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Abstract – By applying shortest path analysis in stochastic networks, we introduce a new approach 
to obtain the reliability function of time-dependent systems. We assume that not all elements of the 
system are set to function from the beginning. Upon the failure of each element of the active path in 
the reliability graph, the system switches to the next path. Then, the corresponding elements are 
activated, and consequently, the connection between the input and the output is established. It is also 
assumed that each element exhibits a constant hazard rate and its lifetime is a random variable with 
exponential distribution. To evaluate the system reliability, we construct a directed stochastic 
network called E-network, in which each path corresponds with a minimal cut of the reliability 
graph. We also prove that the system failure function is equal to the distribution function of the 
shortest path of E-network. The shortest path of this new constructed network is determined 
analytically by using continuous time Markov processes.          
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1. INTRODUCTION 
 

Many researchers in the second half of the last century have investigated system reliability evaluation and 
have developed a variety of methods in this regard [1, 2]. Yet, the existing analytical methods are usually 
constructed on the basis of some assumptions, which are quite restrictive and are not capable of analyzing all 
real systems. Thus, to calculate the systems reliability with special structures, it is still necessary to design 
new methods. 

In this paper, a new approach is introduced to determine the reliability function of time-dependent 
systems with standby redundancy. The existing methods for time-dependent systems are developed with the 
assumption that all elements are set to function concurrently from the beginning. However, this assumption 
is not true for many real cases. In fact, in practice not all elements are functioning at time zero, but whenever 
an element fails then another one is activated. To illustrate that this assumption is not true for all real cases, 
an example is presented in section 4.   

To calculate the reliability function of time-dependent systems when all elements are set to function at 
time zero, it is customary to apply the joint density or distribution functions techniques. The other approach 
is to apply state-transition models such as Markov chains. The major obstacle in solving these models is the 
complexity, which arises from the large size of the first order differential equations. For example, a system 
with n elements, modeled as a Markov process, may require a solution of as many as 2n first-order 
differential equations (see Shooman [3] for the details). 

In this paper, we consider a time-dependent reliability system with standby redundancy. At the 
beginning, only the main elements work. No standby element is set to function unless one active element 
fails. In terms of graphs, at time zero only the elements of the first path are functioning. In other words, the 
reliability graph works because its input and output are connected through this path. As soon as one element 
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of this path fails, the system is switched to the second path and consequently all elements of the second path 
are set to function. This process continues until all connections between the input and output are interrupted, 
and as a result the system fails. 

We assume the lifetime of each element follows an exponential distribution function. Throughout its 
development, the theory of reliability has been based heavily on the exponential failure law, primarily 
because of its mathematical tractability. It is the appropriate model for used-good-as-new components like 
fuses and many other electronic parts because of the memoryless property of the exponential distribution 
(see Grosh [2] for more details). The objective is to determine the reliability function of this system. 

The shortest path analysis of stochastic networks is applied in order to analyze this system. As a matter 
of fact, we first construct a directed network from the reliability graph of the system. This network is a 
stochastic one and we call it E-network (or equivalent network). In this network, each path corresponds with 
a minimal cut of the reliability graph. Then, we obtain the distribution function of the shortest path from the 
source to the sink node of this E-network by using the method developed by Kulkarni [4]. It is also proved 
that the mean time to failure of the systems with the standby nature is greater than that of the ordinary 
systems, in which all elements are set to function concurrently at time zero. Consequently, this system 
clearly works better compared with the ordinary one. Therefore, what distinguishes our research from the 
previous ones are the following: 
 

1. We relax the assumption that all elements start working concurrently from the beginning. 
2. The method is a new one, on the basis of the shortest path of stochastic E-networks. 

 
For computing the probability between 2 given nodes in the reliability graph of the system, there exists 

at least 1 operation path, Fishman [5] proposed a Monte Carlo sampling plan, which uses lower and upper 
bounds to increase its accuracy and efficiency. Manzi et al. [6] provided a detailed, clear exposition of the 
Fishman method and its extension for computing the global network reliability (probability that the network 
is connected). 

