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Abstract – A special hybrid genetic algorithm (GA) is designed to solve the long-term coordination 
of hydro-thermal power systems with cascaded reservoirs and stochastic inflows. Since decision 
variables are continuous, in the proposed GA we employ real number rather than binary encoding. 
To create superior children we introduce dynamic tuning of the weights of operators. An exponential 
normalization is also developed such that better chromosomes have more chance to reproduce. To 
test the proposed method, 16 GAs are investigated which differ based on real or binary encoding, 
dynamic tuning or fixed weights for operators, inverse or exponential normalization and mixed or 
pure random initial populations. By applying the data of a real power system, the performance of 
these algorithms are compared. We also compare the performance of the proposed GA with that of 
the conventional Lagrangian relaxation method. The results show that the proposed GA gives 
promising performance for situations, which if not impossible, are very difficult to handle using 
conventional optimization methods.           
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1. INTRODUCTION 
 

The role of the hydro-thermal coordination (HTC) problem is to determine the contribution of each hydro 
and thermal plant generation to satisfy the demand in a horizon of T periods. The objective is to minimize 
the total system costs subject to system and unit constraints.  

The importance of HTC in significantly reducing system operating costs, as well as its inherent 
complexity, has motivated extensive research efforts to develop effective solution methods for the problem 
[1-3]. The HTC problem is, in general, a non-linear, non-convex, dynamic and large-scale problem. In long-
term studies additional complexity arises due to the fact that the reservoir inflows are stochastic. Due to the 
complexity of the problem, particularly in long-term studies, most of the methods reported in the literature 
are based on some kind of simplification or approximations of the models, such as linearization, 
convexification, aggregation of hydro power plants and deterministic treatment of stochastic parameters  [4-7].  

In order to provide flexibility for incorporation of more practical aspects of system operations, we 
propose a special GA for solving the problem. In our proposed GA, the weights of GA operators are not 
constant; rather they are determined based on a competition among operators to create better children. Since 
decision variables of the HTC problem are continuous, real number encoding is employed and a double 
creep mutation operator is proposed, which randomly sweeps along opposite directions in the solution space. 
Also, in order to give better chromosomes a higher chance to reproduce, an exponential normalization on 
fitness values is employed. Furthermore, since the thermal part of the system is solved by an effective 
nonlinear programming technique, the proposed GA is hybrid. Therefore, what distinguishes this work from 
the others is the proposal of a special GA with the above characteristics together with a complete 
comparison of the performance of the proposed GA with those of various binary GAs and conventional 
Lagrangian relaxation method for solving the long-term HTC problem.    
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The two most common methods for solving the long-term HTC problem are the Lagrangian relaxation 
(LR) [8], and L-shaped methods, which are often referred to as stochastic Benders decomposition [9, 10]. 
Also stochastic dynamic programming was applied in earlier studies of the HTC problem, which is then 
extended in [4]. However, its application is practically limited for large-scale systems since it involves 
discretization of the state variables, which leads to the explosive increase of the number of states commonly 
known as "curse of dimensionality". This problem has been alleviated to some extent by [11], in which a 
stochastic dual dynamic programming (SDDP) is introduced and the expected cost-to-go-function is 
approximated by piecewise linear functions. However in non-linear programming, the assumption of a 
piecewise linear function for the dual objective as used in [11] can not be guaranteed and therefore the 
application of [11] is limited to linear cases. 

The LR technique is reported in the literature as one of the most successful approaches for solving the 
short-term HTC problem, where reservoir inflows are deterministic [12-15]. Nevertheless its application in 
long-term studies, particularly for the case of cascaded reservoirs with stochastic inflows is limited. This is 
mainly due to the fact that the effectiveness of LR technique stems from its ability to decompose the original 
problem into a number of subproblems for each hydro and thermal plant. However, when hydro plants are 
cascaded (the discharge and spillage of upstream hydro plants enters the reservoir of a downstream hydro 
plant), decomposition of a hydro subproblem into a number of problems for each hydro plant becomes 
impossible. Therefore, other methods such as stochastic dynamic programming with successive 
approximations should be applied for the hydro part of the system, where their efficiency decreases rapidly 
as the number of hydro plants in the system increases. Furthermore, finding an effective method for solving 
the dual problem (updating Lagrange multipliers) is still under investigation and most effective techniques 
reported in the literature such as the variable metric method and distance of optimality, are designed for 
deterministic cases [13, 16]. 

Stochastic Benders decomposition has become increasingly popular for solving stochastic multistage 
linear programming problems. This technique applied in [5, 17, 18], obtains the optimal solution by 
iteratively improving lower and upper bounds on the objective function. Recently an inexact cut algorithm 
for stochastic Benders decomposition has been proposed which has shown its effectiveness for the HTC 
problem, however, this improvement is mainly developed for the linear case [19]. The main difficulty with 
this technique is that the problem should be linearized in order to apply the method efficiently. Although the 
Benders decomposition has been generalized to nonlinear cases [20], no successful application of 
generalized Benders decomposition for the HTC problem, particularly for long-term studies, has been 
reported. 

A combination of LR technique and cutting plane method for solving the HTC problem is introduced in 
[12]. This technique, which is an improvement of [21], obtains the solution of the dual problem for LR by 
successively shrinking and enlarging the feasible region, and has given promising results for the nonlinear 
case. However, its application in the case of stochastic inflows is not reported in the literature. 

