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Abstract– Uniqueness of the relationship between the return periods of the annual maximum series 
(AMS) and the partial duration series (PDS) are evaluated in light of the actual data. Rainfall 
intensities with durations of 15, 30, 60, and 360 minutes are calculated for seven stations 
representing a variety of climatic conditions (humid, cold, desert, and hot desert), and the 
corresponding AMS and PDS values are considered. PDS values are evaluated in view of annual 
exceedance series (AES), up to the minimum one observation (MOO). The two-parameter gamma 
distribution is found to be the most suitable to provide various return periods for the calculated 
rainfall intensities. A comparison of the results suggests that a unique relationship does not exist 
between return periods of AMS and PDS. Indeed, length ratio (ratio of record length of PDS series to 
that of AMS) should be considered as an additional independent variable. Therefore, any further 
attempts to extend the uniqueness of the relationship between AMS and PDS for the computation of 
hydrological variables such as rainfall depth are shown to be inappropriate. Finally, it is concluded 
that any relationship between AMS and PDS return periods is actually a function of rainfall duration 
as well as station location.           
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1. INTRODUCTION 
 

Investigation of rainfall intensity-duration-frequency (IDF) has been suggested to be the appropriate set of 
hydrologic variables for probability analysis by a number of researchers [1, 2]. Furthermore, evolution of 
rainfall intensity in terms of a particular return period and in the context of annual maximum series (AMS) or 
partial duration series (PDS) has long been a common practice in hydrology. Certain types of analysis may 
require data arrangement in such a way that only the maximum value of each year is selected. This is commonly 
known as the AMS. It is possible that any particular year may contain data points that are larger than the 
maximum of another year. In such a case all selected data points may be chosen to be above a minimum value. 
This type of series is typically referred to as PDS. The selection of a minimum value (threshold), is to a large 
extent, by personal judgment. However, a number of researchers have defined this limit so that the number of 
selected data points would be equal to the record length [3-7]. In such a case the series is referred to as the 
annual exceedance series (AES). Other researchers have suggested that data selection should be done so that at 
least one data point is selected for any given year [8-12]. This series is referred to as minimum one observation 
(MOO). Sutcliffe [13] suggested that the application of PDS should be limited to the evaluation of mean values 
on flood discharge for cases with less than 10 years of data. In addition, since some degree of co-dependence 
may be observed between flood events, the use of PDS is more common for rainfall events [5, 6, 12, 14]. 

When applied to a particular problem, PDS is faced with two difficulties, i.e., the choice of threshold 
and the selection of criteria for retaining peak values. Rosbjerg [15] distinguished independent and 
dependent peak values and derived relations for computing the variance of the T-year estimate. Lang et al. 
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[16] pointed out the problems of choice of threshold and selection of criteria for retaining flood peaks 
associated with the PDS approach. They further clarified three tests (mean number of over-threshold events, 
mean exceedance above threshold, and dispersion index) for establishing this threshold. Some researchers 
suggested the selection of the threshold level on the basis of a given return period. For instance return 
periods of 1.15 and 1.2-2 years are presented in the literature [17-19]. Based on theoretical considerations of 
the sampling variance of quartiles, Cunnane [20] showed that the condition length ratio>1.65 should be met 
when using the PDS approach instead of AMS analysis. This condition holds for the PDS model with 
exponentially distributed peaks. Wang [21] made a comparison of the PDS (based on Generalized Pareto 
distribution) and AMS (based on generalized extreme value distribution) in terms of the accuracy of T-year 
event estimators. However, he only considered estimation in a PDS with an average number of events equal 
to the number of years of the sample period. Madsen et al. [22] more generally, extended the work of Wang 
[21] and compared estimation in the AMS model with that of the PDS model using a wide range of the 
number of events included in the PDS. They arrived at a more complex condition that depends also on the 
value of the shape parameter of the PDS distribution. 

The classical PDS model comprises the assumption of a Poisson distributed number of threshold 
exceedances and independent exponentially distributed exceedance magnitudes [23]. Alternative exceedance 
distributions have been proposed, including the gamma distribution [24], the Weibull distribution [25], the 
log-normal distribution [26], and generalized Parreto distribution [21]. Yet in previous literature one can 
find the experimental point plot approach on semi-logarithmic paper [6] and power function [27]. 

While PDS is more popularly used in flood analysis, it does have other applications as well. The PDS 
approach is used by Kjeldson et al. [28] to predict the severity of future droughts, i.e. the T-year events. Of 
particular interest has been the uniqueness of any type of relationship that may exist between return periods of 
AMS and PDS. This issue will be discussed next. 

