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Abstract— A complete second-order closure model of turbulence has been used to predict the
behaviour of fully developed turbulent flow in a square river harbour. For the two dimensional, this
closure model entails the solution of five differential equations for the turbulence parameters,
excluding the three general equations of motion. The turbulent flow was driven by a stationary
current in an adjacent model river. Emphasis has been focused on comparing the simple and more
sophisticated turbulence models, including the Reynolds and algebraic stress models to predict
accurately the velocity patterns within such basins. The governing equations have been discretized
using the finite difference method. The advective acceleration terms in the hydrodynamics equations
were treated using the third order upwind scheme, whereas the counterpart terms in the k-& equations
were treated using the exquisite scheme. Experimental data from the model river harbour were used
to check the numerical model results, which - found that both of the closure models of turbulence
generally produced accurate results for the tests considered within the harbour.
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1. INTRODUCTION

The harbours situated along rivers and estuaries usually suffer from siltation of their basins. Removal and
disposal of sediments deposited in harbour basins often involve high costs, particularly when the sediment is
contaminated with micro-pollutants that are adsorbed on the clay and silt particles. The siltation of a harbour
results from a net transport of sediments into the harbour which is caused by the often quite complicated
flow patterns in the harbour entrance. Since the siltation process mainly depends on the flow pattern, the
determination of the velocity field within such basins will be an important issue. Software tools are now
available to determine the flow pattern within such basins. A major requirement of these tools is that they
accurately predict the circulation pattern within such basins before proceeding to predict the sedimentation
process. However, such models are generally used for marina planning and are therefore rarely calibrated
and verified against prototype data. On the other hand, the circulation patterns in harbour entrances driven
by steady river flows have been extensively examined in the laboratory by a number of researchers including
[1-5]. In the current study, the data from experiments carried out by the hydromechanics group of the civil
engineering faculty at the Delft University of Technology, Langendoen [6], (cited in Bijvelds et al. [7]) were
used for model verification. These measurements pertained to a stationary and homogeneous free surface
cavity flow in a 1x1 m® harbour. The flow in this model harbour was driven by a river discharge Q of
0.042m’/s; the water depth d was equal to 0.11 m in still water; and the width of the river was 1 m. The
actual model river length was 18 m, however as in Bijvelds et al. [7], the computational model river length
was set to be 5m. The sidewalls of the model were vertical.

The numerical model results based on using the mixing length and the k-& model have already been
compared with measured data and the k-¢ model results were found to be in good agreement with the
laboratory data [8]. For the numerical model reported herein however, the second-order closure models of
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turbulence, including the Reynolds and algebraic stress models have been used to predict the circulation
pattern in a square river harbour (see Fig. 1).
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Fig. 1. Configuration of the computational model harbour and river

2. DEPTH-INTEGRATED HYDRODYNAMIC EQUATIONS

The equations of motion for a two-dimensional depth-averaged flow are best obtained by integrating the
three-dimensional Reynolds equations over the depth. Assuming that the vertical acceleration is negligible
compared to gravity, the continuity and horizontal momentum equations can be derived as given by ASCE
Task Committee [9]
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where { = water surface elevation above (positive) datum (%), =time, x,y=Cartesian co-ordinates in the
horizontal plane, U,V = depth averaged velocity components in the x,y directions, H=total depth ({+h), B=
momentum correction factor, f, =Coriolis parameter (=2 @ sin ¢, where w=speed of earth’s rotation and ¢=
earth’s latitude), g=gravity, C,=air-water resistance coefficient, p,=air density, p=fluid density,

W, and W, =wind velocity components in x and y directions respectively, W, = wind speed, C=Chezy bed
friction factor V,=depth averaged fluid speed (=vVU Zyy? )Jand — ulu =depth averaged Reynolds

stresses.
Assuming that the velocity profile in the vertical plane can be adequately represented by a logarithmic

distribution, the value of correction factor [ for the non-uniformity of the velocity profile becomes

p=1+g/x?C? “

where k=von Karman’s constant (=0.4). The Coriolis parameter and wind stress were not included in the
current study.

