Pn (umol CO,m™s™) 22.40 23.37
Ci (umol CO, mol™) 260.33 258.33
g5 (mol H,O m?%s™!) 0.56 0.54
E (mmol H,O m?s™) 7.68 6.83
* significant at 0.05 level.
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Figure 2. Comparison of chlorophyll content (Chl a, Chl b, Chl, Chl a/b ratio) in functional leaves (Up,
expressed on a fresh weight basis; Down, expressed on a leaf area basis) at IFS and BSS between Bt (m) and
its non-Bt (0) isogenic lines, Means + SE, n = 3, *, ** significant at 0.05 and 0.01, respectively.

5.6% higher in the Bt-isogenic line than the
non-Bt line (Figure 3 ¢, d, C, D and i). No
significant ~ difference  in  maximum
efficiency of photosystem II photochemistry
(F./F,, ratio) was observed (Figure 3 a, b, A,
B and g).

Minerals, Soluble Sugar and Protein
Contents

The Bt-isogenic line exhibited decreases
by 8%, 24%, and 8% in B, K, and P at IFS,
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and decreased by 24%, 12%, 9%, and 16%
in Fe, K, S, and Zn concentrations at BSS,
respectively, relative to the non-Bt-isogenic
line (Table 5). However, the Bt-isogenic line
increased by 10%, 32%, 42%, 16%, 12%
and 24% in Ca, Cu, Fe, Mg, Mn and Zn
concentrations at IFS, and increased Cu and
P contents by 15% and 7% at BSS,
respectively. Soluble protein contents were
21.6% lower at IFS but 17.2% higher in the
Bt-isogenic line than the non-Bt line at BSS
(Figure 4b). No significant differences were
observed in soluble sugar and N contents
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Figure 3. Comparison of chlorophyll fluorescence parameters and emission spectra image showing F,/F,,
Fn, Fo, at flowering stage (a-<f) and boll setting stage (A-F) between Bt isogenic line(m) and its non-Bt
isogenic line(0). F,/F,,, maximal quantum yield of photo system II photochemistry. Fy, minimal fluorescence
yield of a dark-adapted leaf. F,,, maximal fluorescence yield of a dark-adapted leaf. The rainbow bar on the
right shows the scaling.
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Figure 4. Comparison of soluble sugar and soluble proteins contents in functional leaves between Bt
isogenic line (m) and its non-Bt isogenic line (o) Means + SE, n = 3, *, ** significant at 0.05 and 0.01,
respectively.
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between the two isogenic lines.
Proteome Profiles and Differential

SOD and POD Activitiesand MDA Proteins
Contents
Protein spots, visualized by silver staining
The Bt-isogenic line exhibited 6.6% and (Figure 7), were resolved into approximately
9.9% lower SOD activity than the non-Bt 1783 spots (ranging 1589-1920) on 2-DE
line at IFS and BSS, respectively (Figure gels (isoelectric focusing pH range, 4-7;
5a). No difference in POD activity was size, 24 cm). Importantly, 20 differentially
observed between the two isogenic lines. expressed proteins were identified with high
Also, a significant difference was found in confidence. Their spectra analysis and
MDA content levels only at BSS, that of the further protein identification by MS and data
Bt-isogenic line being 11.9% lower than bank analysis identified 4 up-regulated
non-Bt line (Figure 5c). proteins (U1-U4) and 16 down-regulated
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_‘w 400 + 7240 = %019 L
3 300 %25 : % 13
o :
il B i
200 = 10 7

IFS BSS IFS BSS IFS BSS

Figure 5. Comparison of SOD, POD activities and MDA content in functional leaves between Bt
isogenic line (m) and its non-Bt isogenic line (). Means + SE, n =3
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Figure 6. The ‘spot view’ of proteins up-regulated in Bt isogenic line functional leaves compared to
its non-Bt isogenic line at full flowering stage.

