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Abstract– An adaptation of the Newton Method is used to solve the combined system of ordinary 
differential and algebraic equations that describe the spatially varied flows that occur from lateral 
inflow with periodic outflow along open channels.  The application selected is lateral inflow into 
gutters with periodically spaced grates in its bottom through which the accumulated flow is 
discharged.  The occurrence of critical flow may allow the lateral inflow to be solved as a separate 
problem, and the outflow to be handled separately.  Where subcritical flow exists, the composite 
system of differential and algebraic equations resulting from a series of gutter-grates must be 
solved simultaneously.  Solutions to such example applications are given.           
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1. AN INTRODUCTION TO EQUATION FOR SPATIALLY OF VARIED FLOWS 
 

Spatially varied flows occur when the flow rate in an open channel increases or decreases in magnitude 
because there is either lateral inflow or outflow from the channel. Such flows are governed by the 
following first order ordinary differential (ODE) that can be found in text books [1-4]. (This equation can 
be obtained from the energy principle for the outflow situations, but requires the momentum principle for 
lateral inflow.) 
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in which 

Fq = 0  for bulk lateral outflow 

Fq = (Vq*)/(2gA) = (Qq*)/(2gA2)  for seepage flow,  and 

Fq = (V-Uq)q*/(gA) + (hc/A)(ΜA/Μx)|Y)  for bulk lateral inflow 

The variables in Eq. 1 have the following meanings: Y = depth of flow (m or ft); x = position along the 
channel (m or ft);  So= bottom slope of  channel;  Sf= slope of energy line, and in this paper will be 
computed using Mannings Equation; Q = the volumetric flow rate (m3/s or ft3/s); g=acceleration of gravity 
(9.81 m/s2 when using SI units, 32.2 ft/s2 when using ES units); A=cross-sectional area of flow (m2 or ft2);  
ΜA/Μx|Y=the change in area with respect to x with the depth Y held constant  (m or ft); q*=the lateral 
inflow or outflow, inflow is positive and outflow is negative (m2/s or ft2 /s);  Fr

2= the Froude number 
squared and in general is evaluated from Q2T/(gA3)  ( T=top width);  V=velocity (Q/A) (m/s or ft/s);  
Uq=velocity component of lateral inflow in direction of the main flow (m/s or ft/s). 
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It is important to understand what influence each term in Eq. (1) has. The third term in its numerator, 
along with the portion of Fq containing ΜA/Μx|Y, will be referred to as the non-prismatic term. It is zero if 
the size and shape of the channel do not change. The fourth term in its numerator, along with the first part 
of Fq is referred to as the lateral inflow/outflow term. The depth increases in the downstream direction 
when dY/dx is positive, and decreases if it is negative. The denominator of Eq. (1) is positive for 
subcritical flows, i.e., when Y>Yc (Yc=critical depth), and is negative for supercritical flows, i.e., when 
Y<Yc. If the channel size reduces in the positive x direction the non-prismatic term adds to the 
negativeness of the numerator for subcritical flows, thus tending to decrease the depth and vice versa for 
supercritical flows. On the other hand, an expanding cross-section causes the depth to increase more in the 
downstream direction if the flow is subcritical and decrease if supercritical. The term Qq*/(gA2) has the 
effect of increasing the depth for lateral outflow (q*<0) and decreasing the depth for lateral inflow (q*>0) 
for subcritical flow in the channel, and the opposite effects when the main channel flow is supercritical. 
Notice for a prismatic channel that Fq=Qq*/(gA2) when Uq=0, and therefore for prismatic channels the 
effect of the lateral outflow term is twice as large  for bulk lateral inflow as for bulk lateral outflow. 
However, the influence of Uq can reverse this effect if its magnitude is larger than V, but in the same 
direction as V, and if Uq’s direction is opposite to V then the above effects on the depth are reversed. In 
brief, the effects of the terms in Eq. (1) are varied and can become confusing unless one carefully 
examines its sign in relationship to the sign of the denominator. Obviously the magnitudes of the non-
prismatic, or the lateral inflow/outflow terms can easily exceed the difference between So and Sf, and 
consequently have the dominate influence. 