Concerning the above-mentioned limitations in the existing analytical methods for solving the HTC 
problem with cascaded reservoirs and stochastic inflows; recently there has been an increasing interest 
applying meta-heuristic methods, especially genetic algorithms (GAs). Nevertheless, most of the GA 
applications for the HTC problem reported in the literature belong to short term studies [22-24]. In [25], a 
hybrid genetic algorithm-dynamic program is developed for unit commitment of a hydro-thermal power 
system with pumped storage plants. However, in those applications and in conventional GAs, decision 
variables are represented as a set of binary strings. This representation technique causes several difficulties; 
in particular is the increased probability of premature convergence due to inherent discretization of the 
problem [26]. In recent years the trend has been toward employing GAs with real number encoding [27]. In 
this paper we will show that real encoded GA is both more accurate as compared with binary GA, and 
obtains the optimal (near optimal) solution more rapidly as compared with the classic LR method. www.SID.ir
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The remainder of the paper is organized as follows: In section 2, a definition of the HTC problem and 
its mathematical model is presented. Then in section 3, characteristics of both discrete and continuous GAs 
used in this paper are given. Since GAs are not robust algorithms in terms of their control parameters, a 
dynamic tuning scheme is proposed which employs the idea of competition among operators for tuning their 
weights. In section 4, application of three methods (LR, Real and Binary GAs) for a real hydro- thermal 
power system and a comparison of the results for various cases is illustrated. The LR technique is briefly 
described in the appendix. 
 

2. DEFINITION AND FORMULATION OF HTC PROBLEM 
 
The purpose of solving a a long-term HTC problem is to determine generation levels of hydro and thermal 
plants in a horizon of T periods (months) such that the expected total system cost is minimized, while system 
and unit constraints are satisfied. The power system consists of M thermal and N hydro power plants. Hydro 
power plants have multi-purpose reservoirs, which perform other functions such as water supply and flood 
control. The decision variables are generation levels of hydro and thermal plants. However, it is a common 
practice to consider turbine discharges of hydro plants as decision variables for hydro subsystems. The 
hydro power plants are cascaded; i.e. the output of a reservoir is the input of one or more subsequent 
reservoirs. Since the head and volume of reservoirs are related through some non-convex functions, it is 
implied that the problem is also a non- convex programming. The inflow of water into the reservoirs of 
hydro plants is assumed to be stochastic. The objective is to minimize the total expected cost of the system.  
 
a)  The model 
 

The problem is represented by a mathematical model as follows: 
 

Minimize           

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where E[⋅] represents the expected value with respect to reservoir inflows.  
 
b) The objective function and constraints  

In this model the objective function consists of two parts. The first and second term of the objective 
function represent the following costs, respectively: 
   a) Cost of energy generation by thermal power plants. 
   b) Terminal cost of reservoirs. 

No cost is associated with energy generation of hydro power plants in the objective function, since it is 
almost expense free (except the fixed cost, which is independent of the output level). The generating cost of 
a thermal power plant is approximated by a quadratic function with respect to its energy output x as follows: 
 

GC(x) = ax2 + bx + c  www.SID.ir
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where, a, b and c are constant parameters.  
The second term of the objective function penalizes the deviations from the desired volume in the last 

period and is mainly used to prevent excessive usage of water during the last period. To understand why this 
cost function must be included in the objective function one should note that the excessive usage of water of 
a reservoir in a period results in less hydro energy generation capability in the next period. In this case, part 
of the demand in the next period must be satisfied by more expensive thermal generation. Clearly, the 
optimization model determines the optimal values for turbine discharges such that the total expected cost is 
minimized. However, if this cost function is not considered then the model forces the reservoir content in the 
last period to be used completely. Thus, it is necessary to include a penalty cost function in the objective 
function in order to preserve the water content of reservoirs at some desired level in the last period. To see 
the general structure of this cost function the reader is referred to [4]. 

Constraint (2) maintains the balance between water inflow and water outflow of reservoirs, or in fact, 
the conservation of water in reservoirs. There are bounds on the maximum and minimum allowable 
generation for thermal and hydro power plants, represented by (3) and (5). On the other hand, as mentioned 
before, the reservoirs are multi-purpose and the other requirements such as flood control, supply of water for 
irrigation, and domestic consumption must also be satisfied. Thus, a lower as well as an upper bound on the 
turbine discharge in each period is considered by constraint (4) to ensure the supply of water and satisfaction 
of the maximum allowable release from each one of the turbines. The energy output of hydro power plant n 
in period t, i.e. unt, is a function of the discharge from the turbine as well as the average head in period t.  It 
is assumed that the water inflow to a reservoir in period t is independent of inflow to the other ones, but it 
depends on its inflow in period t-1. More specifically, water inflow to a reservoir follows a Markov Chain 
pattern [4]. Concerning flood control, it should be noted that determining maximum and minimum allowable 
values of reservoir volume in each period is usually performed based on a given risk level for flood control 
and the results are provided as a set of values which are known as "reservoir rule curves". Therefore, lower 
and upper bounds on the volume of reservoirs in each period are determined by (6). Constraint (7) 
guarantees the energy balance of each period and makes the demand and generated energy to be equal. 