3. TURBULENCE MODELS

For the second-order closure of turbulence, the modified depth integrated equations for the Reynolds stresses
proposed by Launder ef al. [10] have been used to determine the unknown stresses. Then, by making the
local equilibrium assumption (i.e. P = €), these equations can be reduced to the following forms [11]:
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where & = depth averaged turbulent kinetic energy, & = depth averaged dissipation rate of turbulent kinetic
energy, P, =c; Us /H, Us =cy (U? +V*)% =bed shear velocity, ¢y =friction coefficient (= \/E/C),
cp=c;"?, ¢, =22,¢,=055 and C; =0.09.

For the sake of simplicity, the depthrintegrated standard k- equations have been used to calculate the

£ oy

required turbulent kinetic energy and dissipation rate [12]
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where v, (=c, lzz/E)zdepth averaged turbulent eddy viscosity, ¢, =3.6c,,c L/ 2e f3/4 and

o, =10, 0,=13, ¢, =009, ¢, =1.44, ¢,, =192 are standard constant coefficients of the ke
equations.

Although different lower values for the vertical production coefficients of bed turbulence were
suggested by Booij [13] and Hakimzadeh [11], for the current study the standard values of these coefficients
were used as given by Rodi [14] and applied by Falconer and Li [12].

For the depth integrated algebraic stress model, the simplified Reynolds stresses have been represented
as [15]
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where 4=

Also in using the widely accepted eddy viscosity concept, both for the k-¢ and mixing length turbulence
models, the Reynolds stresses for each component read
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Then for the k- model, Egs. (8) and (9) were used to calculate the eddy viscosity coefficients, whereas
for the mixing length model the proposed equation of Fischer [16] was used for this purpose

v, =0.15U.H (12)

4. BOUNDARY CONDITIONS

In the numerical model, the river flow boundaries were treated as.open flow boundaries, with the river
discharge was to be 0.042m°/s. For an open boundary, an inflow boundary condition was prescribed for the
turbulent parameters [14]

—uju=k=2=0 (13)
Further details of the open boundaries will be discussed in the section of model results. For the
turbulent parameters k and € along a solid .wallnormal to the x-direction, the following assumptions have
been used [12]
2k 0 and 2520 (14)
ox ox

The turbulent characteristics adjacent to solid boundaries are calculated using a wall function approach [12],

whereby
v _ Ui
kw :W’ &y = P (15)
I c

where z, =distance from solid boundary and U. =wall shear velocity. For the Reynolds stresses, these
quantities were set to be shear stress adjacent to the wall, as proposed by Jaw and Chen [17].

5. NUMERICAL METHOD

In solving the governing equations, an alternating direction implicit finite difference scheme has been used,
including a refined and more accurate space staggered grid scheme where depths are included at the centre
of the grid sides. A rectangular grid with a cell size of 25mm x25mm was chosen, with the computational
domain therefore containing 200x 82 grid cells. The difference equations were fully centered in both time
and space, with the advective acceleration and the turbulent diffusion terms being centered by iteration. The
difference scheme had no stability constraints, although it was established that the accuracy of the scheme
deteriorated rapidly when the Courant number exceeded eight. In the finite difference equations, particular
attention was paid to the treatment of the advective acceleration terms, with these terms being of
considerable importance in modelling re-circulating flows. The components of the advective accelerations
were represented in their pure differential form, thereby conserving momentum precisely in the difference
scheme. Furthermore, these terms were represented using the higher order accurate third order upwind
scheme, which eliminates the introduction of numerical diffusion and minimizes grid scale oscillations [8].
On the other hand, the counterpart terms in the depth integrated k-¢ equations were represented using the
exquisite scheme, as proposed by Leonard [18].
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6. MODEL RESULTS AND COMPARISONS

At the upper open boundaries the rate of flow started from zero, increased on a sine curve up to a certain
value (i.e. the river discharge) and then remained constant. The lower boundary was set to be either the open
flow or water elevation boundary. Also, the sensitivity of the type of lower boundary has been studied
carefully and it was found that the numerical model results and circulation patterns within the river harbour
remained almost unchanged. Therefore, a circulation cell grew rapidly in strength and shape within the
model harbour and then became stable.

The measurement data and computational open boundary conditions used in the current study were the
same as outlined by Bijvelds et al. [7]. The predicted numerical model results of the mixing length and &-¢
turbulence models in using various closed boundary conditions have already been compared with the
measured data and the k-¢ turbulence was found to be in good agreement with the laboratory data [8].

