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Abstract– In this paper, ant colony optimization (ACO) algorithms are proposed for reservoir 
operation. Through a collection of cooperative agents called ants, the near optimum solution to the 
reservoir operation can be effectively achieved. To apply ACO algorithms, the problem is 
approached by considering a finite horizon with a time series of inflow, classifying the reservoir 
volume to several intervals, and deciding for releases at each period with respect to a predefined 
optimality criterion. Three alternative formulations of ACO algorithms for a reservoir operation 
are presented using a single reservoir, deterministic, finite-horizon problem and applied to the Dez 
reservoir in Iran. It is concluded that the ant colony system global-best algorithm provides better 
and more comparable results with known global optimum results. As with any direct search 
method, the model is quite sensitive to setup parameters, hence fine tuning of the parameters is 
recommended.           

 
Keywords– Ant colony, optimization, reservoir operation  
 

1. INTRODUCTION 
 

The first ant colony optimization (ACO) algorithm, called ant system [1-3], was inspired by studies of the 
behavior of ants. Ant algorithms were first proposed by Dorigo et al. [3, 5] as a multi-agent approach to 
different combinatorial optimization problems like the traveling salesman problem and the quadratic 
assignment problem. The ant-colony metaheuristic framework was introduced by Dorigo and Di Caro [6], 
which enabled ACO to be applied to a range of combinatorial optimization problems. Dorigo et al. [7] 
also reported the successful application of ACO algorithms to a number of bench-mark combinatorial 
optimization problems. So far, very few applications of ACO algorithms to water resources problems have 
been reported [8, 9]. Abbaspour et al. [8] employed ACO algorithms to estimate hydraulic parameters of 
unsaturated soil. Maier et al. [9] used ACO algorithms to find a near global optimal solution to a water 
distribution system, indicating that ACO algorithms may form an attractive alternative to genetic 
algorithms for the optimum design of water distribution systems. In this paper, a novel way of addressing 
the optimum reservoir operation problem making use of ACO algorithms is proposed. To do so, the 
reservoir operation will be structured to fit an ACO model and the features related to ACO algorithms will 
be introduced. Performance of three different ACO algorithms in the operation of the Dez reservoir in 
Iran, as well as the influence of the parameter settings on a final selected ACO algorithm, will be 
compared. 
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2. ANT COLONY BEHAVIOR 
 

Ant colony algorithms have been founded on the observation of real ant colonies. By living in colonies, 
ants’ social behavior is directed more to the survival of the colony entity than to that of a single individual 
member of the colony. An interesting and significantly important behavior of ant colonies is their foraging 
behavior, and in particular, their ability to find the shortest route between their nest and a food source, 
realizing that they are almost blind. The path taken by individual ants from the nest, in search for a food 
source, is essentially random [5]. However, when ants are traveling, they deposit on the ground a 
substance called pheromone, forming a pheromone trail as an indirect communication means. By smelling 
the pheromone, there is a higher probability that the trail with a higher pheromone concentration will be 
chosen. The pheromone trail allows ants to find their way back to the food source and vice versa. The trail 
is used by other ants to find the location of the food source located by their nest mates. It follows that 
when a number of paths is available from the nest to a food source, a colony of ants may be able to exploit 
the pheromone trail left by the individual members of the colony to discover the shortest path from the 
nest to the food source and back [6]. As more ants choose a path to follow, the pheromone on the path 
builds up, making it more attractive to other ants seeking food, and hence more likely to be followed by 
other ants. 

Generally speaking, population based metaheuristic algorithms search for a global optimum by 
generating a population of trial solutions. Ant colony optimization, as a metaheuristic method, has many 
features which are similar to genetic algorithms (GAs). Table 1 compares some common and/or similar 
features of ACO algorithms with those of GAs, as described in detail by Maier et al. [9]. The most 
important difference between GAs and ACO algorithms is the way the trial solutions are generated. In 
ACO algorithms, trial solutions are constructed incrementally based on the information contained in the 
environment. The solutions are improved by modifying the environment via a form of indirect 
communication called stigmergy [7]. On the other hand, in GAs the trial solutions are in the form of 
strings of genetic materials and new solutions are obtained through the modification of previous solutions 
[9]. Thus, in GAs the memory of the system is embedded in the trial solutions, whereas in ACO 
algorithms the system memory is contained in the environment itself. 