 
Uniqueness of relationship between return periods of AMS and PDS- Relationships indicating event 
probabilities between AMS and annual exceedans series, AES (a particular form of PDS), were developed 
by Langbein [29], while the theoretical correspondence issue between AMS and AES were investigated by 
Chow [27, 30]. 

As a result of the mentioned research, the following relationship has been accepted universally to explain 
the inter-connection of return periods between AMS and AES [3, 9, 17, 31] 

 
TP=1/[(Ln(TM)-Ln(TM-1)]                                                        (1) 

 
where TP and TM are the return periods of AES and AMS, respectively, and Ln stands for natural logarithm. 
Based on Eq. (1), a distinct difference is observed for the return periods of up to 10 years, beyond which, values 
converge to a point of almost equality. Furthermore, the above relationship should be used for cases with the 
number of data points equal to the length of data. Any uniqueness that actually may exist between TP and TM in 
Eq. (1) would be a main cause for concern. 

Chow [27] introduced the following relationship for a rainfall event with a return period of T and duration 
of D 

 
R(T, D)=a' Log(TP)+b'                           (2) 

 
where TP is the return period in PDS, R(T, D) is rainfall depth as a function of return period and time duration, 
and a' and b' are regression coefficients. 

For a given rainfall depth with a particular return period and duration, Chen [2] evaluated coefficients a' 
and b' in Eq. (2) by applying the two-point method. For this purpose he assigned values of 10 and 100, 
respectively, to TP. Also, by accepting relationships (1) and (2), he suggested the following conversion factor 
(CF) to be multiplied by rainfall depth with a return period of TP (in PDS) to get rainfall depth in AMS (T) 

 
CF=Log[102-xLn{TP/(TP-1)}]1-x/Log[102-xTx-1]                                  (3) 
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where x is the ratio of rainfall with a 100-year return period to that of a 10-year return period in PDS. However, 
Kothyari and Garde [32] showed that CF of Eq. (3) could not be directly used for some parts of India; they 
proposed that Eq. (3) must be multiplied by 0.77. 

A review of literature indicates that there is no relationship between return periods of AMS and PDS 
except that of Chow. Several researchers have trusted Chow’s relationship, and have extended their work 
accordingly. Therefore, uniqueness of such a relationship is important in engineering applications wherever 
analysis of frequency, either rainfall or flood, is to be considered. Any inconsistency in such a relationship 
could yield incorrect hydrologic values. The aim of this study is, however, to have a re-visit to this 
universally accepted equation under the actual data of short duration rainfall intensities of different climatic 
conditions in Iran. The behavior of the parameters of Eq. (2), and the behavior of x parameter are also 
surveyed. 
 

2. STATION SELECTION AND DATA ANALYSIS 
 
In order to better evaluate the uniqueness of the relationship between return periods of AMS and PDS as 
previously discussed, it is important to select stations with a variety of climatic conditions. Furthermore, the 
selected stations had to be equipped with recording raingage so that rainfall intensity values could be 
calculated. Table 1 shows the location and some of the important rainfall characteristics of the selected 
stations. These characteristics represent some of the diverse climatic conditions that are calculated based on 
the Embreger method. All of the selected stations are monitored by the Research Center of the Iranian Water 
Resources Organization (TAMAB). The geographical diversity of these stations are presented in Fig. 1. This 
Figure is a map of Iran with stations so included in the Embreger classification. 
 

Table 1. Station identification and rainfall characteristics 
 

 
 
 

Station 

 
 

Longitude 
(degree) 

 
 

Latitude 
(degree) 

 
 

Altitude 
(m) 

Mean maximum 
rainfall (mm) in 

different durations (days) 
    1           2            3            4 

 
Mean 

maximum 
monthly 

rainfall (mm) 

 
Mean 
annual 
rainfall 
(mm) 

 
 
 