Exact evaluation of system reliability is extremely difficult and sometimes impossible. Once one obtains 
the expression for the structure function, the system reliability computations become straightforward. 
Attempts have been made to compute the exact system reliability of complex systems. For example, the 
algorithm in Aven [7] is based on minimal cut sets. Chaudhuri et al. [8] overcame the problem of calculating 
system reliability in complex systems through a new representation of the structure function of a coherent 
system and demonstrated that the well-known systems considered state-of-art, follow this new representation. 
English et al. [9] presented a discretizing procedure for reliability prediction of complex systems.  

System reliability depends not only on the reliabilities of components in the system, but also on their 
interactions or the dependencies among them. In recent years, studies on the dependent failure theories have 
been widely developed. The main elements in research are the common-cause failures in redundant systems. 
Lin et al. [10] described the parallel redundant systems. Lesanovsky [11] proposed a multiple-state Markov 
model of the system with the dependent components, in which the system is a homogeneous continuous-
time Markov process with discrete states. Humphreys and Jenkins [12] summarized developments of 
techniques for dealing with the dependent failures. 

In the area of determining the shortest path of stochastic networks, Martin [13] introduced a method to 
obtain its distribution function, as well as its expected value. Frank [14] computed the probability that the 
duration of the shortest path in a stochastic network is smaller than a specific value when the arc lengths are 
continuous random variables. Mirchandani [15] developed another method with the advantage that it is not 
necessary to solve multiple integrals. However, this method works only if the arc lengths are discrete 
random variables. Kulkarni [4] presented an algorithm for obtaining the distribution function of the shortest 
path in directed stochastic networks, when the arc lengths are independent random variables with 
exponential distributions. This method is constructed in the framework of continuous time Markov 
processes. Sigal et al. [16] used the uniformly directed cuts in their analysis of shortest paths. www.SID.ir
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The advantage of the proposed algorithm from the point of management implication roots is in its 
assumptions. This new analytical approach was developed for obtaining the reliability function of time-
dependent systems by considering the standby nature of the structure and it is not required that all elements 
start working concurrently at time zero. Since we relax this restrictive assumption, the proposed approach 
can be applied for many real world reliability systems, which can not be solved by the existing methods. 

The remainder of this paper is organized in the following way: In section 2, we describe the reliability 
graphs and introduce the equivalent E-networks, which is the basis of the proposed model. In section 3, a 
method for obtaining the distribution function of shortest path in stochastic networks is presented. In section 
4 the method is illustrated through a numerical example, and finally we draw the conclusion of the paper in 
section 5. 
 

2. RELIABILITY GRAPHS 
 
A very efficient method to compute the reliability of a system is to express it as a graph. Reliability graphs 
consist of a set of arcs. Each arc represents an element of the system, while the nodes of the graph tie the 
arcs together and form the structure. Corresponding with the ith arc of the reliability graph, i=1,2,…,n, there 
is an exponential random variable Ti , with parameter iλ , which represents the lifetime of this element. 
These random variables are independent due to the fact that the elements work independently. If a system 
has i path, denoted by P1, P2,…, Pi, then it has a connection between its input and output nodes, if at least 
one path is intact. 

By definition, a cut of the graph is a set of arcs, which interrupts all connections between input and 
output when removed from the graph. A minimal cut is a cut with the minimum number of terms. Each 
system failure can be represented by the removal of at least one minimal cut from the graph. 

We assume the system functions by its real nature. In other words, not all of its elements are set to 
function at time zero. Initially, only the elements of the first path of the reliability graph work. Upon failure 
of one element of this path, the system is switched to the next path and the connection between input and 
output is established through this second path. This process continues until the connection between the input 
and the output of the graph no longer exists. In that case, the system fails. 
 
Notation: 
 
Ti  :  lifetime of the  ith element of the system; 
T  :  system lifetime; 
Cj :  jth minimal cut of the reliability graph, j=1,2,…,m; 
Xj :  failure time of the jth minimal cut of the reliability graph. 
 