 
Table 1. Similarities of ACO and genetic algorithms (Maier et al., 2003) 

 
Genetic Algorithm ACO Algorithm 

Population size Number of ants 

One generation One iteration 

Trial solutions utilize the principle of 
survival of the fittest 

It is based on foraging behavior of ant 
colonies 

Probabilistic process is governed by 
crossover and mutation 

Probabilistic process is defined by 
pheromone intensities and local heuristic 
information 

Encouraging wider search space is 
achieved by mutation operator 

Wider search space is guaranteed by 
pheromone evaporation 

 
3. ANT COLONY OPTIMIZATION (ACO) ALGORITHMS: GENERAL ASPECTS 

 
In general, ACO algorithms employ a finite size of artificial agents with defined characteristics which 
collectively search for good quality solutions to the problem under consideration. Starting from an initial 
state selected according to some case-dependent criteria, each ant builds a solution which is similar to a 
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chromosome in a genetic algorithm. While building its own solution, each ant collects information on its 
own performance and uses this information to modify the representation of the problem, as seen by the 
other ants [10]. The ant's internal states store information about the ant’s past behavior, which can be 
employed to compute the goodness/value of the generated solution. In many optimization problems, some 
paths available to an ant in a given state may lead the ant to an infeasible state, which can be avoided 
using the ant's memory. Artificial ants are permitted to release pheromone while developing a solution or 
after a solution has been fully developed, or both. The amount of pheromone deposited is made 
proportional to the goodness of the solution an artificial ant has developed (or is developing).   

Rapid drift of all ants towards the same part of the search space is avoided by employing the 
stochastic component of the choice decision policy and the pheromone evaporation mechanism. To 
simulate pheromone evaporation, the pheromone persistence coefficient (ρ) is defined which enables 
greater exploration of the search space and minimizes the chance of premature convergence to suboptimal 
solutions (see Eq. 3). A probabilistic decision policy is also used by the ants to direct their search towards 
the most interesting regions of the search space. The level of stochasticity in the policy and the strength of 
the updates in the pheromone trail determine the balance between the exploration of new points in the 
state space and the exploitation of accumulated knowledge [3]. 

Let τij(t) be the  pheromone deposited on path ij at time t, and ηij(t) be the heuristic value of path ij at 
time t according to the measure of the objective function. Defining the transition probability from node i to 
node j at time period t as [3] 
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where α and β = parameters that control the relative importance of the pheromone trail versus a heuristic 
value. Let q be a random variable uniformly distributed over [0, 1], and q0 ∈ [0, 1] be a tunable parameter. 
The next node j that ant k chooses to go is [10] 
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where J = a random variable selected according to the probability distribution of  Pij(t) (See Eq. (1)). The 
pheromone trail is changed globally. Upon completion of a tour by all ants in the colony, the global trail 
updating is done as follows: 

ijij
iteration

ij tt τρτρτ ∆−+⎯⎯⎯ ⎯← ).1()(.)(                                          (3) 
  
where  0 ≤  ρ ≤  1; (1 - ρ) =  evaporation (i.e., loss) rate; and the symbol ⎯⎯⎯ ⎯← iteration is used to show the 
next iteration. 
 There are several definitions for )(tijτ∆ [5, 10]. In this paper, we use three algorithms  
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where Gk(m) = value of the objective function for the tour T k(m) taken by the k-th ant at iteration m. 
2. Ant Colony System–Iteration Best (ACSib) 
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ij
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where )(mG ibk = value of the objective function for the ant taken the best tour at iteration m. 
3. Ant Colony System–Global Best (ACSgb) 
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where gbkG  = value of the objective function for the ant with the best performance within the past total 
iterations.  
 

