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Abstract– For induction motor drives controlled by the indirect rotor flux oriented control 
(IRFOC), the rotor resistance variation results in an undesirable coupling between the flux and the 
torque of the machine, and loss of dynamic performance. This paper presents a scheme for the 
estimation of rotor resistance using a neural networks (NN) block. In this system the flux and 
torque have been estimated by using stator voltages and currents. A back-propagation NN receives 
the flux and torque errors and a supposed rotor resistance at the input and estimates the actual rotor 
resistance at the output, which is used in the control of an indirect vector-controlled drive system. 
The neural network has been trained off line with the mathematical model of the control scheme in 
detuning operations. IRFOC control, used with the NN estimator, has been studied in the detuning 
condition. The performance of the controller is good, even when the rotor time constant is 
increased from nominal rate to twice the nominal value, as well as torque variations. In this 
method, estimation is done quickly and accurately, and its design is simple. Simulation results for 
a 3-hp induction motor driven by a current-regulated pulse width modulation CRPWM inverter 
with an indirect vector controller are presented to validate the effectiveness of the proposed 
technique for the purpose of improving the performance and robustness of the drive.           

 
Keywords– Neural network, vector control, induction motor, rotor resistance, field oriented control, flux estimation, 
torque estimation  
 

1. INTRODUCTION 
 

Vector control is becoming a standard tool for industrial motor drives. Two different approaches are 
possible in the area of vector control: the direct vector control in which the rotor flux position and 
amplitude are estimated, and the indirect vector control in which only the rotor flux position is used [1, 2]. 

The indirect rotor flux oriented control method (IRFOC) offers the most interesting characteristics 
and is thus widely used in high performance drives [3]. The main features of the IRFOC are the simplicity 
of its implementation and the linearity of its steady state torque–slip characteristics. So, it constitutes a 
judicious and attractive choice for a generalized implementation of high performance adjustable speed ac 
drives using induction motors. 

The IRFOC is a feed-forward control method and is very sensitive to the variation of motor 
parameters [4, 5]. This is due to the fact that all indirect methods of field orientation are based on the 
inverse model of the machine [3] with constant parameters. 

Indirect vector control of an induction motor presents good tracking for flux and immediate tracking 
for torque. With regard to the fact that a successful implementation of the field-oriented control requires 
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an accurate calculation of the slip frequency, a mathematical model of the machine is used. The errors in 
the model parameters can cause incomplete decoupling between flux and torque; the result is a mismatch 
between the torque command and the motor torque in the steady state mode on the one hand, and an 
oscillatory response of the transient torque on the other [4]. 

Detuning of rotor time constant is the most effective in unsuccessful implementation of an IRFOC 
scheme [5], and unfortunately it may vary widely with the operational parameters of the motor such as 
temperature, frequency and the saturation level of the machine. High performance control requires an 
accurate estimate of the machine parameters in all operating points; it should be done continuously on-line 
to obtain a reliable estimate of machine variables. 

Various schemes have been proposed for rotor time constant adaptation such as the model reference 
adaptive control (MRAC) technique [6, 7]. This adaptation is slow and load sensitive. Some of these 
techniques inject different test signals [8]. An extended kalman filter has also been employed [9]. Some 
other methods like recursive least squares methods have been proposed in [10, 11]. 

Artificial neural network (ANN) methods for the estimation of rotor time constant and induction 
motor parameters were also investigated [12-16]. However, most of the techniques require extensive on-
line mathematical calculation, which will certainly increase the hardware complexities and cost. Also 
some of them are unrobust in load torque variation cause, making them unsuitable for practical 
applications. Hence a simple universally acceptable method is yet to be discovered [17, 18]. 

The proposed estimation block in this paper consists of two parts. At first, flux and torque are 
estimated by using the measured voltage and current. Then, a neural network estimator, which is fed by 
flux and torque errors and a supposed rotor resistance, estimates the actual rotor resistance. This method 
has shown some advantages such as stability, reliability, rapid convergence and robustness over load 
torque variations. 
In section 2, the rotor time constant estimation schemes proposed in the literature have been reviewed. 
Section 3 describes the dynamic modeling of indirect vector control of an induction motor. The principles 
of artificial neural networks are presented in section 4. The principles of the proposed rotor resistance 
estimator, including rotor flux and torque estimation, neural network estimator and its training procedure 
are presented in section 5. System simulation studies are included in section 6. Concluding remarks are 
finally provided in section 7. 
 