At this point, it is necessary to explain why a system with cascaded reservoirs cannot be decomposed 
similarly to what we do for non-cascaded reservoirs systems. The main difference between two systems 
roots in the water balance, constraint (2) of the model.  For non-cascaded reservoir systems this constraint is 
as follows: 

 
vn,t+1 = vnt + Qnt - ynt - snt,        n = 1,...,N; t = 1,...,T 

 
It can be seen that in the mathematical model of section 2.2 constraints 3, 4, 5 and 6 all have a single 

variable and therefore each can be related to a single plant. Furthermore, when constraint 7 is transferred to 
the objective function and the dual problem is formed (shown in appendix B of the paper), the objective 
function can also be decomposed into separable terms for each plant (also shown in appendix B). However, 
when reservoirs are not cascaded the water balance constraint has the simple form shown above which 
contains only the variables of the single plant n (for n=1,...,N). Hence the LR technique can decompose the 
original problem into M thermal and N hydro subproblems, which are independent of each other, or in fact 
each subproblem obtained by decomposition can be solved independent of the other subproblems. This is 
due to the fact that both the objective function and constraints of each hydro and thermal subproblem depend 
only on the decision variables for that particular hydro and thermal plant. On the other hand, for cascaded 
systems in constraint (2), for reservoir n, the decision variables for all upstream reservoirs (i.e. ∑

∈ nUPk
kty ) are 

included, which prevents a complete decomposition of the hydro subproblem into N independent 
subproblems for each hydro plant. 
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3. THE PROPOSED ALGORITHM 
 
a) Genetic Algorithms (GAs)  

Genetic algorithms belong to the class of random search or meta-heuristic methods. In these algorithms 
the search process is inspired by mechanisms of natural evolution. One advantage of GA is that it does not 
require all of the stringent requirements such as convexity or differentiability of the objective function or 
constraints of the problem, while many classical optimization methods require these features on problem 
functions. It is also shown that if GAs are employed, then the probability of finding a solution close to global 
optimum for non-convex problems is much greater than that of conventional techniques [28]. Furthermore, 
for very complex problems it is usually quite difficult to obtain an optimal solution by applying conventional 
techniques, if not impossible. These reasons have made GA an attractive solution procedure for many 
practical problems. 

Holland, who introduced the concept of GAs, essentially used binary strings called chromosomes as the 
basic building blocks of the algorithm [29]. Each chromosome in GA is a solution for the problem under 
consideration and may contain one or more bits possessing values that are identical with those in the optimal 
solution. These certain bit positions are, in fact, good features of that particular chromosome and provide the 
basic building blocks in the search for an optimal solution. Holland calls such a building block a schema 
[29]. He showed that GAs essentially manipulate schemata in their search for an optimal solution through 
some operators. The most popular GA operators are called crossover and mutation. The crossover, which is 
an extremely important operator of GA, allows chromosomes to exchange their genetic material with each 
other. By mutation operator, one may change genetic material in bit positions of a single chromosome 
randomly.  

As mentioned, in the early stages of development of GAs the elements of chromosomes were binary 
strings. However, since in conventional optimization techniques a solution is usually identified by real 
numbers, in order to apply GAs the solution has to be transformed (encoded) into binary strings. To 
overcome the difficulties caused by using binary chromosomes, some researchers developed GAs which use 
real numbers to represent decision variables. These are called real encoded or continuous GAs as compared 
with binary encoded or discrete GAs. There has been considerable debate regarding the relative merits of 
binary and real encoding of chromosomes, [30].   

While binary encoding has a number of advantages over real encoding, some drawbacks are also seen. 
In order to discuss some of the main advantages and disadvantages of binary GAs, we will give a brief 
description of the basic concepts of GAs [31]. Initially note that concerning GA operators, the binary 
encoding has the main advantage that a schema is represented with the highest number of possible positions 
on a string. That is, binary encoding provides the highest number of hyperplane partitions available in the 
solution space for schema processing, but it also has the following drawbacks:   

When binary GAs are used to find the optimal solution of a problem with continuous variables that are 
subject to lower and upper bounds on them, crossover operation on two feasible chromosomes (solutions) 
may result in infeasible solutions. Consider an optimization problem with a single variable x such that 

113 ≤≤ x . If four bits are used to encode x, then application of one point crossover to feasible solutions 4 
and 8 would result in infeasible solutions as shown in Fig. 1. 

When the number of variables as well as the number of bits used to encode them increases, this problem 
becomes more severe. However as will be seen, this problem never occurs with real number encoding, since 
crossover operator only exchanges values which are within upper and lower bounds. This difficulty also 
occurs with mutation operator for binary encoding more frequently than with mutation operator proposed for 
real number encoding described in the next section. 
 

      Parent (a) = 8 : 1     0  0  0               Child (a) = 12 : 1  1  0  0 
                       ⇒                                                             ⇒  (infeasible) 

                    Parent (b) = 4 : 0    1  0  0              Child (b) =  0 : 0  0  0  0  
Crossover point 0  

Fig. 1.  Illustration of infeasible solution generation by binary crossover www.SID.ir



Arc
hi

ve
 o

f S
ID

M. Modarres / et al. 
 

Iranian Journal of Science & Technology, Volume 28, Number B2                                                                                     April 2004 

206

The second difficulty caused by binary encoding results from its inherent procedure of converting real 
numbers into discrete ones. The accuracy of solutions obtained by GA depends on the number of bits used to 
represent decision variables. Decreasing the number of bits may cause premature convergence, while 
increasing those results in more computational time. Although this problem has been alleviated by multiple 
step resolution method to some extent [23], it will not happen by real number encoding. Finally, since users 
need to interpret the results of optimization expressed in real numbers, some additional computation is 
required for this purpose if binary GA is employed, which will increase the overall computation time.  