Climate 

Baq-Malek 49.53 31.31 675 72.4 95.0 104.3 113.6 194.9 573.7 Moderately 
semi wet 

Mohamad-
Abad 

54.25 31.46 1250 12.4 15.1 15.8 16.5 26.6 61.8 Cold-dry 

Qaleh-Jooq 44.28 39.17 1292 30.8 37.2 41.7 44.8 88.4 352.4 Mountainous 
climate 

Qasr-Qand 60.37 26.12 382 35.7 47.1 50.0 52.9 79.5 180.2 Severe hot-
desert 

Qoochan 58.31 37.03 1360 31.4 38.7 40.5 43.2 82.2 306.1 Semi cold-
dry 

Shahmaran 52.21 28.27 1040 30.3 43.8 52.2 54.6 73.0 171.0 Moderately 
hot-desert 

Shilaben 48.50 37.48 99 88.8 113.7 125.8 134.2 224.2 1102.1 Highly wet 

 
Fig. 1. Relative locations of stations under study www.SID.ir
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For four typical rainfall durations of 15, 30, 60, and 360 minutes, intensity values were calculated and 
the corresponding AMS values were selected. The same process was undertaken for the PDS values. First, 
the number of data points was chosen to be equal to the length of data, referred to as AES. Then, by 
allowing a gradual increase in the number of data points, more analysis was conducted. In this research, the 
ratio of the number of data points to the length of data at each stage of evolution is referred to as the length 
ratio (LR). The process of gradually increasing the number of data points was increased up to a point where 
at least one data point was selected for every year with allowable data (MOO). 

For the purpose of selecting an appropriate probability distribution function, one of the common 
procedures as outlined in most hydrological literature may be applied [33]. In this case the two-parameter 
gamma distribution function was found to best fit the rainfall intensity statistics as they relate to the 
corresponding return periods. Then, based on the recommended procedures [34], regression relationships 
were developed between the return periods of AMS and PDS with different LR values. 
 

3. RESULTS AND DISCUSSION 
 

a) Simultaneous return periods of AMS and PDS 
 

The non-linear multiple regression approach was used and the following expression was found to be the 
most appropriate  

Y = a X1
bX2

c                             (4) 
 

where Y and X1 are return periods for AMS and PDS, respectively, X2 is the length ratio (ratio of length of 
PDS series to that of AMS), and a, b, and c are regression coefficients. Since return periods of less than two-
years may have different applications as compared to those greater than two-years, results were classified to 
show such differences. Table 2 shows the results for the Qaleh-Jooq station (results for other stations are 
reported in Ghahraman [35]). The F value (for F-test example see Haan [8]) of Ln(a) is for testing the 
significance of this coefficient with K and N-K degrees of freedom for the nominator and the denominator, 
respectively (N= total number of observations, K= sum of dependent and independent variables). F values of 
b and c coefficients are for testing the significance of introducing independent variables of X1 and X2, Eq. 
(4), respectively. Degrees of freedom for the nominator and the denominator in this case are 1 and N-K, 
respectively (for more details refer to Dropper and Smith [36]). High F and R2 values support the structure 
selected for Eq. (4). Although the F value for c (testing for LR independent variable) is much lower than the 
F value for b, its value is highly significant since it validates the incorporation of LR in the model. It implies 
that a unique relationship does not exist between the return periods of AMS and PDS. Meanwhile, variation 
of coefficients among different time durations (Table 2) and also for different stations (data not shown) is 
noticeable, indicating that a global relationship may not be developed. 

Table 3 shows the results for the case of MOO. The computed coefficients in this table also show some 
degree of variations among time durations, and therefore support a non-global relationship. Similar types of 
analysis were also performed for the other six stations [35]. Figure 2 shows the results of regression analysis 
between the return periods of PDS (dependent variable) and the return periods of AMS and LR (independent 
variables) as compared with Eq. (1). This figure is a re-statement of Table 2 in part, and shows that the 
return period of PDS does not only depend on the return period of AMS (as Eq. (1) indicates), but also on 
length ratio. The high deviation of the results from Chow’s relationship Eq. (1) for all stations are clearly 
shown. The highest LR in each sub-plot represents the MOO case of the PDS series. This LR is different for 
different stations due to the nature of data. This indicates that Chow’s relationship may not be a universal 
equation. One may easily come to the conclusion that there is a remarkable deviation between Chow’s 
relationship with our results. On average, this difference increases as the return period of AMS increases 
without bounds, and Chow overestimates the return period of PDS in all cases. On the other hand, at a lower 
part of the return period of AMS, Chow’s relationship greatly underestimates the return period of PDS. www.SID.ir



Arc
hi

ve
 o

f S
ID

A re-visit to partial duration series of… 
 

October 2004                                                                                Iranian Journal of Science & Technology, Volume 28, Number B5 

551

Although the return period of the PDS is highly dependent on the return period of the AMS (curves are 
highly sloped), the dependency to LR is not so high (curves are so close to each other). This point can also 
be drawn from F-values indicated in Table 2. Other rainfall durations produced similar results [35]. 

