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Abstract– An efficient algorithm is presented for the formation of suboptimal cycle bases of graphs 
corresponding to sparse cycle adjacency matrices, leading to the formation of highly sparse 
flexibility matrices. The algorithm presented employs concepts from the algebraic graph theory, 
together with a Greedy type algorithm to select cycles with small overlaps and uses a simple graph-
theoretical method for controlling the independence of the selected cycles. Application of the present 
algorithm is extended to the formation of cycle bases corresponding to well conditioned flexibility 
matrices.           
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1. INTRODUCTION 
 

Consider a frame structure S with M(S) members and N(S) nodes, which is γ(S) times statically 
indeterminate. Select γ(S) independent unknown forces as redundant forces. These unknown forces can be 
chosen from external reactions and/or internal forces of the structure. Denote these redundant forces by q = 
{q1, q2,..., qγ(S)}.      

In order to obtain a statically determinate structure, the constraints corresponding to redundant forces 
should be removed. Such a structure is known as the basic (primary or released) structure of S. The rigidity 
of this basic structure is assumed to hold. Consider the external joint loads as p = {p1, p2,..., pn}, where n is 
the number of components for the applied nodal forces. The stress resultant distribution due to the given 
load p for a general linear analysis by the force method can be written as 
 

r = B0 p + B1q                      (1) 
 
where B0 and B1 are rectangular matrices each having m rows, and n and γ(S) columns, respectively. m 
being the number of independent components for member forces. B0 p is known as a particular solution 
which satisfies equilibrium with the applied loads, and B1q are complementary solutions formed from a 
maximal set of independent self-equilibrating stress systems known as a statical basis. 

Particular and complementary solutions are usually obtained from the same basic structure; however 
this is not a necessary requirement. A basic structure need not be selected as a determinate one. For 
redundant basic structures, one may obtain the necessary data either by analyzing it first for the loads p and 
bi-actions qi = 1 (i = 1,2, ... , γ(S)), or by using the information available prior to the analysis [1]. 

Using the load-displacement relationship for each member, and collecting them in the diagonal of the 
unassembled flexibility matrix Fm, one can write 
 

u = Fm r = Fm B0 p + Fm B1q                (2) 
 
in which u is the member distortions due to the internal forces r. Employing the contragradient principle, the 
displacements corresponding to p and q vectors are obtained as  
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where v0 contains the displacements corresponding to the force components of p, and v1 reflects the relative 
displacement of the released position (cuts) for the basic structure. By performing the multiplication, Eq. (3) 
results in 
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Imposing the compatibility conditions as v1 = 0, the redundant forces are obtained as 
 

pBFBBFBq )()( 01
1

11 m
t

m
t −−=      (5) 

 
Substituting in Eq. (1) yields  

[ ]pBFBBFBBBr )()( 01
1

1110 m
t

m
t −−=            (6) 

 
in which 11 BFBG m

t=  is known as the flexibility matrix of a structure. 
Allied to a statical basis there is another set associated with the graph model S of a structure. This set 

consists of a maximal number of independent cycles of S known as its cycle basis. On each cycle, α = 3 or 6 
self-equilibrating stress systems can be formed depending on S being the model of a planar or a space 
structure, respectively. The cardinality of a cycle basis is equal to the first Betti number b1(S) = M(S) − N(S) 
+ b0(S), where M(S), N(S) and b0(S) are the numbers of members, nodes, and components of S, respectively.  

The sparsity coefficient χ of a matrix is defined as its number of nonzero entries. A cycle basis 
}C, ... ,C,{CC (S)b21 1

=  is called minimal if it corresponds to a minimum value of  
 

∑=
=

(S)b

1i
i

1
)L(CL(C)       (7) 

 
where L(Ci) is the number of members of cycle Ci, known as its length, and C is the cycle-member incidence 
matrix of S. Obviously χ(C) = L(C) and a minimal cycle basis corresponds to minimum χ(C). A cycle basis 
for which L(C) is near minimum is called a subminimal cycle basis of S. 

A cycle basis corresponding to maximal sparsity of the D=CCt is called an optimal cycle basis of S. If 
χ(D) does not differ considerably from its minimum value, then the corresponding basis is termed 
suboptimal. 