2. REVIEW OF ROTOR TIME CONSTANT ESTIMATION TECHNIQUES 
 

The estimation of the rotor time constant constitutes a subject of interest for several research teams, and 
several solutions have been proposed in the literature [6-18]. Most of these methods require intensive 
calculations to converge and are time consuming [8, 9]. Furthermore, they either require accurate 
knowledge of stator resistance [8, 14] or are adapted only for specific operating conditions and are 
sensitive to load changing [6].  

The model reference adaptive control (MRAC) has been used in references [6, 7]. This method 
requires calculation of two functions, F* and F, using control variables that ensure the condition of flux 
orientation and machine variables, respectively. The difference between functions F* and F constitutes a 
condition of de-tuning and must be canceled. In this method, precise estimation of stator resistance Rs is 
mandatory. 

Reference [9] proposes using Extended Kalman Filter (EKF) to estimate rotor resistance. It has 
modeled the rotor resistance as an additional state variable of the machine, and the harmonic content 
generated by the PWM inverter is modeled as white Gaussian noise. This method requires intensive 
calculations and manipulation of large matrices and vectors. Moreover, before implementation, an off-line 
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calculation is necessary, using input variables corresponding to a certain operating point (linearization). 
This method presents the risk of nonconvergence, especially if the operating conditions are different from 
those used for off-line calculations. 

The concept of a deviation angle of the flux vector along d-axis has been presented in reference [10]. 
Calculation of this angle requires knowledge of stator voltage and current, and depends on the stator 
resistance Rs, mutual inductance M and rotor inductance Lr. Since stator resistance is used, this estimation 
scheme cannot be reliably used in a low speed region; hence, an alternative precise identification process 
must be available. 

The recursive least squares (RLS) [11] method is shown to provide a poor estimate of the rotor 
resistance, with errors of 20-30% in the estimated value compared with the possible thermal variations in 
rotor resistance of up to 50%.  

Artificial neural network (ANN) methods for the estimation of the rotor time constant of the induction 
motor were also investigated. In [12], an adaptation scheme based on the steady state equations of a 
current-fed induction motor is proposed. Its principal limitations are related to: the dynamic time response, 
which is slower than the proposed estimator; the selection criteria of the training data sets that must 
precisely represent the operating conditions of the motor; and the training time of the ANN, which can be 
excessive. The result of [13, 14] shows that these systems converge within 75 ms and 2 s. However, these 
methods present the risk of slow convergence. The result of [15] is for one amount of torque reference, so 
it will be sensitive to load variation. 
 

3. DYNAMIC MODELING OF INDIRECT ROTOR FLUX ORIENTED  
CONTROL OF AN INDUCTION MOTOR 

 
In an IRFOC, the synthesis of the unit vector is independent of the machine terminal conditions. Fig. 1 
explains the principles [3]. At any instant, the qe electrical axis is at angular position eθ  with respect to the 
qs axis. The angle eθ  is given by the sum of rotor angular position rθ  and slip angular position slθ . The 
rotor flux rψ is aligned with the de axis.  

 

 

 

 

 

 

 

 

Fig. 1.  Phasor diagram for indirect vector control 
 

The following equations are valid for rotating frame de-qe equivalent circuits 
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Substituting the first two conditions, Eqs. (1) and (2) can be simplified as: 
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The equations above, together with mechanical equation 
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describe the machine model in decoupling control. 

Figure 2 shows a system using the indirect method of vector control. *
dsi  for the desired *

rψ is 
determined from Eq. (8), and *

qsi for the desired *
eT is determined from Eq. (9). The set value of slip *

slω  is 
related to current *

qsi by Eq. (7). The slip frequency slω  is added to rotor speed rω to obtain eω  and eθ . 
In continuation, the computation for the coordinate changer and two-phase to three-phase transformer will 
be carried out. The three phase current command is produced by a CRPWM and fed to an induction motor. 
A successful implementation of the indirect field-oriented control requires an accurate calculation of the 
slip frequency (see Eq. (7)). The accuracy of this slip frequency calculation depends largely on the 
accuracy of the motor parameters, especially on the rotor time constant [4]. Hence, an on-line 
adaptation/estimation of the rotor time constant is necessary for a correct field-oriented operation.  
 