All available data for LR=1 (AES case of PDS) were considered, and at a constant return period of 
AMS and rainfall time duration, the values of the return period of the PDS were averaged over all seven 
stations. Figure 3 shows the mean and CV (coefficient of variation) values of the return period of PDS as a 
function of the return period of AMS. It is interesting to note the convergence of the return period of PDS 
values for different rainfall durations, indicating the possibility of a unique relationship for an AES case of 
the PDS series. In addition, variations in CV values are not high for small return periods (Fig. 3). In general, 
as return period increases, the CV value increases accordingly. However, the variations of mean of the return 
periods of AMS are not monotonic, showing a pseudo-sinuidonal form. The minimum CV values for all 
rainfall time durations occurred around 5 years of the return period, where CV value increases just 
negligibly for smaller return periods. On average, the 1 hr series depicts the lowest CV values, while the 
highest CV values are attributed to the 6 hr series. 
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Fig. 2. The relationship between return periods (TR) of AMS and PDS series of  

1-hr rainfall duration for stations under study 
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Table 2. Regression analysis for Qaleh-Jooq station (case of PDS) 
 

Duration 
(min) 

Return 
period 
(year) 

Number of 
observations 

(N) 

Coefficient of 
determination 

(R2) 

Regression 
parameter 

Value of 
regression 
coefficient 

F+ SD 

Ln(a) -0.604280 8464.5 0.02785 
b 1.466344 16858.5 0.01129 

TR≤100 240 0.99 

c 0.770840 270.3 0.04688 
Ln(a) -1.215867 19269.0 0.02371 

b 1.666900 38194.0 0.00853 
2≤TR≤100 112 1.00 

c 1.151248 1658.6 0.02827 
Ln(a) -0.156216 486.2 0.01121 

b 0.668842 964.8 0.02153 

15 

TR<2 128 0.89 

c 0.255059 225.6 0.01698 
 

Ln(a) -0.612504 18347.1 0.02006 
b 1.450105 36606.8 0.00758 

TR≤100 420 0.99 

c 0.729783 1004.3 0.02303 
Ln(a) -1.077880 57262.0 0.01382 

b 1.529005 113939.6 0.00453 
2≤TR≤100 196 1.00 

c 1.174006 9532.6 0.01202 
Ln(a) -0.151300 341.1 0.01320 

b 0.777585 679.1 0.02984 

30 

TR<2 224 0.76 

c 0.211325 219.0 0.01428 
 

TR≤100 660 0.97 Ln(a) -0.763762 11739.0 0.02667 
   b 1.648130 23442.0 0.01076 
   c 0.740292 1030.0 0.740292 

2≤TR≤100 308 0.99 Ln(a) -1.495059 19674.0 0.02579 
   b 1.750371 39220.0 0.00884 
   c 1.358253 6301.0 0.01711 

TR<2 352 0.76 Ln(a) -0.142239 561.7 0.01045 
   b 0.929779 1120.3 0.02778 

60 

   c 0.151752 307.4 0.00865 
 

Ln(a) -0.909352 17157.8 0.02236 
b 1.647920 34259.7 0.00890 

TR≤100 615 0.98 

c 0.774104 1526.9 0.01981 
Ln(a) -1.647578 65486.2 0.01443 

b 1.828150 130516.1 0.00506 
2≤TR≤100 287 1.00 

c 1.224703 16545.4 0.00952 
Ln(a) -0.212560 521.5 0.01238 

 0.711949 1039.9 0.02208 

360 

TR<2 328 0.76 

 0.209740 420.2 0.01023 
 

    + All F values are significant at 0.005 level of significance  
 
Jayasuriya and Mein [37] fitted a log-Pearson type III to three series of flood (AMS and PDS with 

different length ratios) for Canberra, Australia. We digitized their data and prepared Fig. 4 to show the 
dependency of AMS series-return period to both PDS series-return period and LR, to show support for our 
results. Chow’s relationship shows a good comparison with the case of LR=1 (AES of PDS). However, for 
other return periods, the two curves (that of Chow and that for LR=1) diverge. Figure 4 shows that as the LR 
increases, the results deviate even more from Chow’s relationship. Henson [38] analyzed the bankfull depth 
from small watersheds in the Appalachian Mountains. He reported recurrence intervals for both AMS and 
PDS. We used Eq. (1) to calculate return periods of PDS based on his return periods of AMS. Henson’s data 
produced an average 62% underestimation over Chow’s relationship. This finding also supports our work on 
the deficiency of Chow’s. Henson’s data covers the return period of AMS between 1.03 and 3.77 years. 