χ(D) = η(S) + 2 ∑
=

1-(S)b

1i
i

1
 )( Cσ           (8) 

 
in which σi(C) of row i of cycle basis incidence matrix C is the number of j such that  
 

a) j ∈{i+1,i+2,...,b1 (S)}, b)  Ci ∩Cj ≠ φ                                                 (9) 
 

The cycle adjacency matrix D = CCt of a graph is pattern equivalent to the flexibility matrix G of the 
corresponding structure constructed on the selected basis. In the force method, an optimal cycle basis is 
needed corresponding to the maximum sparsity of the D matrix.  

Theoretically the application of the Greedy algorithm leads to the formation of the minimal cycle basis 
of a graph [1-3]. For generating a subminimal cycle basis of a graph, Kaveh's algorithm is the fastest known 
approach [4-5]. Graph theoretical algorithms for the formation of suboptimal cycle bases are due to Kaveh 
[6-7].  

In this paper an algorithm is developed which uses some of the concepts from the algebraic graph 
theory, together with an expansion process for the formation of suboptimal cycle bases leading to highly 
sparse flexibility matrices. The admissibility condition of Kaveh [4] is used to control the independence of 
the cycles. Application of the present algorithm is extended to the formation of cycle bases corresponding to 
well conditioned flexibility matrices. www.Sid.ir
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2. BASIC DEFINITIONS AND CONCEPTS  
 
Some graph theoretical definitions are provided in this section. For further concepts and definitions the 
reader may refer to Kaveh [1, 5]. 
 
a) Basic definitions from graph theory 
 

A graph S consists of a set of N(S) elements called nodes (vertices or points) and a set of M(S) 
elements called members (edges or arcs) together with a relation of incidence which associates each member 
with a pair of nodes called ends. The connectivity properties of a skeletal structure can simply be 
transformed into that of a graph S; the joints and the members of the structure correspond to the nodes and 
the edges of S, respectively. Such a transformation is applied in the algorithm of this paper and the other 
existing algorithms of references [2-4]. Two or more members joining the same pair of nodes are known as 
multiple members, and a member joining a node to itself is called a loop. A graph with no loops but having 
multiple members is called a simple graph. If N(S) and M(S) are countable sets, then the corresponding 
graph S is finite. A graph is called planar if it can be drawn on a plane and its members intersect with each 
other only at the nodes. A graph Si is a subgraph of S if N(Si) ⊆ N(S), M(Si) ⊆ M(S), and each member of Si 
has the same end nodes as in S. 

A path of S is a finite sequence Pi = {n0, m1, n1, ..., mp, np} whose terms are alternately distinct nodes ni 
and distinct members mi of S for 1 ≤ i ≤ p, and ni-1 and ni are the two ends of mi. The length of a path Pi 
denoted by L(Pi) is taken as the number of its members. Pi is called the shortest path between the two end 
nodes n0 and np, if for any other path is Pj  between these nodes L(Pj) ≤ L(Pj). The distance between two 
nodes n1 and n2 in a graph S is taken as the length of the shortest path between them provided that the 
members of the path are contained in S and is denoted by dS(n1,n2) or dS(n2,n1). 

Two nodes ni and ni are said to be connected in S if a path exists between these nodes. A graph S is 
called connected if all pairs of its nodes are connected. A component of S is a maximal connected subgraph, 
i.e. it is not a subgraph of any other connected subgraph of S. A graph is 2-connected if it remains connected 
when one of its members is removed. 

A cycle is a path (n0, m1, n1,..., mp, np) for which n0 = np and p ≥ 3. A tree T of S is a connected 
subgraph which contains no cycle. If a tree contains all the nodes of S it is called a spanning tree of S. A 
shortest route tree (SRT) rooted at a specified node n0 of S is a spanning tree in which the distance between 
every node ni of T and n0 is minimum.  