However, for the numerical model predictions reported herein, the flow patterns were almost similar
within the basin in using the algebraic and Reynolds stress turbulence models and the large eddy dominated
within the model harbour. The predicted circulation pattern within the harbour using the Reynolds and
algebraic stress turbulence models are shown in Fig. 2. As can be seen from the figures, the predicted
circulation cell of both models seems to be more accurate when compared with that of the mixing length
model [8]. For the current tests, the Reynolds and algebraic stress turbulence models have correctly
predicted the large eddy, which is in good agreement with the laboratory measurements. Also, the predicted
turbulent kinetic energy distributions using the Reynolds and algebraic stress turbulence models within the
basin are shown in Figs. 3a and 3b. The main structure of these distributions is almost similar. However, the
predicted numerical results of application of the algebraic stress model are slightly greater than those of the
Reynolds stress model. These similarities can also be seen in the predicted numerical model results of the
normal Reynolds stresses using/the Reynolds and algebraic stress turbulence models within the basin, as
shown in Figs. 4 and 5.

Another typical example of comparisons between the measured and numerically predicted results for
the different turbulence' models. are illustrated in Figs. 6a and 6b, where the ‘7’ and ‘U* velocity profiles
across the two main axes are shown respectively. Also, for this section, in order to compare the model
results of the all time=averaged types of closure models, the numerical model results of the k-¢ and simple
mixing length turbulence models are included in the figures. As can be seen from these comparisons, the
predicted velocity values of the three sophisticated turbulence models (i.e. the Reynolds stress, algebraic
stress and k-g) were in very good agreement with the experimental data. In comparing all of the velocity
results it was found that except for the mixing length model, the second order closure models and the k-¢

model of the eddy viscosity concept generally produced accurate results for the tests considered.
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a) Reynolds stress model b) Algebraic stress model

Fig. 2. Flow pattern within the river harbour using the second order closure models
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Fig. 3. Turbulent kinetic energy distributions using the second order closure models (mm?/s%)
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Comparison of Velocity Profiles
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Fig. 6a. Comparison of velocity profile across the x axis
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Fig. 6b. Comparison of velocity profile across the y axis

7. CONCLUSION

Details are given of an extensive on-going research programme to predict more accurately the circulation
cell within river harbours. In the study reported herein, the numerical model results of the second order
turbulence models, including the Reynolds and algebraic stress models, k-€ and mixing length models have
been compared with the experimental data within the river harbour. The findings from this study have shown
that the numerical results of the second order closure and k-&¢ models have reproduced the circulation cell
and the velocity field very accurately for the harbour. These models are therefore recommended for
modelling cavity turbulent flow and circulation patterns in marinas and harbours. Although the turbulent
kinetic energy, normal Reynolds stresses distributions and velocity field predictions obtained using the
algebraic and Reynolds stress turbulence models were slightly different, the computational effort required
for the latter was almost twice that of the previous one.
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NOMENCLATURE

Jx

water surface elevation above (positive) datum
time

Cartesian co-ordinates in horizontal plane

Ry
=<
<

depth averaged velocity components in x,y directions
total depth

momentum correction factor

~ ™ =3 c

Coriolis parameter (= 2 @ Sin ¢ )
speed of earth’s rotation

earth’s latitude

gravity

A% o 9

)

air-water resistance coefficient
air density

fluid density

©
I N

,W,, wind velocity components in x, y directions respectively
wind speed

C Chezy bed friction factor

v, depth averaged fluid speed

—u;u’; the Reynolds stresses

K von Karman’s constant

k turbulent kinetic energy

€ dissipation rate of turbulent kinetic energy
v, turbulent eddy: viscosity

o} ,0, constant coefficients

o constant coefficients

¢ » G, constant coefficients

cr friction coefficient
¢ C}l/2
c, 3.6c2gcil/2c}3/4
4 ek
¢ &
B 2k l—c —c,
3 c
3
P, ¢ Ux
H
¢;,¢, constant coefficients
/;W turbulent kinetic energy adjacent to the wall
&, dissipation rate of turbulent kinetic energy adjacent to the wall
U wall shear velocity
z, distance from solid boundary
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