Figure 7. Representative 2-DE maps of proteins extracted from Bt-transgenic glandless cotton (A)
and its non-Bt isogenic line (B) functional leaves at full flowering stage. Labeled proteins were found
to be up-regulated (U) or down-regulated (D) Bt-transgenic glandless cotton vs. its non-Bt isogenic line
and were analyzed by LC-MS/MS analysis.
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(D1-D16) in the Bt-isogenic line vs the non-
Bt line (Tables 3 and 4), and representative

images of spot changes are shown in Figures . S —

6 and 8. 3 =8 3% %

3 EFp22 g B

: 1R

DISCUSSION : SRR

3
Comparisons of yields of isogenic Bt and .
non-Bt lines generally come out in favor of E -~ = oo
Bt cultivars. For example, Mac Griff et al. z i

(2003) reported that lint yields were 99- s
107% greater in Bt than conventional s |2 £
varieties in 5 years of trials in the USA, 5 |z 2 5§ o 3nm %=
during 1998 to 2002. Yield gains of 5.8— Rt 3
10% have been reported in China (Pray et g Z
al., 2002). However, in our present study, o Eemleas w s peos |2
21.8% and 26.9% of seed cotton and lint 2 BT = 5 S59= | R
yield losses were recorded in the Bt-isogenic -j 5
line compared with its non-Bt line (Table 1). —f - ) ';
It is proved that the advantages of Bt i £ s = & z 2
varieties are described as being the 2125 ’ = %
consequence of better pest protection, which g | =* e
dramatically reduces boll loss (Ihrig and g 'l.r‘:
Mullins, 2001). In addition, it is important ¢ | ® (8% E B E% B |2
that Bt transgenic glandless line with g ;
potential use in breeding programs for insect E 5 lean = = w2
resistance be coupled with the selection. of 2| 5 |I5E5 E & EE B |2
desirable yield component. Cotton yield is 2|ApEER &S v ¥ew |3
particularly affected by insect attack because ; z
major pests feed preferentially on the £ |2y Eg ; 2 % EE g E
fruiting structures which are normally shed B |gslRgs 2 2 EF 3 |2
after injury. B (< |EEE "3 3% % |B
Boll distribution patterns may- explain the = - -
cause of yield differences and are useful for E _z ; L 2 a |¥
assessing pest damage and crop management E E f 5‘ 2 3 H E
effects (Kerby and Buxton, 1981). In this 3 £% 3 ; ;E : | &
study, boll distributions on plants showed £ g EFEETZ Ex 2 |3
that the Bt-isogenic line produced more -; 5|3 T L i |w
bolls at positions 1 and 2 (BN, ) on fruiting el § L 5 22 £ |3
branches but the trend was reversed from ;5 £ |2 E: pE #]%
position 3 (BN>3), with the non-Bt line £ £ = EsE:E 5
producing more bolls than the Bt-isogenic Er £ E f K E :: =
& = T £é22z B
” -
= |3as 5 =3 3 z
- -
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line (Table 1). Non-Bt lines have often
produced more fruiting sites over a longer sla s &4
time as described by Stewart et al. (2001). e 8 84 &
Our results suggested that Bt glandless
cotton confers a resistance advantage from ” "
the onset of fruit development via producing = | (8 3 ‘:’, 3
slightly earlier for better fruit retention at the o
first sites. =
The low chlorophyll content in Bt- = |E|lgl8 88
isogenic line plants (Figure 2) may be = |2 oo
associated with a rapid growth of leaf and be % _%
attributed to the destruction of chlorophyll g |2 v § 8 o
pigments and instability of pigment protein 2lzZ|®d 8 8 ¢
complex. Leaf soluble protein is considered 3
to be an indirect estimator of photosynthetic = :
activity (Udayasoorian and Prabakaran, g % | = :c'r = :'f-
2010). The Bt-isogenic line showed a = T|EE 5 E
significantly lower soluble protein at IFS, &
but higher at BSS (Figure 4) when compared &
with the non-Bt line, which may indicate a 7
more rapid decrease in Pn as plants matured, gr wlz 22 &
and reflected more bolls at BN, (Table 1) ‘5: il -
in the Bt-isogenic line than the non-Bt one. =
Cotton has a high requirement for K, and 8 ot i
K deficiency can dramatically reduce lint E 3] f il E ?
yield and fiber quality. In our study, the Bt- 7 S S )
isogenic line displayed lower accumulation _E =
of many important mineral nuttients such as :5-‘ Plaula 2 5 &
K, B, Fe, Zn and S (Table 5). This could ;,‘ :_;' il
have a negative impact on growth and = | &
development of transgenic glandless cotton, s (5 MEER T
requiring further research work. As a major o | B —HEL S
scavenger, SOD catalyzes the dismutation of 3 |= T
superoxide to  hydrogen. peroxide and 2 o i
oxygen, for protecting cells against b b o e I
oxidative damage. L.ess membrane damage 2 3
was evident by 12% lower MDA content in = i ) f‘
the Bt-isogenic line indicating that the § ] I 50 i f
insect-resistant. cultivar had a higher = e ]
capacity for decomposition of H,0, = A
generated by biotic and abiotic stresses in Z = —f 2 ;f =
comparison with the non-Bt line. However, e | 2 |28 28| B
further investigation of antioxidant defense 2 - 5 Eh ,f 3 E
system response to Bt insertion is needed to E e B EE|S
gain a deeper insight. E o 5 &
The 2DE/MS method was used to = 3
investigate proteomic responses to Bt gene 2 g g
insertion and further explore the mechanisms = = £ g =
underlying Bt-specific and anti-insect % EE = I'E
a | 2
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Figure 8. The ‘spot view’ of proteins down-regulated proteins in Bt-transgenic glandless cotton
near isogenic line functional leaves compared to its non-Bt isogenic line at full flowering stage.
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strategies. Four up-regulated protein spots were
identified in the Bt vs. the non-Bt line: a core-neo
fusion protein, appeared to be specific to cotton
antibiotic binding site previously reported as a
selectable marker. The up-regulation of core-neo
fusion protein in the Bt-isogenic line highlighted
the importance of its immune response against
external and environmental conditions during
different growth stages. Indeed, MS analysis
revealed that many distinct protein spots shared
the same protein identity. For example, rofl,
signal transduction-like protein was identified in
spots Ul and DI; ribulose-1, 5-bisphosphate
carboxylase/oxygenase large subunit was found
in spots U2 and DI11; core-neo fusion protein
was found in spots U4 and D14, accordingly.