    www.SID.ir
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Fig. 3. Mean and CV for return periods of PDS series among all seven stations for different 

 rainfall time durations: ., 15 min; o, 30 min; x, 1 hour; and +, 6 hour 
 

Table 3. Regression analysis for Qaleh-Jooq station (case of MOO)  
        (Coefficient of determinations are 1 for all regressions) 

 
Duration 

(min) 
Return 
peruid 
(year) 

Number of 
observations 

(N) 

Regression 
parameters 

Value of 
regression 
coefficient 

F+ SD 

Ln(a) -0.063167 13534.0 0.01747 TR≤100 15 
b 1.551204 12632.0 0.01380 

Ln(a) -0.180569 64555.0 0.01263 2≤TR≤100 7 
b 1.608454 55333.0 0.00684 

Ln(a) -0.013811 1401.0 0.00467 

15 

TR<2 8 
b 1.225693 1225.5 0.03501 
 

TR≤100 15 Ln(a) 0.081542 3966.8 0.03076 
  b 1.669715 3702.3 0.02744 

2≤TR≤100 7 Ln(a) 0.272162 4493.6 0.04148 
  b 1.570110 3851.6 0.02530 

TR<2 8 Ln(a) 0.009308 1720.7 0.00384 

30 

  b 2.445621 1505.6 0.06303 
 

Ln(a) 0.078620 4139.4 0.03014 TR≤100 15 
b 2.095372 3863.5 0.03371 

Ln(a) 0.266851 5239.6 0.03848 2≤TR≤100 7 
b 1.971994 4491.1 0.02943 

Ln(a) 0.005892 7082.2 0.00192 

60 

TR<2 8 
b 3.074431 6196.9 0.03906 
 

Ln(a) 0.053014 7467.2 0.02264 TR≤100 15 
b 1.857885 6969.3 0.02225 

Ln(a) 0.194025 6019.8 0.03677 2≤TR≤100 7 
b 1.776028 5159.8 0.02472 

Ln(a) 0.002662 5875.2 0.00213 

360 

TR<2 8 
b 2.127826 6015.3 0.02998  

           + All F values are significant at 0.005 level of significance 
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Fig. 4. The relationship between return periods of AMS and PDS series for floods 

 of Canberra River, Australia (after Jayasuria and Mein, 1985) 
 

b) Universality of Equation 2 
 

For Eq. (2), Chen [2] suggested that 100-year and 10-year return periods may be used to arrive at 
coefficients a' and b'. To test the uniqueness of these values, alternative return periods were used, and also 
the best coefficients were calculated through semi-logarithmic regression. Our results indicated that b’ was 
very sensitive to choice on TP1 and TP2, while a' just showed some minor fluctuations. Therefore, 
regression analysis seems more accurate than Chen’s method. His method showed a +2.6 and –42.0% 
difference from regression lines on average for all data points. Table 4 shows the best values for a' and b', 
including determination coefficients for regression lines of length ratios of 15-minute and 1-hr time 
durations and stations. We did not report the results for 30-minute and 6-hr, due to space limitations. The 
following results show some systematic trends: 
1. a'  increases with either time duration or length ratio. 
2. b'  has a random fluctuation and does not depend on time duration or LR. 
3. determination coefficient increases with length ratio and decreases with time duration. 
4. for three different vast climates of cold, humid, and desert, the average of R2 is highest for humid  and is 

lowest for desert climate, where for cold climate is in between. As desert climate becomes more severe 
(from Shahmaran to Qasr-e-Qand), the average R2 decreases in amount. 

 
Table 4. The coefficients of Eq. (2) obtained by regression procedure for stations under study 

 
Length Ratio a' b' R2+ Length 

Ratio 
a' b' R2+ 

Baq-Malek 
15 minute 1-hr 
1 3.096 14.185 0.987 1 6.963 12.763 0.979 
1.5 5.111 14.498 0.980 1.5 11.502 15.940 0.984 
2 5.837 13.959 0.992 2 15.141 12.563 0.988 
2.5 6.089 13.067 0.990 
3 6.215 12.252 0.994 

 

Mohammad-Abad 
15 minute 1-hr 
1 1.338 6.130 0.931 1 3.009 5.515 0.887 
1.5 2.208 6.265 0.932 1.5 4.970 6.890 0.936 
2 2.522 6.032 0.941 2 5.679 5.429 0.940 
2.5 2.631 5.646 0.946 
3 2.732 5.317 0.950 