These issues have encouraged some researchers to use real number encoding [27, 32]. As Davis reports, 
performance theorems for GAs with real number encoding have also been proved, which are similar to 
Schema theorem for binary encoding, [32]. In this paper we will compare the performance of binary 
(discrete) GA with a special real (continuous) encoded GA for solving long-term HTC problem. In both 
GAs, the solution of thermal subsystem is obtained by using an effective nonlinear programming method, 
thus both GAs are hybrid GAs. 
 
b) Characteristics of the proposed hybrid GAs  
 
1. Encoding technique: In our real encoded GA, each chromosome is composed of N⋅T real numbers as 
shown in Fig. 2. Each element of chromosome, i.e. ynt, is the discharge of reservoir n in period t as defined 
before. The elements consist of the discharges of N hydro power plants for the next T periods. For binary 
GA, chromosomes have the same structure, but each real number is replaced by a string of 10 bits, therefore 
in binary GA each chromosome has 10⋅N⋅T elements. 

 
 y11  y12 … y1,T y21  y22 … y2,T … yN1  yN2 … yN,T 

 
Fig. 2. Proposed real number encoding 

 
It is necessary to mention that since the complexity of long-term HTC is mainly caused by a hydro 

subsystem, we merely consider hydro plant discharges as decision variables of hybrid GAs. Thermal plant 
generation levels associated with each chromosome are calculated based on the hydro plant discharges 
(generations) of the corresponding chromosome subtracted from the demand levels for each period. Then the 
nonlinear programming method of economic dispatch is applied [33].  
 
2. Initialization technique and population size: Conventionally the initial population is composed of 
randomly generated chromosomes. However, as recommended in [23], we have included a few 
chromosomes which are known to be good solutions for the problem. Since these non-random components 
may cause premature convergence, selecting them needs special care. For a proper choice of population size, 
several useful guidelines are given in [34]. We have experimented with different population sizes for both 
binary and real GAs. It is found that a population size of 30 is both accurate enough and computationally 
acceptable for both binary and real GAs. In order to have comparisons on the same grounds, the population 
sizes for both types of GAs are taken to be equal and are chosen to be 30 chromosomes. 
 
3. Fitness function and its normalization: As mentioned before, the hydro plant discharges together with 
the demand level of each period can be used to determine the thermal plant generation levels, from which 
the expected thermal generation cost can be calculated. The distribution of the storage level of reservoirs at 
the end of planning horizon can also be determined from hydro plant discharge values from the last period, 
from which the expected terminal cost of reservoirs can be determined. Since penalizing constraint 
violations with a penalty term in the objective function may cause numerical instability, we let only the 
reservoir volume constraints be violated slightly within full and dead storage level of the reservoirs. All the 
other constraints should always be satisfied by any chromosome in the population. The fitness of each 
chromosome is then defined as the sum of (1) and penalty costs associated with violation of (6). The penalty 
cost is chosen such that the cost of any feasible solution be lower than the cost of any other infeasible 
solutions. The choice of penalty factor can have a great impact on the performance of GAs. If the penalty 
factor is chosen such that the penalty term dominates the objective function, then the optimal solutions are www.SID.ir
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most likely feasible but tend to be poor. On the other hand, if the objective function dominates the penalty 
term then the probability that the optimal solutions are infeasible increases. Hence we have chosen the 
penalty factor so that the penalty term and the objective function are of the same order. 

Two types of fitness normalization techniques are applied in order to give the better chromosomes a 
higher chance of reproduction. The first technique is the inverse transformation method proposed in [22]. 
We propose the second method as exponential normalization. Both methods normalize fitness values within 
the range [0,1]. Let Fiti denote the fitness of the i-th chromosome and Fitmin the fitness of the chromosome 
with the lowest cost in the current population. Then, normalized fitness of the i-th chromosome, iFit , for 
proposed exponential normalization is given by 
 



















−−= 1exp

minFit
Fit

kFit i
i  

 
where k is a constant parameter which should be determined based on problem characteristics. 
 
4. Parent selection, crossover and mutation: The roulette wheel parent selection method using normalized 
fitness values is employed to select parent chromosomes for crossover and mutation operations. Due to the 
importance of crossover operation in GAs, three different crossover operators are used for both binary and 
real encoded GAs, which are one-point, two-point and uniform crossover operators [32]. The crossover 
operation for real number encoding applies the same concept as in binary crossover, i. e.; it conveys genetic 
material of the two parent chromosomes to their children. However, the mutation operators for binary and 
real GAs differ in operation. The binary mutation on a single parent creates one child by randomly changing 
the values of bit positions on the chromosome if a probability test is passed. The mutation operator for real 
number encoding used in this work is of creep type. It sweeps along the chromosome and creeps any value 
up and down a random amount if a probability test is passed [32]. Thus, operating on a single parent it 
creates two children, one for creeping up and the other for creeping down. 
 
5. Parent replacement: Each child is allowed to enter the population if its normalized fitness is not lower 
than that of the worst member of the previous generation, and also if it is not identical with any member of 
that generation. When a child enters into the population, the worst member is deleted to keep the population 
size constant.  