Lemma 1. For j=1,2,…, m, the following relation holds 
 

Xj= ∑
∈ jCi

iT                   (1) 

 
Proof. Taking into account the standby nature of the structure, upon failure of each element of the jth 
minimal cut, the system is switched to the next path. Consequently, at any moment only one element of this 
minimal cut is activated. Therefore, the failure time of this cut is the sum of all its elements.  
 
Equivalent network: Now, we construct a new directed network called equivalent network (or E- network). 
There are m paths in this network, in which the jth path of this directed network is corresponding with the jth 
minimal cut of the reliability graph of the system, j=1,2,…, m.  Clearly, by lemma 1 the length of each path 
is equal to the failure time of the corresponding cut. The following rule describes how to construct E-
network: 
 
Rule 1. Arc i belongs to the jth path of the directed network, if and only if jCi ∈ . www.SID.ir
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Let F(t) represent the distribution function of the shortest path (from the source to the sink node) in E-
network, and R(t) represent the reliability function of the system. The relation between F(t) and R(t) can be 
expressed by the following theorem: 
 
   Theorem 1.  The system lifetime, T, is a random variable as follows: 
  

mj
T

,...,2,1
min

=
=    {Xj }                                (2) 

Consequently 
   R(t)=1-F(t)                                             (3) 

 
Proof. Upon the failure of the first minimal cut of the reliability graph of the system, all connections 
between input and output are interrupted, and consequently the system fails. Therefore, the lifetime of the 
system is equal to the failure time of the first minimal cut which results in (2). Relation (3) follows from the 
definition of R(t) and F(t). Later, in section 3, we present an analytical method to obtain the distribution 
function of the shortest path of E-network. 

The following lemma shows the mean time to failure in the systems with the standby structure when is 
greater than that of a system where all elements are concurrently set to function at time zero. 
 
Lemma 2. The system lifetime with the standby structure is stochastically greater than that of the system 
with parallel structure. 
Proof. Let Ri(t) and )(tRi  represent the reliability function of the ith element of the system at time t, with 
standby and parallel structure, respectively. On the other hand, let us also assume this element starts 
functioning at time xi, when the system is considered as a standby. Then 
 

Ri(t) = P[Ti >t - xi ]  
and 

)(tRi  = P[Ti >t] 
It is clearly concluded that 

Ri(t) > )(tRi                                                                         (4) 
 
Since the reliability of each element of the standby system is greater than that of the parallel structure, then 
the desired result is obtained. 

Consequently, from lemma 2, it is also concluded that the mean time to failure in the systems with 
standby structure is greater than that of ordinary systems. 
 

3. DISTRIBUTION FUNCTION OF SHORTEST PATH IN STOCHASTIC NETWORKS 
 
In this section, we present an analytical method for obtaining the distribution function of the shortest path of 
E-network or, in fact, the distribution function of the path from the source to the sink node of a directed 
stochastic network, in which arc lengths are exponentially distributed. To do that, we need to apply a 
shortest path algorithm for stochastic networks.  

Although there are many simple algorithms for solving the shortest path problem in deterministic 
networks, there are not so many analytical algorithms for this problem when the arc lengths are random 
variables. Clearly, the nature of stochastic networks causes the algorithms of the shortest path to become 
much too complicated. Consequently, we apply the method developed by Kulkarni [4]. 

Let G=(V,A) be a directed network in which V  and A  represent the set of nodes and arcs of the 
network, respectively. We also assume s and t represent the source and the sink nodes of this network, 
respectively. The length of arc ( ) Avu ∈,  is indicated by ),( vuT , which is an exponential random variable with 
parameter ),( vuλ . 

For analyzing the stochastic process properly, it is convenient to visualize the network as a 
communication one. In this network, the nodes are considered as stations capable of receiving and www.SID.ir
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transmitting messages and arcs as one-way communication links connecting pairs of nodes. As soon as a 
node receives a message over one of the incoming arcs, it transmits it along all the outgoing arcs and then 
disables itself. Now, let X(t) be the set of all disable nodes at time t. 
Definition 1: To describe the evolution of the stochastic process }0),({ ≥ttX , for each VX ⊂ , where 

Xs ∈  and XVXt −=∈ , we define the following sets: 
1. XX ⊂1 , the set of nodes not included in X with the property that each path which connects any 
miinode of this set to the sink node t, contains at least one member of X. 
2.  S(X)=X 1X∪ .                                                      

Example 1. In the network depicted in Fig. 1, if we consider X={1,2}, then φ=1X  and S(X)={1,2}. 
However, if we consider X={1,4}, then the only path that connects node {2} to node {5} passes through 
node {4}, but node {3} does not belong to 1X  because it can be connected to {5} directly and the path 3-5 
does not include any nodes of X. Therefore, 1X ={2}, and S(X)={1,2,4}. 
 