4. PRINCIPLES OF ARTIFICIAL NEURAL NETWORKS 
 

Artificial neural networks use a dense interconnection of computing nodes to approximate nonlinear 
function [19-21]. As shown in Fig. 2, each node constitutes a neuron and performs the multiplication of its 
input signals by constant weights, sums up the results and maps the sum to a nonlinear activation function 
φ; the results are then transferred to its output. A feed-forward ANN is organized in layers: an input layer, 
one or more hidden layers, and an output layer. The mathematical model of a neuron is given by 
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where: (x1, x2, …,xN) are inputs from the previous layer neurons, (w1, w2, …,wN) are the corresponding 
weights and b is the bias of the neuron. φ is generally the logarithmic or tangent sigmoidal activation 
function. 

 

 

 

 

 
Fig. 2.  Structure of neural network elements 

 
The ANN is trained by a learning algorithm that performs the adaptation of weights of the network 

iteratively until the error between target vectors and the output of the ANN is less than an error goal. The 
most popular learning algorithm for multilayer networks is the back-propagation algorithm and its 
variants. 

 
5. PRINCIPLES OF THE PROPOSED ROTOR RESISTANCE ESTIMATOR 

 
Our goal is to develop a technique for estimating the rotor resistance using only stator voltages and 
currents.  It consists of two parts; the first is a flux and torque estimation block whose inputs are voltage 
and current. It does not depend on rotor resistance. In continuation, the estimated flux and torque are 
compared with their commands and the errors are computed. If the rotor resistance in an indirect vector 
controller equals to actual rotor resistance of an induction motor, these errors will be equal to zero. 
Otherwise, if the rotor resistance has any change, these errors will appear; meanwhile, the magnitude of 
errors of flux and torque depend on load torque variations. Because the whole system is nonlinear and 
complex, it is not possible to estimate the rotor resistance simply by using these variables; so, in the 
second part a neural network (NN) has been used as a rotor resistance estimator. The whole system is 
shown in Fig. 3. 
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a) Rotor flux and torque estimation model 
 

In the proposed system, the inputs of NN block are flux and torque error. So these variables must be 
estimated. It is possible to establish a flux and torque model which does not use the monitored speed, but 
uses only the monitored values of stator voltages and currents. This model does not depend on rotor 
resistance; so, the estimated flux and torque are accurate and correct, even if the rotor resistance has some 
variation due to temperature variation and skin effect. For this purpose, terminal phase voltages and 
currents are sensed, and then they are transformed from a three-phase system to the stationary ds-qs 
reference frame. 

The following equations of stator voltages and fluxes can be written from stationary frame equivalent 
circuits [22]. 
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The rotor currents can be derived from stator voltages and currents as: 
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The rotor fluxes can be written as:  
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The rotor flux and torque equations are  
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A computation flow diagram for estimating flux and torque is shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 

Fig. 4.  Estimation of torque and rotor flux from stator currents and voltages 
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b) Neural network estimator structure 
 

The structure of the proposed feed-forward neural network used for estimation is indicated in Fig. 5. 
The network is a MLP type neural network with four layers, i.e., input layer, two hidden layers, and the 
output layer. The circles in the network represent the neurons. The input and output layers have neurons 
equal to the respective number of signals, whereas each of the hidden layers in the present design has 10 
neurons. The topology is defined as 4-10-10-1 network. The network is fully connected, i.e., the output of 
each neuron is connected to all the neurons in the forward layer through a weight. Besides, a bias signal is 
coupled to all the neurons of the hidden and output layers through a weight [23]. The hidden layer and 
output layer neurons have a sigmoid type nonlinear transfer function given as: 
 

)(1
1)( θ+−+

= xe
xf                                                                   (22) 

where θ  is the bias. 
The nonlinear transfer function associated with neurons gives nonlinear mapping property of the 

network [19]. 
  

 

 

 

 

Fig. 5.  Topology of the neural network for rotor resistance estimation 
 

The input variable signals are converted to per-unit form through the normalizer gains, and then after 
computation, the output is brought back to actual values through denormalizer gains, as indicated. The 
training and the operating procedures are explained in the following sections. 

 
c) Training procedure 

 
The training procedure used in the present project can be summarized as follows: 

• Simulate the induction motor drive system as shown in Fig. 3 by MATLAB/SIMULINK 
• Generate the input/output data table for different operating conditions as shown in Fig. 6-a. The input 

data correspond to the estimated flux and torque errors, torque command and the amount of rotor 
resistance in controller Rrc. The output data correspond to the desired estimated rotor resistance Rra. 

• Convert the data table to per-unit form and feed to the neural network simulator program located in 
PC. 