4. ACO ALGORITHMS FOR OPTIMUM RESERVOIR OPERATION 
 
To apply ACO algorithms to a specific problem, the following steps have to be taken: (1) Problem 
representation as a graph or a similar structure easily covered by ants; (2) Assigning heuristic information 
to the generated solutions at each time step (i.e., selected path by the ants); (3) Defining a fitness function 
to be optimized; and (4) Selection of an ACO algorithm to be applied to the problem. 
 
a) Problem representation 
 

To apply ACO algorithms to the optimum reservoir operation problem, it is convenient to see it as a 
combinatorial optimization problem with the capability of being represented as a graph. The problem may 
be approached considering a time series of inflow, classifying the reservoir volume to several intervals, 
and deciding for releases at each period with respect to an optimality criterion. Links between initial and 
final storage volumes at different periods form a graph which represents the system, determining the 
release at that period. 
 
b) Heuristic information 
 

The heuristic information on this problem is determined by considering the criterion as minimum 
deficit 

  [ ] ))()(/(1)( 2 ctDtRt ijij +−=η                                                     (8) 
 

where Rij(t) = release at period t, provided the initial and final storage volume at classes i and j, 
respectively; D(t) = demand of period t; and c = a constant to avoid irregularity (dividing by zero in Eq. 
8.). To determine Rij(t), the continuity equation along with the following constraints, may be employed as: 
 

)()()( tLOSStISStR ijjiij −+−=  ∀ i , j                       (9a) 

maxmin SSS i ≤≤    ∀ i                    (9b) 

maxmin SSS j ≤≤    ∀ j                    (9c) 
 
where Si and Sj = initial and final storage volumes (class i and j of discretized reservoir storage volume), 
respectively; I(t) = inflow to the reservoir at time period t; LOSSij(t) = loss (e.g., evaporation) at period t 
provided that initial and final storage at classes i and j respectively; Smin and Smax = minimum and 
maximum storage allowed respectively; and NT= total number of periods. Using the transition rule (Eq. 
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(2)), each ant is free to choose the class of final storage (end-of-period storage), if it is feasible through the 
continuity equation and storage constraints (Eqs. (9)). 
 
d) Fitness function 
 

The fitness function is a measure of the goodness of the generated solutions according to the defined 
objective function. For this study, taking the objective function as the minimum value of the total square 
deviation (TSD) from pre-assumed, the fitness function may be presented as:  
 

[ ]∑
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−=
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t

kk tDtRTSD
1

2

)()(                                                       (10) 

 
where Rk(t) = release at period t recommended by ant k. 
 
e) ACO algorithms  
 

Three different ACO algorithms, namely: the Ant System (AS), the Ant Colony System– Iteration 
Best (ACSib), and the Ant Colony System–Global Best (ACSgb), have been tested. The so-called solution 
construction and pheromone trail update rule [10] considered by these ACO algorithms are employed. 

The main difference between them is due to global pheromone updating procedures. In the AS 
algorithm, pheromone updating may be accomplished using all ants upon a tour completion. However, in 
ACSib, the ant with the best result in each iteration will be employed for pheromone updating. On the other 
hand, in ACSgb, the pheromone updating may be left to the ant with the best performance within the past 
total iterations.  
 

5. MODEL APPLICATION 
 
To illustrate the performance of the model, the Dez reservoir in the southwest of Iran, with an effective 
storage volume of 2,510 MCM and average annual demand of 5,900 MCM is selected [11]. For 
illustration purposes, a period of 60 months with an average annual inflow of 5,303 MCM is employed. 
The reservoir volume is arbitrarily divided into 14 classes with 200 MCM intervals. To limit the range of 
values of the fitness function, a normalized form of Eq. (10) has been used as: 
       