 
 
 
 
 
 
 
 

Fig. 1. Graph of example 1 
 
Definition 2: 

                                   Ω ={X ⊂ V/X=S(X)}                                                                (5) 
                       

             Ω *= Ω ∪ V                                                                        (6) 
 
In the above example, Ω *={(1),(1,2),(1,3),(1,2,3),(1,2,4),(1,2,3,4),(1,2,3,4,5)}. The first six elements of Ω * 

are the members of Ω , while the last element of this set is V. 
 
Definition 3: 
If X ⊂ V such that s∈X and t∈ X , then a cut is defined as 
 

             { }XvXuAvuXXC ∈∈∈= ,/),(),(                                                        (7) 
 
There is a unique minimal cut contained in ),( XXC , denoted by C(X). If X∈ Ω , then 
 

),( XXC = C(X) 
 

It can be shown that {X(t),t ≥ 0} is a continuous time Markov  process with state space Ω *.  The 
infinitesimal generator matrix of this process is denoted by Q=[q(X,Y)] (X,Y∈ Ω *),  (see Kulkarni [4] for 
details), where 
      

              q(X,Y)=  - 

{ }( )











=∑−

∪=∑

∈

∈

otherwise

XYif

XSYif

XCvu
vu

XCvu
vu

0

,
)(),(

),(

)(),(
),(

λ

νλ

                             (8) 

      
We sort the states of Ω * such that if s1< s2, then s1 comes before s2. Consequently, the infinitesimal 
generator matrix turns out to be an upper triangular one.  Thus, the state which is denoted by 1 represents the 
source node, while V is denoted by N.   

Let T represent the length of the shortest path in this E-network. Then, it is clear that 
 

                                                      T=min {t>0: X(t)=N/X(0)=1}                                                        (9) 
 

1 

 2

 3

 4  5
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Therefore, the length of the shortest path in the network is equal to the time until {X(t),t ≥ 0} gets absorbed 
in the final state N, starting from state 1. The objective is to compute F(t)=P{T ≤ t} or the distribution 
function of the shortest path in the stochastic network.  

Chapman-Kolmogorov backward or forward equations can be applied to compute F(t). We define 
 

     Pi(t)=P{X(t)=N/X(0)=i}     i=1,2,…,N                                        (10) 
 

Therefore, F(t)=P1(t).By using the backward algorithm, the system of differential equations for the vector 
P(t)=[P1(t), P2(t),…, PN(t)]T is given by 
 •

P (t)=Q⋅P(t),          P(0)=[0,0,…,1]T                                                                      (11)                       
                                                                                                                                                      
In (11), P(t) represents the state vector of the system and Q is the infinitesimal generator matrix of the 
stochastic process {X(t),t ≥ 0}. By taking advantage of the upper triangular nature of Q, the differential Eqs. (11) 
can be easily solved. An analytical or a numerical method can be applied to solve these equations. 
After computing the distribution function of the shortest path in this directed stochastic E-network, F(t), we 
can compute the reliability function of the system from Eq. (3).  
 

4. NUMERICAL EXAMPLE 
 
To operate the accounting activities of a firm, either one computer or one calculator is needed. The 
calculator needs one battery to do the required operations. However, there are two batteries available in the 
system to function as standby. At the beginning, the system may start with the computer. If it fails, then the 
calculator with one battery does the necessary operations. In that case, if the calculator fails so does the 
system. However, if the battery fails, the calculator works with the standby one. In fact, if either calculator 
or the second battery fails, the operation comes to the end. 