 

Qaleh-Jooq 
15 minute 1-hr 
1 1.404 6.434 0.937 1 3.158 5.789 0.891 
1.5 2.318 6.576 0.939 1.5 5.217 7.232 0.941 
2 2.648 6.332 0.945 2 5.960 5.698 0.942 
2.5 2.762 5.926 0.949 2.5 6.208 6.523 0.903 

3 7.140 6.912 0.905 
3.5 7.524 7.324 0.905 
4 8.098 7.548 0.907 

 

4.5 8.345 7.790 0.909 
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 Table 4 Continued. 
 

Qasr-h-Qand 
15 minute 1-hr 
1 1.334 6.113 0.781 1 3.000 5.500 0.780 
1.5 2.202 6.247 0.785 1.5 4.956 6.870 0.785 
2 2.515 6.015 0.790 2 5.663 5.414 0.788 
2.5 2.624 5.630 0.793 2.5 5.898 6.197 0.792 
3 2.700 5.513 0.797 3 5.975 5.981 0.793 
Qoochan 
15 minute 1-hr 
1 1.662 7.614 0.937 1 3.738 6.851 0.891 
1.5 2.743 7.782 0.939 1.5 6.174 8.558 0.941 
2 3.133 7.493 0.945 2 7.054 6.744 0.942 
2.5 3.268 7.014 0.949 2.5 7.348 7.720 0.943 
3 3.579 7.095 0.953 3 8.061 8.001 0.945 
3.5 3.889 7.138 0.954 3.5 8.783 8.502 0.905 
4 4.253 7.246 0.957 4 9.528 8.014 0.907 

4.5 9.997 7.506 0.909  
5 10.781 8.171 0.912 

Shahmaran 
15 minute 1-hr 
1 1.160 5.313 0.880 1 2.608 4.78 0.880 
1.5 1.914 5.430 0.883 1.5 4.308 5.972 0.886 
2 2.186 5.228 0.890 2 4.922 4.705 0.886 
2.5 2.281 4.894 0.893 2.5 5.127 5.386 0.892 
3 2.510 4.889 0.895 3 5.155 6.150 0.893 
 3.4 5.245 5.416 0.893 
Shilaben 
15 minute 1-hr 
1 3.562 16.318 0.982 1 8.010 14.682 0.981 
1.5 5.879 16.677 0.984 1.5 13.231 18.341 0.986 
2 6.715 16.058 0.990 2 15.117 14.452 0.987 
2.5 7.004 15.031 0.994 2.5 15.746 16.543 0.993 

 
                   + Coefficient of determination 
 

c) Analysis of x ratio 
 

Chen [2] assumed that x-value (ratio of 100-year rainfall to that of 10-year, used in Eq. (3) is only a 
function of geographical location of raingage, yet its variations in different stations are not remarkable. 
Figure 5 shows that x is not only highly dependent on the location of raingage, but also on rainfall duration 
and length ratio. Also at a specific length ratio, the variation of x with rainfall duration is not monotonic, but 
for specific rainfall duration, x directly increases with length ratio. Therefore, a constant value for x can not 
be considered, which may explain the necessary coefficient of 0.77 in Kothyari and Garde’s study [32] for 
certain parts of India. Dependency of x on rainfall duration at a constant length ratio and for a specific 
raingage is quite similar to the findings of Ghahraman [39] for 126 recorded raingages of Iran using the 
AMS series. This author has shown that x is in fact a function of rainfall duration. Such ratio for selected 
rainfall durations used in this study (15, 30 minutes, 1, 6 hours) can be read as 1.606, 1.603, 1.579, and 
1.528, respectively, [39] which are in the order of this research just for LR=1 (Fig. 5).  

 
4. CONCLUSION 

 
The universally accepted relationship between AMS and PDS, as originally proposed by Chow [27, 30] has 
been widely used by researchers and practitioners. However, the underlying assumption of uniqueness for 
the above relationship requires further investigation in light of local data. This is rather important since if 
uniqueness is not established, any resulting estimated value for a particular return period of interest would be 
questionable. www.SID.ir
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In this paper we have investigated the uniqueness of the relationship between return periods of AMS 
and PDS, utilizing actual data from a variety of climatic sites in Iran. PDS values are investigated in terms of 
AES and MOO values. 