RuBisco, the most abundant leaf protein, is
degraded and the nitrogen is remobilized during
leaf senescence to support the plant function. A
prominent effect observed in the present study
was the drastic reduction (up to 1000000 fold) of
the large subunit of RuBisCO at spots D10-
D130 which may explain lower yield of the Bt
than the non-Bt line, although U2 demonstrated
an up-regulation of RuBisco in the Bt-isogenic
line. Carbonic anhydrase (CA EC.4.2.1.1) are
zinc-containing enzymes that catalyze the
reversible hydration/dehydration of carbon
dioxide/bicarbonate, and thus participate in a
variety of biological processes that include acid-
base balance, CO, transfer and ion exchange
(Serrano et al., 2007). The 2.3-fold decrease in
carbonic anhydrase protein-content (D13, Table
4) of the Bt-isogenic line'in comparison with the
non-Bt line may be due to the fact that CA is a
good characteristic  of resistance to biotic
stresses. Moreover, D15 and D16 protein spots
still could not be identified because no detailed
annotations were found in databases. This is an
inevitable disadvantage for proteomic analysis in
species whose genomes have not been fully
sequenced (Yang et al, 2008). However, to
some extent, their unique 2-DE locations and
PMFs were annotated, thus it will be helpful in
the identification of these unknown proteins in
future studies.
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