Let a cycle set of members of a graph be defined as a set of members which form a cycle or form 
several cycles having no common member, but perhaps common nodes. The null set is also defined as a 
cycle set. A vector representing a cycle set is called a cycle set vector. It can be shown that the sum of two 
cycle set vectors of a graph is also a cycle set vector. Thus the cycle set vectors of a graph form a vector 
space over the field of integer modulo 2, [8]. The dimension of a cycle space is equal to the first Betti 
number of the graph b1 (S). 
 
b) Independence control 
 

Consider the following expansion process where in each step one cycle is selected 
 

C1 =C1 → C1 ∪ C2= C2 →C2 ∪ C3=C3 →…→Cb
1
(S)= S     (10) 

 
A cycle Ck+1 is admissible if b1(Ck+1) = b1(Ck)+b1(Ck+1)= b1(Ck)+1.      
 
c) Formation of minimal cycles 
 

In order to form the shortest cycle on a trapper, form an SRT from one end of the trapper using the 
subgraph containing the previously selected cycles, until the other end of the trapper is reached. For the www.Sid.ir
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formation of the shortest cycle on an unused member, discard the member and form an SRT from one end 
until the other end is reached. An SRT rooted from a specified node n0 can be formed by the following 
simple algorithm: Label the selected root n0 as “0” and the adjacent nodes as “1”. Record the members 
incident to “0” as tree members. Repeat the process of labelling with “2” the unnumbered ends of all the 
members incident with nodes labelled as “1”, again recording the tree members. This process terminates 
when each node of S is labelled and all the tree members are recorded. 

The shortest cycle on an unused member containing the members of the previously selected cycles is 
formed by the same process as the previous formation with the difference being the use of the members of 
the previous cycles only. 
 
d) Definitions from algebraic graph theory 
 

Let S(N,M) be a graph with node set N, containing n nodes and the member set M. The adjacency 
matrix A = [aij] n n×  of the labelled graph S is defined as  
 





=
otherwise                            0

jn oadjacent t is in node if  1
ija                     (11) 

 
The degree matrix D = [dij] n n×  is a diagonal matrix of the node degrees. dii is equal to the degree of the ith 
node. Consider the following eigenproblem: 
 

Avi = λi vi                                           (12) 
 
where λi is the ith eigenvalue and vi is the corresponding eigenvector. All the eigenvalues of A are real. It 
can be shown that matrix A is a positive semi-definite matrix with  
 

n321 λ...λλλ ≥≥≥≥                                       (13) 
 

3. ALGORITHM THE FORMATION OF MINIMAL CYCLE BASES 
 
In this section, Horton’s algorithms [2] for the formation of minimal cycle bases is briefly presented. For 
complete descriptions the reader may refer to the original paper. 
 
Horton's Algorithm 
 
Step 1. Find a minimum path P(x,y) between each pair of nodes x, y of S. 
 
Step 2. For each node v and member {x,y} in the graph, create the cycle C(v,x,y) = P(v,x) + P(v,y) +{x,y} 
and calculate its length. Degenerate cases in which P(x,y) and P(v,y) have vertices other than v in common 
can be omitted. 
 
Step 3. Order the cycles by their weights. 
 
Step 4. Use the Greedy algorithm to find the minimum cycle basis from this set of cycles (A).  
 

4. THE PRESENT METHOD FOR CYCLE BASIS SELECTION 
 
In the following, definitions and concepts required for the present method are provided. 
 
a) Contraction 
 

An elementary contraction of a graph S is obtained by replacing a path containing all nodes of degree 2 
with a new member. The contraction of S into S’ is obtained by a sequence of elementary contractions. 
Naturally the first Betti number does not change in the process of a contraction, Kaveh [1]. This operation is 
performed in order to reduce the size of the graph and also because the number of members in an 
intersection of two cycles is unimportant; i.e. a single member is enough to render Ci∩Cj none-empty and 
hence produce a nonzero entry in D. 
 www.Sid.ir
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b) Cycle adjacency graph 
 

For a graph S with b1(S)=M(S)-N(S)+b0(S), the number of elements in its cycle space given by 
12 (S)b1 − . A subspace of this space containing only simple cycles is used by Kaveh [4], and a smaller 

subspace of S is suggested by Horton [2]. An algorithm for the formation of this subspace is described in 
Section 3a. 