[ ]∑
=

−=
NT

t

kk DtDtRTSD
1

max

2

/))()((                                           (11) 

 
where Dmax = maximum monthly demand. To start the model, a finite number of ants is randomly 
distributed in different classes of initial storage volume. It is also assumed that the starting point for ants 
could be any time along the 60-month operation horizon. Thus, ants are also uniformly randomly 
distributed along the operation horizon. Feasible paths for ants to follow are constrained by the continuity 
equation, and the minimum and maximum permitted storage volume (Eqs. (9)). By completion of the first 
tour by all ants, there will be a finite number of feasible solutions with values for the objective function. 
Now, realizing the values of the fitness function, the pheromones must be updated to continue the next 
iteration. To update the pheromones, three previously defined ACO algorithms are employed (Eqs. (4-7)). 
When the pheromone update is completed, the next iteration begins. A simple flow diagram of ACO 
algorithms for the optimum reservoir operation is depicted in Fig. 1. The end condition may be defined as 
the maximum number of iterations.  
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Fig. 1. ACO algorithm for optimum reservoir operation 

 
To compare the performance of different ACO algorithms for updating pheromones in the reservoir 

operation, three well-known systems will be used.  
The model so developed was tested for the Dez reservoir with 10 runs. Results of the model are 

presented in Table 2. The total number of ants (M) assigned to the problem was 30, with ρ= 0.9, α = 1, β = 
2, and q0 = 0.9. To start with a generalized initial condition, the pheromone was uniformly distributed all 
over the defined paths (i.e., 10 =τ ). To normalize the value of the heuristic function, the parameter c was 
chosen to be unity (Eq. (8)). The total number of iterations at each run was limited to 200, as a trial value.  
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Table 2. Comparison of ACO algorithms in optimum reservoir operation (Statistical  
parameters of TSD resulted from 10 different runs) 

 
 

            *   Standard deviation 
           ** Coefficient of Variation 
 

Referring to Table 2, ACS algorithms provide better results compared to the AS algorithm. In general,  
the ACSgb reveals a much better performance, with almost 39 and 33 percent improvement compared to 
AS and ACSib , respectively.  

As with any search method, the performance of the ACSgb algorithm in a reservoir operation depends 
on the model parameters. For a given problem, since it was not intended to develop an operation rule for 
the reservoir under consideration, a short modeling horizon of 60 months, was selected. The model 
performance was tested against variations of ρ, α, β, and q0 for M=30. To have a notion on the best 
possible values of the effective setup parameters (i.e., ρ, α, β, and q0), a feasible range for each parameter 
was first defined. Keeping all except one of the parameters unchanged, a variation of mean total square 
deviation was determined for different values of the changed parameter.  

As mentioned earlier, (1 – ρ) is an indication of the pheromone evaporation rate (i.e., losses) and ρ is 
defined in the literature as the speed of learning. Statistical parameters of the total square deviation from 
target demand (i.e., objective function) for 10 different runs, considering values of ρ ranging from 0.5 to 
0.99, is presented in Table 3. Results of the runs propose a value of 0.75 for speed learning, leading to 
0.25 for the pheromone evaporation rate. 

 
Table 3. Influence of parameter ρ on the results of ACSgb algorithm in optimum reservoir operation problem 

(Statistical parameters of TSD resulted from 10 different runs) 
 

 
 
 
 
 
 
  
The significance of pheromone concentration and value of the heuristic function of each path are 

described by α and β, respectively. Assigning a higher value to β/α will put a higher significance weight 
on the objective function. However, interaction of the pheromone concentration and the value of the 
heuristic function may impose a limit on the β/α ratio. In the problem under consideration, keeping α = 1, 
the best result is obtained for β = 4 (Table 4).  

To study the effect of the random proportional rule (Eqs. (1) and (2)), different values of q0 were 
examined. For q0 = 0, the next step to be taken by the ants will follow a pure random process according to 
a predefined distribution function (Eq. (1)). On the other hand, a value of q0 = 1 will entirely eliminate the 
random component of the decision, which may not necessarily end up to a desirable result (See Eq. (1), 
and (2)). Therefore, values of 0.8, 0.9, and 1.0 were considered for q0 and results are displayed on Table 5. 