• Assign random weights initially to the network by the simulator. 
• Select an input/output data pair from the table. For the given input data pattern calculate the network 

output and compare with the desired data output to derive the error pattern. 
• As shown in Fig. 6-b from the error pattern, compute and adjust the network weights by a back-

propagation algorithm (gradient descent with adaptive learning rate) so that the new error is small. 
• Repeat the above steps with each set of input/output data patterns until the rms error for the entire 

training set converges below the desired threshold value. 
• After completion of the training, test the network performance with arbitrary input pattern to ensure 

successful training. 
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(a)                                                                                (b)  
Fig. 6.  (a) Generation of input/output data table (b) Procedure of training neural network  

 
6. SYSTEM SIMULATION STUDIES  

A 3-hp induction motor was used to simulate the indirect vector control of Fig. 3. Rating and parameters 
of the machine are given in the appendix. In this system the actual flux and torque are estimated by using 
stator voltage and current, and the rotor resistance is estimated by a neural network, this estimated value of 
the rotor resistance is used by IRFOC controller instead of a constant value. 

 
a) Generate matrices of data and training NN 

 
A matrix of input and output data in different operating conditions must be generated to use for 

training the NN. The input data matrix (23) corresponds to the error of flux rψ∆ , error of torque eT∆ , 
torque command *

eT and the rotor resistance that is used in the controller Rrc. 
 

[ ] [ ]rceer RTTdatainput *∆∆= ψ                                               (23) 
 

The output data matrix (24) corresponds to the desired estimated rotor resistance Rra. 
 

[ ] [ ]raRdataoutput =                                                          (24)  
To generate these data matrices, the above simulated system was tested for different values of Rrc , Rra 

and *
eT . 

To achieve this purpose, the torque command *
eT  was varied from 0.2 pu to 1 pu in 5 steps, each of 

which it was increased 0.2 pu. The actual rotor resistance Rra was varied from 1 pu to 2 pu in 9 steps, each 
of which it was increased 0.125 pu. The rotor resistance in the controller was varied from 1 pu to 2 pu in 9 
steps, in each of which it was increased 0.125 pu. As a result of these changes of parameters, there will be 
405 cases. The IRFOC of an induction motor with a flux and torque estimation block was simulated for all 
of these cases. In each case, the error of flux rψ∆  and that of torque eT∆ were derived and saved, and 
also *

eT , Rrc and Rra were saved. As a result, the matrices of input and output data with 405 rows were 
produced. 

By using these matrices of input and output data a 4-10-10-1 NN has been trained by back-
propagation algorithm, as was explained in section 6-2.The initial learning rate 21,ηη and the momentum 
gain α  were set to 0.35, 0.4 and 0.7, respectively. The convergence threshold error level was set to 0.001. 
After 500000 iterations the error level obtained threshold error. 

 
b) Simulation results  

After satisfactory training with the help of the simulator program, the weights are downloaded to the 
prototype network and attempts are made to operate the drive system of Fig. 2 with an NN as an estimator. 

The system has been studied in three cases: 
Case a: The nominal rotor resistance of 0.4Ω  was taken for the controller even though the actual rotor 
resistance was 0.8Ω  due to increasing the temperature. At 2 Sec. the NN estimator is activated, and the 
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rotor resistance is estimated immediately. Fig. 7a shows the actual and estimated rotor resistance, while 
Fig. 7b shows the percentage of error before and after using NN estimator. This error is less than % 0.01 
after using the NN. Fig. 7c shows the command torque and electromagnetic torque before and after using 
NN estimator. The command torque is 5 Nm, the actual torque is 3 Nm before using NN estimator and 5 
Nm after using it. Fig. 7d shows the command and actual flux before and after using NN. The command 
flux is 0.45 Wb and the actual flux is 0.5 Wb before using NN. 

The results show that before using NN as an estimator the flux and torque have oscillation and some 
steady state errors. 
At 4 Sec. the command torque decreases to 2 Nm and the vector control is done successfully, thus the 
actual torque and flux follow their commands accurately. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time(sec) 
Fig. 7.  The performance of the drive before and after using NN estimator, (a) actual and estimated  

rotor resistance, (b) percentage of estimated rotor resistance error, (c) command  
and actual torque, (d) command and actual flux, (e) rotor speed 
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Case b: The performance of the drive without a rotor resistance estimator has been studied. The rotor 
resistance gradually changes due to temperature changes caused by torque current changing. In Fig. 8a and 
8c the variations of rotor resistance and command torque are shown. At first, it is assumed that the 
command torque is equal to zero, and the rotor resistance is equal to 0.4Ω . At 2 Sec. the command torque 
is increased to 2 Nm, and the rotor resistance begins to increase exponentially, reaching to 0.463Ω . At 7 
Sec. the torque is increased to 5 Nm, and the resistance is increased to 0.8Ω . Then, the torque is 
decreased to 3 Nm at 15 Sec. and the resistance is exponentially decreased to 0.547Ω . 