As mentioned before, the crossover operator is the most important operator of GA and hence its weight 
should be much more than that of the mutation operator. However, note that as the population tends to 
converge, the effectiveness of the crossover operator tends to reduce due to the fact that similarity of 
chromosomes in the population increases. Therefore, in this situation the mutation operator should be given 
more chance to introduce diversity into the population. This implies that operator weights should change as 
the algorithm proceeds and the basic criterion for changing the weights of operators is based on the degree 
of success of each operator to introduce superior children into the population. 
 
6. Dynamic tuning of operator weights: Concerning the points mentioned in section 5, in our proposed 
GAs (both real and binary GAs), operators compete with each other to be selected for operating on parent 
chromosomes. This is, in fact, an implementation of the basic idea of GA on the operators of GA itself. Thus 
operator weights are dynamically tuned in each iteration of GA based on the performance of each operator, 
measured by qualities of the children produced by the corresponding operator. Also, in order to prevent 
complete elimination of operators in competition, a lower bound is considered such that operator weights 
never reach below this level. The steps followed in the dynamic tuning of operator weights are as follows:  
 
1- Initialize the weights of operators. 
2- If an operator is selected and introduces a child into the population, increase its weight by an amount Inc 
obtained from the following formulae: 
 www.SID.ir
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0
min

max k
Cost

CostCost
Inc chld−

=  

 
where Costmax, Costmin and Costchld are the total expected costs associated with the worst and the best 
members of the current population and newly introduced child into the population, respectively. k0 is a 
parameter which should be determined such that neither rapid dominance of a weak operator nor negligible 
increment for a good operator occurs. If an operator can introduce two children into the population, the 
above increment is calculated for each of them and the sum of increments is added to the weight of the 
corresponding operator.    
3- The increase in the weight of the selected operator is equally subtracted from the weights of the other 
operators, provided that their weights have not reached their lower bounds. This is done to keep the sum of 
the weights of operators equal to unity. If the weights of all the other operators are equal to their lower 
bounds, which implies that the weight of the selected operator has reached its upper bound, then the weight 
of the selected operator is not increased.  

The initial weights for operators were given as 0.75 for three crossover operators (one-point, two-point 
and uniform crossover), each a weight of 0.25 and 0.25 for the weight of the mutation operator. The value of 
k0 is chosen equal to 0.01. Finally, the adaptive operator fitness technique presented in [35] can be used to 
determine the probability test values for uniform crossover and mutation operators. These are 0.5 for 
uniform crossover passing test and 0.09 for mutation passing test. The flow diagram of the proposed method 
is shown in Fig. 3.  

 

 
    Fig. 3. Flow diagram of the proposed method                           Fig. 4. Schematic diagram of the test system 
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Table 1. Various combinations of GA characteristics 
 

R R R R R R R R B B B B B B B B 
D D D D F F F F D D D D F F F F 
P P M M P P M M P P M M P P M M 
E I E I E I E I E I E I E I E I 

                        R= Real,   B= Binary,  D= Dynamic tuning,   F= Fix weights,  P= Pure initialization,  
                       M= Mix initialization,   E= Exponential normalization,   I= Inverse normalization 

 
4. CASE STUDY AND RESULTS 

 
In order to examine the performance of the proposed hybrid GA with real number encoding and dynamic 
tuning of control parameters, two types of tests are performed. In the first step, the solution of the HTC 
problem is obtained using the LR technique in which the hydro subproblem is solved using the method of 
stochastic dynamic programming with successive approximations presented in [4]. Since actual inflows are 
available for the last 37 years, they are used as scenarios for solving the hydro subproblem in the LR 
technique. The convergence criterion is the difference between upper and lower bounds of the dual objective 
function. The maximum allowable tolerance for this difference is adopted to be 0.5 percent of the calculated 
lower bound for the dual objective function. Then the results are compared with those obtained using binary 
and real encoded hybrid GAs. In the second step, the performance of binary (discrete) and real (continuous) 
hybrid GAs are compared with each other under equal circumstances. All tests are performed on Khuzestan 
hydro-thermal power system in Iran, which is described in detail in [5]. A brief description of this system 
and its characteristics are given in appendix A. The schematic diagram of the hydro network for this system 
is illustrated in Fig. 4. 

In order to compare the performance of binary and real GAs, 16 different combinations of GA 
characteristics are considered. These include different normalization schemes, different initialization 
techniques and dynamic tuning or fixed weights for GA operators. The various combinations are 
summarized in Table 1. 

Note that in the pure initialization technique, the initial population is composed of purely random 
chromosomes, while in mix mode two chromosomes, which are known to be good solutions, are used 
together with 28 randomly generated chromosomes to form the initial population. To implement the 
resulting 16 different algorithms, we developed software within MATLAB environment. Each one of 16 
different algorithms is run for 10 different initial populations which are randomly generated. However, in 
order to provide equal circumstances for the 16 different algorithms, the same starting points of random 
number generator are used for each one of the 16 different algorithms. Therefore, 160 different runs are 
performed, each one allowed to proceed up to 1500 generations. The results are summarized in Tables 2 and 
3 for binary and real GAs, respectively. 

In Tables 2 and 3 the abbreviations given in the first column indicate the characteristics of the specific 
GA for which the results of different runs are illustrated. For example RDME is the abbreviation for Real 
GA with Dynamic tuning of control parameters, Mixed initial population and Exponential normalization, as 
shown in Table 1. Also the CPU times given in the last column are the average values for 10 different runs.  
 