Consider a simple graph as shown in Fig. 1, with b1(S)=4. Horton’s algorithm forms 11 cycles, and for 
brevity only 7 cycles of length 3 and 4 are listed in the following: 
 
 

C: 1 5 7    1    
 1 2 4    2   
 1 7 9 4    3   
 5 6 9 4   4   
 2 7 9 3   5   

7 3 5 6 7 6                    Fig. 1 A simple graph with b1(S)=4 
       

The cycle adjacency graph of S contains the nodes in a one-to-one correspondence with these cycles 
and two nodes are connected to each other if the corresponding cycles have at least one member in common. 
Naturally such a graph will not be simple and will have multiple members. The adjacency matrix A* of the 
new graph is constructed as 

A* = 










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












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1111111
1111111
1111111
1111010
1110110
1111111
1110011

7
6
5
4
3
2
1

7654321   

 

 
Once A* is formed, the largest eigenvalue λ1 with the corresponding eigenvector having all positive entries 
can easily be calculated. A* is real and symmetric and it can be shown that all entries of A*k are positive. 
Thus it is primitive, and according to the Perron Frobenious theorem, λ1 is real and positive and a simple 
root of the characteristic equation, corresponding to a unique eigenvector v1 with all entries positive. 

Such an eigenvector  can be obtained by the  following simple algorithm: Let v = {1,1,…,1}t, then the 
components of A*tv is the number of walks of length k beginning at an arbitrary node of S and ending at ni. 
If ni is a good starting node, this number will be larger. Thus for k, one should obtain an average number 
defined as the accessibility index by Gould [9], which indicates how many walks go on average through a 
node. With a suitable normalization, A*kv converges to the largest eigenvector v1 of A* [10]. 

As an example, for the cycle adjacency matrix discussed in section 4.b, the largest eigenvector is 
obtained as  
 

6
5
7
2
4
3
1

4179.0
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4179.0
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c) Algorithm 
 
This algorithm is simple and consists of the following steps:  
Step 1: Contract S to S’. 
Step 2: Form the cycle subspace using Horton’s approach. 
Step 3: Form the cycle adjacency matrix A*. 
Step 4: Calculate the largest eigenvector v1 of A*. 
Step 5: Put the entries of v1 in ascending order in vector P. 
Step 6: Choose the first entry of P as the first cycle, remove it from P. 
Step 7: Select the next admissible cycle from the new P starting from its first entry. 
Step 8: Continue Step 7 until b1(S) admissible cycles, forming a suboptimal cycle basis, is constructed. 
 
d) Example  

Consider the graph shown in Fig. 2 for which N×b1(S)=30. Using the modified algorithm of Horton 
[2,5],  thirty cycles are formed corresponding to a 30×30 cycle adjacency matrix. The smallest eigenvector is 
found and the cycles are ordered accordingly. Suppose the cycles from the end of the list are 3-sided and 4-
sided ones. In such a case, the search space will be limited to the following cycles: 
 

C:{(1,2,3),(7,8,9),(1,4,10),(6,9,10),(1,4,9,6), (2,4,7,5),(3,5,6,8),(3,5,7,10),(6,8,7,10),(2,3,4,10)} 

 
Fig. 2. A simple illustrative example and its member numbering      

 
Thus A* becomes a 10×10 matrix. Typical entries of A* are as follows:  
a(3,1)=a(1,3)=1 since cycle 1 has an overlap with cycle 3, while a(7,3)=a(3,7)=0 since cycle 3 has no 
overlap with cycle 7. The rest of the entries are found in a similar manner. 

Forming λ1 and v1 results in: v1={0.2648, 0.2648, 0.3008, 0.3008, 0.3324, 0.3324, 0.3362, 0.3362, 
0.3404, 0.3404}. Ordering the entries in an ascending order results in a new v1 corresponding to the cycles 
with the following order: 

P={2,1,4,3,5,8,6,7,10,9} 
 
Therefore first cycle 2 is selected followed by cycles 1, 4 and 3. In this process, when a cycle is not 
admissible, the next cycle is selected. As an example, the next cycle 5 is not admissible and therefore cycle 8 
is chosen. The selected basis consists of C:{(7,8,9), (1,2,3), (6.9,10), (1,4,10), (3,5,7,10)}, corresponding to 
χ(D)=5+2×7=19. 
 

5. CONDITIONING OF THE FLEXIBILITY MATRICES  
In order to improve the conditioning of the flexibility matrices, the selected cycle bases should have 
members of higher weights in the overlaps of the cycles. Weights are calculated from the mechanical 
properties of the members [11]. A basis with the above property results in small off-diagonal terms, leading 
to well-conditioned flexibility matrices. 