Based on observations and analysis reported in this paper, it is concluded that a unique relationship 
does not exist between return periods of AMS and PDS. Furthermore, any relationship is a function of LR, 
and also the derived relationships are a function of station location, as well as rainfall duration. 

It is clearly shown that a unique relationship between return periods of AMS and PDS of short rainfall 
series can not be developed for Iran, since the length ratio should also be considered as another independent 
variable. In general, for a given return period of AMS, the return period of PDS increases with LR. For AES 
series (i.e., LR=1), the average of the return periods of PDS for a specific return period of AMS, and rainfall 
time duration over all seven stations showed a CV value of less than 0.2. The average of CV over all return 
periods were 0.123, 0.171, 0.142, and 0.198 for rainfall time durations of 15, 30, 60, and 360 minutes, 
respectively. On the other hand, rainfall duration had a negligible effect on the results (Fig. 3), as far as AES 
series is concerned. Based on our results for AES series of rainfall, Chow’s relationship is not found to be 
appropriate. However, the results of Jayasuriya and Mein [37] for one flood AES data series, and also that of 
Henson [38], support our work. Finally, x-ratio (ratio of 100-years rainfall to 10-years) also showed some 
degrees of sensitivity to geographical location, rainfall time duration, and length ratio (Fig. 5).  
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Fig. 5. Variation of x ratio with LR and rainfall time duration (*, 15 min; 

 0, 30 min; x, 1 hr; and +, 6 hr) for stations under study 

Qasr-Qand 

Qoochan Shahmaran 

Shilaben 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A re-visit to partial duration series of… 
 

October 2004                                                                                Iranian Journal of Science & Technology, Volume 28, Number B5 

557

REFERENCES 
 
1. Bell, F. C. (1969). Generalized rainfall-duration-frequency relationships. J. of the Hydraul. Div., ASCE, 95(HY1), 

311-327. 
2. Chen, C. L. (1983). Rainfall intensity-duration-frequency formulas. J. Hyd. Engrg., ASCE, 109(2), 1603-1621. 
3. Chow, V. T. (1964). Statistical and probability analysis of hydrologic data. Part I. Frequency analysis. In: V.T. 

Chow (ed.). Handbook of applied hydrology. McGraw-Hill Book Company. 
4. Viessman, W. Jr., Knapp, J. W., Lewis, G. L. & Harbaugh, T. E. (1977). Introduction to hydrology. Harper and 

Row Publ., 704p. 
5. Chow, V. T., Maidment, D. R. & Mays, L. W. (1988). Applied hydrology. McGraw-Hill Book Company, p. 572, 

Bras, R. L., 1990, Hydrology, an introduction to hydrologic sciences. Addison-Wesley Publishing Company, p. 
643. 

6. Gupta, R. S. (1989). Hydrology and hydraulic systems. Prentice Hall, Englewood Cliffs, New Jersey, p. 739. 
7. Bras, R. L. (1990). Hydrology, an introduction to hydrologic sciences. Addison-Wesley Publishing Company, p. 

643. 
8. Haan, C. T. (1977). Statistical methods in hydrology. The Iowa State University Press, Ames, p. 378. 
9. Kite, G. W. (1977). Frequency and risk analysis in hydrology. Water Resour. Publ., p. 224. 
10. Irish, J. & Ashkansy, N. M. (1977). Direct flood frequency analysis. In: A. Pattison, J. K. G. Ward, T.A. 

McMahon, and B. Watson (eds.). Australian rainfall and runoff, flood analysis and design. The Institute of 
Engineers, Australia, p. 107. 

11. Wilson, E. M. (1985). Engineering hydrology. McMillan Publ. LTD, p. 309. 
12. Mutreja, K. N. (1986). Applied hydrology. Tata McGraw-Hill Publ. Comp. LTD, p. 959. 
13. Sutcliffe, J. V. (1978). Methods of flood estimation: A guide to the flood studies report. Rep. No. 49, Inst. Hydrol., 

Wallingford, U.K. 
14. Subramanya, K. (1984). Engineering hydrology. Tata McGraw-Hill Publ. Comp. LTD, p. 316. 
15. Rosbjerg, D. (1985). Estimation in partial duration series with independent and dependent peak values. J. Hydrol., 

76, 183-195. 
16. Lang, M., Ouarda, T. B. M. J. & Bobee, B. (1999). Towards operational guidelines for over-threshold modeling. J. 

Hydrol., 225, 103-117. 
17. Dalrymple, T. (1960). Flood frequency analysis. USGS Water Supply, Paper No. 1543-A, 1-47. 
18. Waylen, P. R. & Woo, M. K. (1983). Stochastic analysis of high flows in some centeral British Colombia rivers. 