Table 2. The fitness values of the best chromosome–Binary (values in $ A) 
 

 RUN 
No. 1 

RUN 
No. 2 

RUN 
No. 3 

RUN 
No. 4 

RUN 
No. 5 

RUN 
No. 6 

RUN 
No. 7 

RUN 
No. 8 

RUN 
No. 9 

RUN 
No. 10 

Average 
fitness 

CPU 
TIME 

BFMI 172535 175756 176533 178368 175919 166777 180504 177219 182388 180729 176673 6819 s 
BFME 171157 171460 184108 178377 164767 172510 170475 175812 175534 170755 173496 6825 s 
BFPI 170155 167275 178798 172395 199915 180451 179098 176790 166328 198248 178945 6819 s 
BFPE 172836 172738 167243 169038 167342 172937 171717 168362 173942 175462 171162 6825 s 
BDMI 177927 175315 165585 174343 181775 168248 177190 185727 193256 173283  177265 7186 s 
BDME 170735 167915 165270 169879 194777 176516 168076 172111 175059 168683 172902 7192 s 
BDPI 172780 225885 173987 170834 168730 175838 173927 169930 190335 184478 180672 7186 s 
BDPE 175210 182564 170966 176866 177075 180193 169847 181062 182716 175139 177164 7192 s 

Lagrangian relaxation using dynamic programming with successive approximations  159483 15492 s 
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Considering the results given in Tables 2 and 3, the following general conclusions can be drawn: 
The first point is concerned with the advantage of real GA over binary GA. The average fitness over 80 runs 
of real GA is $163,055 with an average CPU time of 6502 seconds, i. e. 4.33 seconds per iteration. These 
values for binary GA are $176,035 and 7006 seconds or 4.67 seconds per iteration, respectively. Hence, 
there is an average of about 8% improvement in the quality of solutions with about 7.7% lower CPU time. 
Next, consider the behavior of GAs with and without dynamic tuning of operator weights. The average 
fitness over 40 runs of real GA with dynamic tuning is $161,579 with an average CPU time of 6686 seconds 
while those for real GA with fixed operator weights are $164,531 and 6318 seconds, respectively. Thus, the 
average improvement of $2952 in the solutions is obtained at the expense of increasing the average CPU 
time by 368 seconds. Considering the low costs of computation on PCs as compared to system costs, it is 
concluded that dynamic tuning of operator weights is an efficient technique for real GAs. This efficiency is 
also notable for binary GA with mixed initial population and exponential normalization with an average 
fitness of $172902 and average CPU time of 7192 seconds.      

 
Table 3. The fitness values of the best chromosome -Real GA values in $ 

 
  RUN 

No. 1 
 RUN 
No. 2 

 RUN 
No. 3 

 RUN 
No. 4 

 RUN 
No. 5 

 RUN 
No. 6 

 RUN 
No. 7 

 RUN 
No. 8 

 RUN 
No. 9 

 RUN 
No. 10 

Average 
fitness 

CPU 
Time 

RFMI 166676 164361 161551 170910 167421 163926 167667 163530 167662 163578 165728 6314 s 
RFME 161439 162520 167657 162590 167262 163937 163167 166639 166458 160519 164219 6321 s 
RFPI 164124 163472 166391 165668 160704 164881 165365 167243 165862 165574 164928 6314 s 
RFPE 159828 162973 165155 162275 168929 164082 162889 160945 161985 163431 163249 6321 s 
RDMI 161711 157388 157430 163549 160823 167247 165416 157447 158206 159144  160836 6682 s 
RDME 164206 159744 164351 163116 161632 162010 165082 160241 159117 162953 162245 6691 s 
RDPI 161394 162942 157525 159591 161807 162614 162996 165459 166168 157326 161782 6682 s 
RDPE 163520 159668 158277 162396 163062 162152 163699 161849 159154 160739 161452 6691 s 

Lagrangian relaxation using dynamic programming with successive approximations  159483$ 15492 s 
 
     Furthermore, note that the effect of including a few non-random chromosomes in the initial population is 
not significant. The average fitness over 40 runs of real GA with and without completely random initial 
populations have been $162,853 and $163,257, respectively, while those corresponding to binary GA are 
$176986 and $175,084, respectively. Finally consider the effect of fitness normalization technique on the 
quality of solutions. The average fitness over 40 runs of binary GA with exponential and inverse 
normalizations have been $173,681 and $178,389, i. e., about an $4708 improvement with an average of 
about 6 seconds increase in CPU time. This improvement was prominent for real GA with pure random 
initial population and dynamic tuning of operator weights, with an average fitness of $161,452. The general 
behavior of real and binary GAs with various characteristics is shown in Fig. 5. Figure 6 shows the typical 
competition among operators for real and binary GAs with dynamic tuning of operator weights. 

Regarding the variance of the solutions, we note that it generally decreases at first, as the algorithm 
tends to converge. However the rate of decrease is different for each one of 16 GAs proposed in the paper. 
The variances of the fitness values for each one of the 16 GAs when they are terminated are shown in Table 4. 
 