In this case, there is no estimator, so the actual rotor resistance has some variations, however the 
amount of rotor resistance in the controller block has been fixed to 0.4Ω . The percentage of error between 
them is shown in Fig. 8b. In Fig. 8c and 8d the command and actual torque and flux are shown. The 
results show that the performance of vector controller without the estimator will be distracted, so the flux 
and torque have some oscillations when the command torque is changed and there is some steady state 
error in them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Time(sec)  

Fig. 8.  The performance of the drive without any estimator, the rotor resistance has a gradual change, 
(a) actual rotor resistance, (b) percentage of estimated rotor resistance error, (c) command 

 and actual torque, (d) command and actual flux, (e) rotor speed  
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Case c: The rotor resistance has a gradual change like case b, but it is assumed that the neural network 
estimator has been activated since the beginning of the process. The switching frequency of the network 
was 5 Hz, hence the neural network frequency was chosen to give the plant enough time to stabilize its 
output. 
     The actual rotor resistance and estimated resistance are shown in Fig. 9a. The estimated rotor resistance 
closely follows the actual rotor resistance. The magnitude of this estimation error is shown in Fig. 9b, the 
maximum error is less than ±3%. 
In Figs. 9c and 9d, the command and actual torque and flux are shown. The results show that the vector 
control is valid when the rotor resistance has some changing, and NN estimator is activated. The actual 
flux is fixed to its command value, and the actual torque is tracking its command value, without any 
oscillation or steady state errors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time(sec) 
Fig. 9.  The performance of the drive with NN estimator, the rotor resistance has a gradual change, (a) actual 

and estimated rotor resistance, (b) percentage of estimated rotor resistance error, (c) command 
and actual torque, (d) command and actual flux, (e) rotor speed 
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7. CONCLUSIONS 
 

In this paper, a simple algorithm has been developed for the estimation of rotor resistance used in indirect 
rotor flux oriented control of induction motor drives. This estimator is based on neural networks principles 
and requires only a measurement of accessible variables (voltages and currents). By using these variables, 
the flux and the torque are estimated. In the next stage, a four-layer neural network with 4-10-10-1 
structure is fed by the error of torque, error of flux, command torque, and the amount of rotor resistance in 
controllers to estimate the actual value of rotor resistance. The NN learning process has been performed 
off-line based on the mathematical model of the IRFOC system.  

The computer simulation results have shown the validity and the feasibility of the proposed method. 
The switching frequency of the neural network was 5 Hz and the performance of the estimator was found 
to be excellent in a wide range of rotor resistance variations from 0.4Ω  to 0.8Ω . The system can adjust 
instantaneously and compensate the variation of rotor resistance caused by heating or eddy currents. The 
maximum estimation error is less than ±3%. 

Accurate, fast estimation, simplicity of design and insensitivity to load variations are the advantages 
of this method. The proposed method could be simply adapted to use in the other schemes of flux 
orientation; namely, stator and air gap flux orientation. 
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NOMENCLATURE 

qsds ii ,  stator current in d- and q-axis 

rm LL ,  rotor and magnetizing inductances 
Ls stator inductance 
P number of poles 
Rr  rotor resistance 
Rra estimated rotor resistance  
Rrc rotor resistance that is used in the controller  
Rs stator resistance  
Te

* command torque 
Te , Tl developed and load torque 

qsds υυ , stator voltage in d-and q-axis 

qrdr ψψ , rotor flux in d-and q-axis 

rψ  rotor flux 

qsds ψψ , stator flux in d-and q-axis 
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APPENDIX 
Induction motor data 
 
Rated power   3 hp 
Number of poles, p  4 
Rated stator voltage  220 V 
Rotor resistance, Rr  0.816Ω  
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Stator resistance, Rs  0.435Ω  
Magnetizing resistance, Xm 26.13Ω  
Rotor leakage reactance, Xlr 0.754Ω  
Stator leakage reactance, Xls 0.754Ω  
Mechanical inertia constant, J 0.089 kg.m2 
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