Can. J. Civil Engrng., 10(2), 639-648. 
19. Irvine, K. N. & Waylen, P. R. (1986). Partial series analysis of high flows in Canadian rivers. Can. Water Resour. 

J., 11(20), 83-91. 
20. Cunnane, C. (1973). A particular comparison of annual maximum and partial duration series methods of flood 

frequency prediction. J. Hydrol., 18, 257-271. 
21. Wang, Q. J. (1991). The POT model described by the generalized Pareto distribution with Poisson arival rate. J. 

Hydrol., 129, 263-280. 
22. Madsen, H., Rasmussen, P. F. & Rosbjerg, D. (1997). Comparison of annual maximum series and partial duration 

series methods for modeling extreme hydrologic events. 1. At-site modeling. Water Resour. Res., 33(4), 747-757. 
23. Shane, R. M. & Lynn, W. R. (1964). Mathematical model for flood value evaluation. J. Hydraul. Div., ASCE, 

90(HY6), 1-20. 
24. Zelenhasic, E. (1970). Theoretical probability distribution for flood peaks. Hydrol. Pap. 42, Colo. State Univ., Fort 

Collins.  
25. Ekanayake, S. T. & Cruise, J. F. (1993). Comparisons of Weibull-and exponential-based partial duration stochastic 

flood models. Stochastic Hydrol. Hydraul., 7(4), 283-297. 
26. Rosbjerg, D., Rasmussen, P. F. & Madsen, H. (1991). Modelling of exceedances in partial duration series. 

Proceedings of the International Hydrology and Water Resources Symposium, 755-760, Inst. of Eng., Barton, 
Australia. www.SID.ir



Arc
hi

ve
 o

f S
ID

B. Ghahraman / D. Khalili 
 

Iranian Journal of Science & Technology, Volume 28, Number B5                                                                                October 2004 

558

27. Chow, V. T. (1953). Frequency analysis of hydrologic data with special application to rainfall intensities. Univ. 
Illinois, Eng. Exp. Sta. Bull. 414. 

28. Kjeldsen, T. R., Lundorf, A. and Rosbjerg, D. (2000). Use of a two-component distribution in partial duration 
modelling of hydrological droughts in Zimbabwean rivers. Hydrol. Sci. J., 45(2), 285-298. 

29. Langbein, W. B. (1949). Annual floods and the partial-duration flood series. Trans. Am. Geophys. Union, 30, 879-
881. 

30. Chow, V. T. (1950). Discussion on annual flow and the partial duration flood series, by W. B. Langbein, Trans. 
Am. Geophys. Union, 31, 939-941. 

31. U. S. Dept. of Commerce Weather Bureau, (1957). Rainfall intensity frequency regime, Part 1- Ohio Valley. Tech. 
Rep. No. 29, Washington D. C., p. 44. 

32. Kothyari, U. C. & Garde, R. J. (1992). Rainfall intensity-duration-frequency formula for India. J. Hyd. Engrg., 
ASCE, 118(2), 323-336. 

33. Bobee, B. & Ashkar, F. (1991). The Gamma family and derived distribution applied in hydrology. Water Resour. 
Publ., p. 203. 

34. Holder, R. L. (1985). Multiple regression in hydrology. Institute oh Hydrology, Wallingford, U. K., p. 147. 
35. Ghahraman, B. (1997). Relationship between partial and annul maximum series of short duration rainfalls (less 

than 20 hours). Research Project No. 215, Final Report, Ferdowsi University of Mashhad, Mashhad, Iran, p. 36, (in 
Persian). 

36. Dropper, A. T. & Smith, P. W. (1959). Applied linear regression. Academic Press, p. 504. 
37. Jayasuriya, M. D. A. & Mein, R. G. (1985). Frequency analysis using the partial series. In: Hydrology and Water 

Resources Symposium, Sydney, 14-16 May, 1985, The Institute of Engineers, Australia, National Conference Publ. 
No. 85/2, 81-85. 

38. Henson, M. B. (2003). Estimating the bankfull event in small watersheds of the Southern Appalachian mountains. 
http://www.appalachianenvironment.com/pdf/Bankfull%20Paper.pdf, Aug. 13, 2003, p. 19. 

39. Ghahraman, B. (1995). A general dimensionless rainfall depth-duration-frequency relationship. Iran Agric. Res., 
14(2), 217-235. 

 
 

www.SID.ir