Table 4. Variance of the fitness values for each one of the 16 GAs when they are terminated 
 

GA Type BFMI BFME BFPI BFPE BDMI BDME BDPI BDPE 
Variance 159.91 188.25 112.67 160.49 151.53 140.65 126.06 124.55 
GA Type RFMI RFME RFPI RFPE RDMI RDME RDPI RDPE 
Variance 202.48 180.05 173.61 145.21 172.54 231.78 175.82 156.86 

 
As can be seen, the variances of solutions for binary GAs are relatively low since the probability of 

premature convergence is relatively high for this type of GA, mainly due to their inherent discretization. The 
dispersion of chromosomes at the end of optimization is greater for RDME type of GA, which uses real 
number encoding and dynamic tuning of control parameters. However, this is a preliminary investigation 
and this subject needs an independent and more careful study. 
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Fig. 5. General behavior of real and binary GAs with various characteristics 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Typical competition among operators for real and binary GAs 
 

Considering the merits of real GA with dynamic tuning of operator weights, it is concluded that this 
type of GA is an efficient solution method for a long-term HTC problem with cascaded reservoirs and 
stochastic inflows. This fact is particularly revealed when the results obtained by RDMI and RDPE GAs are 
compared with that obtained by application of the classical LR technique using dynamic programming with 
successive approximations. As is illustrated in Table 3, there are several cases for which the costs obtained 
by real GA are lower than those obtained by the LR technique, for instance, see the run numbers 2,3,8,9 and 
10 of RDMI and 3 and 9 of RDPE. The fact that the costs obtained by LR are greater than those obtained by 
real GAs are partly due to the use of heuristic methods during the feasibility phase of the LR technique. In 
addition, the LR technique generally obtains locally optimum solutions, while real GAs a much greater 
probability of finding global optimum [28]. As another advantage of GAs over the classic LR technique, one 
can mention the dimensionality problem associated with this method, which prohibits its practical 
application for systems with more than four cascaded reservoirs when used together with stochastic dynamic 
programming [4]. However, not only is this problem not limiting real GAs as seriously as the LR technique, 
but also other practical features of the system such as stochastic energy demand and forced outages of 
generating units can be easily implemented by real GAs, which if not impossible, are very difficult to be 
considered by LR and other classical techniques.  

 
5. CONCLUSIONS 

 
As more practical aspects of hydro-thermal power systems, such as stochasticity of reservoir inflows are 
incorporated into mathematical models for long-term HTC, the effectiveness of conventional optimization 
techniques for solving them decreases. The flexibility of GAs makes them an attractive alternative, 
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particularly when they are customized with the special structure of the problem. The hybrid GA proposed in 
this paper which was developed on the basis of real number encoding, has shown its effectiveness over the 
conventional binary GA and LR technique. The accuracy of this method is very close to that of the analytical 
method while it obtains the optimal solution much faster. In this special GA, appropriate crossover and 
mutation operators, as well as some conventional optimization techniques are adopted. The method gives 
promising results for the case of cascaded hydro systems and can handle situations which, if not impossible, 
are very difficult to analyze using conventional methods. 

The proposed method can also be used for generation expansion planning studies by the inclusion of 
investment costs of alternative plans in the objective function. Furthermore, the proposed method can easily 
handle the long-term HTC when, in addition to reservoir inflows, system demand and generating unit 
failures are stochastic. Devising more effective operators for real number encoding based on the concepts of 
a conventional optimization theory is the author’s current research interest.  
 
Acknowledgment- The authors would like to thank two anonymous referees for their constructive 
suggestions that greatly improved this paper. 

 
NOMENCLATURE 

 
T  the planning horizon, number of periods 
M  number of thermal power plants  
N  number of hydro power plants 
xmt  output of thermal power plant m in period t 
ynt  water released from reservoir n in period t 
unt  output of hydro power plant n in period t 
vnt  water content of  reservoir  n in the beginning of period t 
GCm(x)  generating cost of thermal power plant m as a function of its output x 
TCn(v)  terminal cost of reservoir  n as a function of its water content v 
Qnt  inflow of water to reservoir n in period t 

mtmt xx ,  minimum and maximum allowable values for xmt 
ntnt yy ,   minimum and maximum allowable values for ynt 
ntnt uu ,   minimum and maximum allowable values for unt 

ntnt vv ,   minimum and maximum allowable values for vnt 
nts   water spilled from reservoir n in period t 
tD   energy demand in period t 

UPn        set of reservoirs upstream to hydro plant n  
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Appendix A- Characteristics of Khuzestan power system [5] 
 
The Khuzestan power system is the largest hydro- thermal generating system in Iran. Currently it has two 
hydro power plants in operation and up to six plants under construction, of which two power plants are 
planned to begin operation in the near future. Hence, we have considered 4 hydro power plants for this 
system as shown in Figure 4. These hydro power plants have a total number of 20 units with a total installed 
capacity of 3520 MW. Also, there are two thermal power plants with 12 units which together produce 2258 
MW. Therefore, the total installed capacity of this system is 5778 MW where there is a local power demand 
of 3086 MW at peak period with a load factor of 82%. The extra supply of this system should be transmitted 
to the neighboring power systems, which should at least be 1000 MW for 4 hours (daily peak) every day. 
Due to the fact that the reservoirs of this system are multi-purpose, there is a minimum demand for water 
supply of 150 CM/S at downstream which must be satisfied (i.e. Qc in Fig. 4). Table A1 gives the 
characteristics of generating units and system demand of this system. The demand figures are the algebraic 
sum of local demand, and import and export of energy with neighboring regions. 
 