This system can be represented by a reliability graph as depicted in Fig. 2, in which arc 1 represents the 
lifetime of the computer, arc 2 represents the lifetime of the calculator, arc 3 and arc 4 represent the lifetime 
of the first and second battery, respectively. Let Ti, i=1,2,3,4, be a random variable which represents the 
lifetime of the ith arc. Furthermore, we assume that Ti, i=1,2,3,4, are independent random variables with 
exponential distributions and the following parameters: 
 

1λ =2,     2λ =3,    3λ =2,      4λ =1 
  

                                                                                                  1 
 
 
 
                                                                                                              

                                                                  2                                  3                                                                   
                                                                                                              
                                                                                                               

                                       
                                                                                                                 4 
      

Fig. 2. Reliability graph of the system 
  

The objective is to obtain the reliability function of this system. Two minimal cut sets of the reliability 
graph are 

C1=(1,2),               C2=(1,3,4)                                                     (12)  
 
From lemma 1, the failure times of the minimal cuts are 
 

X1=T1+T2,            X2=T1+T3+T4                                                  (13) 
 

1 2 3 

www.SID.ir
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Therefore, we construct the directed E-network following Rule 1, as depicted in Fig. 3. This network has 
two paths 
 

P1=(1,2),              P2=(1,3,4)                                                         (14) 
    

 
                                                                       1                                2 

 
                                                                                                  3                 4 

                   
  

                     Fig. 3. E-network corresponding to the reliability graph 
                                                                                                                   
Now, we compute the distribution function of the shortest path from node 1 to node 4 in the directed E-
network. The indicated stochastic process {X(t),t ≥ 0} has 4 states in the order of Ω *={(1),(1,2), (1,2,3), 
(1,2,3,4)}. Table 1 shows Q,  the infinitesimal generator matrix. 
  

Table 1. Matrix Q corresponding to the numerical example 
 

State 1 2 3 4 
1 -2 2 0 0 
2 0 -5 2 3 
3 0 0 -4 4 
4 0 0 0 0 

 
Then, we solve these related differential equations  

)(4 tP
•

=0,   )(3 tP
•

=-4P3(t)+4P4(t),   )(2 tP
•

=-5P2(t)+2P3(t)+3P4(t) 

  )(1 tP
•

=-2P1(t)+2P2(t),     Pi(0)=0     i=1,2,3,     P4(0)=1                                            (15)                        
 

Finally, F(t)=P1(t), and consequently R(t) or the reliability function of the system is obtained as follows: 
 

F(t)=1+2e-4t-0.6667e-5t-2.3333e-2t 
     R(t)=1-F(t)=-2e-4t+0.6667e-5t+2.3333e-2t                                                                     (16) 

 
We can also compute the mean time to failure of the system from Eq. (17) 

 
     MTTF= ∫

∞
=

0
0.8)( dttR                                                               (17)                

 
We can compare this quantity with the mean time to failure of the ordinary system in which four 

elements are set to function at time zero. For a four-element system, the states are as follows:  
 

43210 YYYYS = , 43211 YYYYS = , 43212 YYYYS = , 43213 YYYYS = , 
43214 YYYYS = , 43215 YYYYS = , 43216 YYYYS = ,  43217 YYYYS = , 
43218 YYYYS = , 43219 YYYYS = , 432110 YYYYS = , 432111 YYYYS = , 

      432112 YYYYS = ,    432113 YYYYS = ,   432114 YYYYS = ,    432115 YYYYS =                       (18) 
 

where Yi, i=1,2,3,4, means that the ith element works, and iY  means that the ith element fails. )(tR , or the 
reliability function of this system is given by 

 
)(tR = )()()()()()()()()()()( 1410987643210 tPtPtPtPtPtPtPtPtPtPtP SSSSSSSSSSS ++++++++++    (19) 

 
The system of differential equations for the vector P(t)=[ )(),...,(),( 151 tPtPtP SSOS ]T is given by  

•
P (t)=P(t)⋅ Q ,            P(0)=[1,0,…,0]T                                                                             (20) 

 
where, Q  has 16 states from S0 to S15. Table 2 shows matrix Q . 