 Algorithms 
Parameters AS ACSib ACSgb 
Mean 3.110 2.825 1.889 
The Best 2.975 2.334 1.562 
The Worst 3.199 3.095 2.097 
S.D.* 0.077 0.248 0.163 
C.V.** 0.025 0.088 0.086 

 ρ 
Parameters 0.99 0.95 0.90 0.85 0.75 0.50 
Mean 2.678 1.985 1.889 1.790 1.730 1.791 
The Best 2.205 1.737 1.562 1.529 1.573 1.639 
The Worst 2.864 2.240 2.097 2.014 1.893 1.986 
S.D. 0.210 0.156 0.163 0.151 0.089 0.098 
C.V. 0.078 0.079 0.086 0.084 0.052 0.055 
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As is clear, q0 = 1 has minimized the standard deviation of the results which is due to random component 
elimination. A value of 0.9 for q0 seems to be the best choice for the problem under consideration resulting 
in a mean total square deviation of 1.62 units. 

 
Table 4. Influence of parameter β on the results of ACSgb algorithm in optimum reservoir operation 

 problem (Statistical parameters of TSD resulted from 10 different runs) 
 

 
 
 
 
 
 
 

 
Table 5. Influence of q0 on the results of ACSgb algorithm in optimum reservoir operation 

 problem (Statistical parameters of TSD resulted from 10 different runs) 
 

 
 
 
 
 
 
 
The effect of the number of iterations and number of ants on mean total square deviation was 

examined using 50 to 500 iterations and 20 to 100 ants. Results are depicted in Table 6 and Fig. 2. As 
expected, the results improve as the number of iterations and number of ants increase. However, there 
seems to be a trade-off between the number of iterations and the total number of ants initially distributed. 
The best result was observed with 500 iterations and 100 ants, leading to the best total square deviation of 
1.296 units. It needs to be mentioned that the best result was obtained for ρ= 0.75, α = 1, β = 4, and q0 = 
0.9, which resulted from parameter-tuning.  
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Fig. 2. Mean TSD variation versus number of iterations for different numbers of ants 
 

The best overall result obtained from ACSgb for initial and final storage volumes of 1,430 MCM is 
1.296 (TSD). The global optimum with the same initial and final storage volumes resulted in TSD = 
1.273. Clearly, the developed model with the ACSgb algorithm for pheromone updating provides 
comparable results with those of global optimum, and seems promising in the optimum reservoir 

 β 
Parameters 1 2 3 4 5 
Mean 1.930 1.730 1.711 1.618 1.653 
The Best 1.734 1.573 1.619 1.489 1.514 
The Worst 2.199 1.893 1.848 1.791 1.941 
S.D. 0.141 0.089 0.082 0.098 0.130 
C.V. 0.073 0.052 0.048 0.060 0.078 

 q0 
Parameters 0.8 0.9 1.0 
Mean 1.860 1.618 1.736 
The Best 1.555 1.489 1.627 
The Worst 2.024 1.791 1.818 
S.D. 0.139 0.098 0.061 
C.V. 0.075 0.060 0.035 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Reservoir operation by ant colony… 
 

February 2006                                                                          Iranian Journal of Science & Technology, Volume 30, Number B1 

115

operation. The fluctuation of reservoir release, taken from two models, is presented in Fig. 3. Except for a 
few months, reservoir releases resulting from the proposed algorithm follow those of global optimum very 
well.  

Table 6. Influence of number of iterations and number of ants on results of ACSgb  
algorithm in optimum reservoir operation problem (Statistical  

parameters of TSD resulted from 10 different runs) 
 

Number of Iterations 
Number of Ants Parameters 50 100 200 300 500 

20 Mean 2.293 1.960 1.690 1.653 1.527 
  The Best 1.959 1.777 1.547 1.519 1.317 
  The Worst 2.494 2.209 1.813 1.786 1.714 
  S.D. 0.163 0.125 0.085 0.073 0.132 
  C.V. 0.071 0.064 0.050 0.044 0.087 