As an example, consider the weighted graph as shown in Fig. 3a. A* is formed with a typical entry a(i,j) 
being the sum of the weights of the overlapping members of the cycles Ci and Cj. Here the initial cycles are 
selected by Horton’s algorithm. The cycles of the least possible length with maximal weights are then 
selected. However, since maximizing the weights is the main objective, λ1 is obtained and the selection is 
made from the ordered cycles in v1. Using the algorithm similar to section 4.3, for the graph of Fig. 3a, the 
following cycles are selected: 
 www.Sid.ir
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C:{(6,7,8,10),(2,3,4,10),(3,5,6,8),(1,4,10),(6,9,10)} 
 
corresponding to χ(D)=5+2×9=23, while the sum for the overlaps is 84, as illustrated in Fig. 3b. 
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(a) The weights of the members                 (b) The repetition of the members  

Fig. 3. A weighted graph 
 
A comparison of the results is made in Table 1 using Log λmax/λmin as a condition number [11].  
 

Table 1. Comparison of the results cycle bases with and without weight 
 

Cycle basis χ(C) χ(D) Log λmax/ λmin 
without weight 16 19 0.6590 

with weight 18 23 1.8246 
 

6. EXAMPLES 
 
In this section, some practical models are studied and χ(D) for the selected cycle bases are provided.  
 
Example 1: A planar graph is considered as shown in Fig. 4a. The mathematical model is illustrated in Fig. 
4b, where a ground node is used for the supports. For this model, b1(S)=16. Using the present algorithm 
leads to the following cycle basis with four 3-sided and twelve 4-sided cycles corresponding to 
χ(D)=16+2×24=64. 

 
   (a) A planar frame       (b) The graph model G  

Fig. 4. A planar frame and its graph model G 
 
The above frame with 8 spans and 10 stories results in χ(D)=80+2×142=364, and a frame with 16 spans and 
20 stories corresponds to χ(D)=320+2×604=1528. 
 
Example 2: A simple space frame is considered as shown in Fig. 5a. Here the support nodes are identified as 
a single ground node (Fig. 5b). Using the present algorithm leads to a cycle basis with all 4-sided cycles 
except those shaded in Fig. 5a, corresponding to χ(D)=16+2×28=72. 

 
(a)        (b) 

Fig. 5. A simple space frame and its graph model 
 www.Sid.ir
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Similar space frames are studied as 2×2×2 and 4×4×4 grids leading to χ(D) = 28+2×66 = 160, and χ(D) 
= 160+2×479 = 1118, respectively. 
 
Example 3: A graph model in the form of a 3×3×1 grid is considered as shown in Fig. 6. Using Horton’s 
algorithm leads to the formation of minimal cycle basis corresponding to χ(C)=132 and χ(D) = 33+2×100 = 
233. For the cycle basis selected by the present algorithm χ(C)=132 and χ(D)=33 +2×77=187. 
 
Example 4: A graph model of a three story structure in the form of a 3×3×3 grid with a node at the middle of 
each cube connected to 8 corner node, Fig. 7. Using Horton's algorithm, 324 three-sided and 108 four-sided 
cycles are generated. Higher length cycles could also be generated, however, since an optimal cycle basis for 
a symmetric graph of Fig. 7 does not seem to have a single such cycle, higher length cycles are not selected. 
The weighted adjacency matrix A* is formed and using the present algorithm, a suboptimal cycle basis is 
generated. This basis consists of 270 cycles of length, three of which correspond to χ(C) = 270×3 = 810 and 
χ(D) = 270+ 2×617 = 1504 non-zero entries. 

                      
Fig. 6.  A 3×3×1 cube-type graph with b1(S)=33            Fig. 7.  The graph model of a space structure S  

 
7. CONCLUSIONS  

The present algorithm is very efficient and makes the fast and economical generation of subminimal cycle 
bases feasible. It leads to the formation of minimal cycle bases for most of the practical models.  

The formation of α self-equilibrating stress system on each element of the selected cycle basis leads to 
the formation of highly sparse G matrices, making an efficient flexibility analysis of frame structures 
feasible. The application of this method is by no means limited to the analysis of a structure. It can be 
applied to the analysis of other systems such as hydraulic and electrical networks. 
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