 

1 
2 4 

3 
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Table 2. Matrix Q  corresponding to the numerical example 
 

State S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 
SO -8 2 3 2 1 0 0 0 0 0 0 0 0 0 0 0 
S1 0 -6 0 0 0 3 2 1 0 0 0 0 0 0 0 0 
S2 0 0 -5 0 0 2 0 0 2 1 0 0 0 0 0 0 
S3 0 0 0 -6 0 0 2 0 3 0 1 0 0 0 0 0 
S4 0 0 0 0 -7 0 0 2 0 3 2 0 0 0 0 0 
S5 0 0 0 0 0 -3 0 0 0 0 0 2 1 0 0 0 
S6 0 0 0 0 0 0 -4 0 0 0 0 3 0 1 0 0 
S7 0 0 0 0 0 0 0 -5 0 0 0 0 3 2 0 0 
S8 0 0 0 0 0 0 0 0 -3 0 0 2 0 0 1 0 
S9 0 0 0 0 0 0 0 0 0 -4 0 0 2 0 2 0 
S10 0 0 0 0 0 0 0 0 0 0 -5 0 0 2 3 0 
S11 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 
S12 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 2 
S13 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 3 
S14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 2 
S15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Finally, )(tR  is obtained in this manner 

     )(tR =e-2t+e-4t+e-5t-2e-6t-e-7t+e-8t                                                     (21) 
 

The mean time to the failure of this system is computed from Eq. (22). 
 

     599.0)(
0

== ∫
∞ dttRMTTF                                                               (22) 

 
It is clear that the mean time to failure of this system is smaller than that of the previous system with the 
standby structure (about 33 percent) as proved. 
 

5. CONCLUSION 
  

In this paper, we developed a new approach for obtaining the reliability function of time-dependent systems 
by considering the standby nature of the structure. The lifetime of all elements is assumed to be independent 
random variables and exponentially distributed. 

In this type of system, all elements are not set to function concurrently from the beginning. It is 
assumed that only the elements of the first path of the reliability graph of the system work at time zero. 
Upon failure of each element in one path, the system is switched to the next path. The system works until all 
connections between the input and output are interrupted. 

We introduced a new directed network, called E-network, constructed on the basis of the reliability 
graph. In this stochastic network each path is in correspondence with a minimal cut of the reliability graph of 
the system. We also proved the distribution function of the shortest path of E-network is equal to the 
distribution function of the system lifetime. Therefore, the reliability function of the system should be equal 
to one minus this distribution function. 

We also developed an algorithm based on Kulkarni’s method for obtaining the distribution function of 
shortest path in directed stochastic networks, in which the arc lengths are independent random variables with 
exponential distributions. In this section, we constructed a continuous time Markov chain with a single 
absorbing state from the directed network such that the time until absorption into this absorbing state starting 
from the initial state is equal to the length of the shortest path in the network. 

The limitation of the proposed method is that the state space of the continuous time Markov process can 
grow exponentially with the network size. As a worst case example, for a complete constructed network 
with l nodes and l(l-1) arcs, the size of the state space would be 12 2 +−l . One must also note that for very 
large networks, any method of producing reasonably accurate answers will be prohibitively expensive. 

If we compare the systems with the standby structure with the ordinary systems, we can conclude these 
results: www.SID.ir
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1. The mean time to failure of the systems with the standby structure is greater than the ordinary systems. 
2. In the ordinary systems with n elements, we require a solution of 2n first-order differential equations, but 

in the systems with the standby structure, the differential equations which we need to solve are at most 
2n-2+1, which is less than the ordinary systems. 
This model can be extended to the time-dependent systems when the elements have non-constant 

hazard rates. It is also possible to optimize the system in which the hazard rates of the elements can be 
controlled. If the purchasing price of each element depends on its lifetime, then it is possible to maximize 
the mean time to failure of the system with respect to the total purchasing costs of the elements. 
 
Acknowledgment- The authors would like to thank Dr. A. Houshyar, Dr. M. B. Aryanezhad, Dr. S.M.T. 
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