Table A1. Characteristics of Khuzestan power system 
 

Plant No. of 
units Unit capacity  (MW) Reservoir 

volume (MCM)

Max. 
discharge 

rate (CM/S)

Min. discharge 
rate (CM/S) 

Water head 
losses (M) 

Max. eff. 
Head (M) 

HP1 4 250 228 710 0 2.9 170 
HP2 4 250 2750 850 85 3.1 168 
HP3 4 250 3134 850 85 3.2 165 

Hydro 
plants 

HP4 8 65 3345 420 100 1.6 180 

 
Coefficients of 
quadratic cost 

function 
Aa _b Cc 

RAMIN 6 310 0.005 6.8 500 
MODHEJ1 2 145 0.003 7.5 200 

Thermal 
plants 

MODHEJ2 4 27 
 

0.010 50 150 
Period 1 2 3 4 5 6 7 8 9 10 11 12 

Load Factor (%) 57 60 73 77 82 79 68 63 61 63 65 62 
Demand (GWH) 2138 2231 2537 2735 2983 2710 2158 2107 2093 2151 2205 2167

 
A non-convex relation between head and volume for reservoirs of Khuzestan power system is suggested in 
[5] and is also used in our case studies. These are as follows: 
 

For HP3 (Abbaspur) Dam: 80723.133)(178510.134 13512489.0 +⋅= ABSABS Vh  
                           For HP4 (Dez) Dam:          54242.171)(763685.15 29909223.0 +⋅= DEZDEZ Vh  
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The efficiency of power generation is assumed to be 0.87 for all hydro power plants. The head-volume 
relations for HP1 and HP2 (Karun4 and Karun3) are assumed to be similar to those of HP3. The terminal 
cost functions for HP3 and HP4 are as follows 
 

 
      For HP3 (Abbaspur Dam)        
                                                        

 
      For HP4 (Dez Dam) 
 
 
For intermediate reservoirs, based on the current operation policy of Khuzestan Power Company established 
for future hydro power plants, no terminal cost is considered. Finally, in this study the value of k of section 
3b3 is taken to be equal to 2.  

 
Appendix B- Lagrangian relaxation method [8] 

 
The Lagrangian relaxation (LR) technique has been reported in the literature as the most effective technique 
for solving the HTC problem with deterministic inflows [10, 12]. Its effectiveness essentially comes from its 
ability to decompose the original problem into a number of subproblems for thermal and hydro plants. More 
specifically, in the LR technique, the dual of the original problem as described in section 2a is formed as 
follows: 
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                      subject to:  constraints (2)-(6)  
 

In the above problem, λt is the Lagrange multiplier corresponding to period t. It can be observed that 
the objective of the dual problem is separable in terms of hydro and thermal subproblems. The thermal 
subproblem is, for m=1,…,M, 
 

]x)x([
1
∑ −
=

T

t
mttmtmGCMinimize λ  

                                                            subject to:  mtmtmt xxx ≤≤ ,  t = 1,...,T,    
 
Since thermal plant generations in each period are independent of their generations in the other periods, 
thermal subproblems can also be decomposed in time. Therefore, the solution of thermal subproblem m for 
period t, say *

mtx , is found by equating the derivative of [ ]mttmtmGC x)x( λ−  to zero and comparing the 
result, mtx~ , with the lower and upper bounds.  Hence, the optimal solution is 
 

{ { }}mtmtmtmt xxxx ~,max,min* =  
 

The hydro subproblem is, for n=1,…,N 
 


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t
ntntnttTnn yvuvTCEMinimize

1
1, ),()( λ  

                        
                                                 subject to:  constraints (2), (4), (5) and (6)  
Dynamic programming is applied to solve the hydro subproblem, starting from terminal cost function and 
moving backward to period t=1. As can be seen, when reservoirs are cascaded, the hydro subproblem cannot 
be decomposed into separate subproblems for each hydro plant. Therefore, when reservoirs are cascaded, 
obtaining the solution of hydro subproblem with stochastic inflows becomes very time consuming even by 
application of techniques such as dynamic programming with successive approximations [4]. This is mainly 
due to the explosive increase of the number of states, as already mentioned.   

-0.5875441*(x-1432) + 500         if (x>1432 and x<2283)      
-0.5875441*(x-2283) + 500         if (x>2283 and x<3134) 
 500                                               if (x<1432 or x>3134 )       

 -0.3723008*(x-779) + 500           if (x>779 and x<2122) 
 -0.3723008*(x-2122) + 500         if (x>2122 and x<3465) 
  500                                               if (x<779 or x>3465)         
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After obtaining hydro and thermal subproblem optimal solutions, they are coordinated by updating 
Lagrange multipliers using any one of the existing methods. While updating Lagrange multipliers is the 
critical part of the LR technique, most of the existing methods for this purpose are either oscillating (i.e. 
subgradient method, [12]) or have a slow rate of convergence (i.e. cutting plane method [21]). The problem 
of finding an effective method for updating Lagrange multipliers is not fully solved and is still under 
investigation, see [12, 36, 37] for example. When Lagrange multipliers are updated, they are returned back 
to the hydro and thermal subproblems to determine new generation levels corresponding to the updated dual 
variables. The procedure is repeated until most convergence criterion is satisfied. Then an additional 
procedure should be followed in order to obtain a primal feasible solution, since dual solutions are not 
necessarily feasible in the primal problem. There are efficient methods for this last procedure, see [38] for 
example. 
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