30 Mean 2.236 1.847 1.618 1.586 1.473 
  The Best 1.913 1.594 1.489 1.424 1.347 
  The Worst 2.407 2.167 1.791 1.744 1.577 
  S.D. 0.159 0.180 0.098 0.095 0.074 
  C.V. 0.071 0.097 0.060 0.060 0.051 

50 Mean 2.034 1.771 1.514 1.484 1.428 
  The Best 1.827 1.517 1.383 1.413 1.341 
  The Worst 2.268 1.999 1.669 1.630 1.515 
  S.D. 0.137 0.172 0.090 0.074 0.055 
  C.V. 0.067 0.097 0.060 0.050 0.038 

75 Mean 1.924 1.653 1.508 1.429 1.394 
  The Best 1.669 1.447 1.349 1.348 1.308 
  The Worst 2.421 1.884 1.647 1.576 1.540 
  S.D. 0.237 0.137 0.094 0.069 0.080 
  C.V. 0.123 0.083 0.062 0.048 0.057 

100 Mean 1.948 1.650 1.457 1.404 1.417 
  The Best 1.795 1.467 1.325 1.322 1.296 
  The Worst 2.115 1.743 1.597 1.506 1.592 
  S.D. 0.091 0.086 0.083 0.061 0.082 
  C.V. 0.047 0.052 0.057 0.043 0.058 
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6. CONCLUDING REMARKS 
 
While walking from one point to another, ants deposit a substance called pheromone, forming a 
pheromone trail. It has been shown experimentally [5] that this pheromone trail, once employed by a 
colony of ants, can give rise to the emergence of the shortest path. In general, the amount of pheromone 
deposited is made proportional to the goodness of the solution an ant may build. To apply ACO algorithms 
to the reservoir operation problem, one may view it as a combinatorial optimization problem. The problem 
may be approached by considering a time series of inflow, classifying the reservoir volume to several 
intervals, and deciding on the release at each period with respect to an optimality criterion. Feasible paths 
for ants to follow may be constrained by the continuity equation, as well as constraints on the storage 
volume. Upon each tour completion, a finite number of feasible solutions will form, leaving a new value 
for the pheromone.  
Realizing the values of the fitness function, the pheromones will be updated by global and local update 
rules. Application of the proposed model to the Dez reservoir in Iran provided promising results. From 
three different pheromone updating algorithms (i.e., Ant System, Ant Colony System-iteration best, Ant 
Colony System-global best), the ACSgb provides better and comparable results with those of the global 
optimum in the optimum reservoir operation. As for any search method, the performance of the proposed 
model is quite sensitive to setup parameters, hence fine tuning of the parameters is recommended. 

 
NOMENCLATURES 

 
ρ pheromone persistence coefficient 
Pij(t) transition probability from node i to node j at time period t 
τij(t) pheromone deposited on path ij at time period t 
ηij(t) the heuristic value of path ij at time period t 
α, β              parameters that control the relative importance of the pheromone trail versus a 
                    heuristic value 
q a random variable uniformly distributed over [0, 1] 
q0 a tunable parameter ∈ [0, 1] 
M total number of ants 

0τ  initial value of pheromone. 
)(tijτ∆  total change in pheromone of path ij at time period t 
)(tmk

ijτ  change in pheromone of path ij at time period t associated to ant k 
Gk(m) value of the objective function of ant k at iteration m 
Tk(m) the tour taken by ant k at iteration m 

)(mG ibk  value of the objective function for the ant taken the best tour at iteration m 
gbkG   value of the objective function for the ant with the best performance within the past total iteration 

Rij(t) release at time period t, provided the initial and final storage volume at classes i and j, respectively 
D(t) demand of time period t 
c a constant 
S  storage 
I(t) inflow to the reservoir at time period t 
LOSSij(t)    loss (e.g., evaporation) at time period t provided that initial and final storage at  
                    classes i and j respectively 
Smin  minimum storage allowed 
Smax  maximum storage allowed 
NT total number of periods 
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TSD  total square deviation from target demand 
Rk(t)  release at time period t recommended by ant k 
Dmax  maximum monthly demand  
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