In the remainder of this paper it will be assumed that (ΜA/Μx)|Y =0 because its inclusion adds 
another unneeded dimension of complexity to attempts to summarize relationships between variables. 
Also, Uq will be taken as zero.  With these assumptions the ODE for spatially varied inflow is 

 
 

2

2

r

2
fo

F-1

)/(gA*QqSS
dx
dY −−

=                                                           (2) 

                                                                       
 

and for spatially varied outflow is 
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in which qo* = -q*. 
 

2. INFLOW TO GUTTERS AND OUTFLOW THROUGH GRATES 
 
The open channel flows resulting from the accumulations of lateral inflow into gutters from rainfall on 
roadways, and the outflow through grates (racks) that are periodically spaced along the gutters into storm 
drains is  the problem that is dealt with in this paper.  Under some circumstances the inflow to gutters and 
the outflow from grates can be handled as separate problems, whereas under other conditions the two 
flows must be handled as a single problem because each effects the other.  Later in this paper the problem 
of a series of gutter-grates (the combined problem) will be handled.  When the grates have more than 
ample capacity to receive all the gutter flow, it can be solved first because critical flow occurs where the 
grates begin, and thereafter the flow through the grates can be solved as a separate problem. To handle 
situations in which the grates easily accommodate the gutter flow, as well as to develop the necessary 
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background for coping with a series of gutter-grates, the flow in a single gutter will be dealt with first. 
Next the flow from a single grate will be handled.  Subsequently the two processes will be combined.  
Flow through grates in the bottom of channels is not limited to taking gutter flow into storm drains.  Nor is 
the accumulation of lateral inflow to create a main channel flow limited to gutters. In other words, the 
solution techniques described below have other applications. 

 
a) Gutter flow- handled separately 

 
Assume that a length L of gutter with a mild bottom slope So is supplied by a lateral inflow q* over its 

entire length, and that at both ends of this length of gutter there are drains with sufficient capacity to 
accept all of the flow.  Under these assumptions the depths will be critical at both ends of the gutter, and 
the flow inbetween will be subcritical lateral inflow, as shown on Fig. 1. 

 
Fig. 1.  Lateral Inflow across a gutter with complete flow removal at both its ends 

 
The position Xs   that separates the flow moving in the left direction from that moving in the right 

direction, and the depth Ys at this position, are unknown, as well as the two critical depths at the left and 
right ends of the gutter .  Thus there are four unknowns, Ycl, Ycr, Ys and Xs. It will be assumed that the 
lateral inflow q* is known, and  to allow q* to vary in magnitude is given by q*=aox2+a1x+a2. The gutter's 
bottom slope So, its Mannings n, and geometric properties are also known. Four equations are needed to 
solve for the four unknown variables. The flow rates at the left and right ends of the gutter are given by 
integrating q* from x=0 to x=Xs and from x=Xs to x =L, respectively. If q* is constant (a1=ao=0), these 
integrations produce Ql = Xsq* and Qr = (L-Xs)q*, in which the flow rate to the left Ql moves up against the 
adverse bottom slope So, and Qr is the flow rate passing the right end of the gutter.  If ao and a1 are not zero 
then Ql= aoXs

3/3+a1Xs
2/2+a2 Xs  and  Qr = aoL3/3+a1L2/2+a2 L- Ql. There are two methods for handling the 

flow on the left of the separate point; one is to use a positive x direction in the direction of flow, and then 
So is negative. The other is to use x as positive in the direction of the gutter slope, i.e. from left to right, 
and consider the flow in the left portion of the gutter negative, i.e. Q is negative. The latter approach will 
be used. The four equations needed are two critical flow equations and two ODE's, as given below. 

 
F1 = Ql

2Tl - (gAl
3) = 0                                                                     (4) 

  
F2 =  Qr

2Tr - (gAr
3) = 0                                                                    (5) 

 
F3 = Ys - Ysode(Ycl) = 0  (Ysode comes from Sol. of Eq. 2 with x = 0 to x=Xs )                  (6)  

 
F4 = Ys - Ysode(Ycr) = 0  ( Ysode comes from Sol. of Eq. 2 with x = L to Xs )                   (7) 

 
The solution of the ODE (Eq. 2), which is denoted by Ysode(Ycl) in F3 (Eq. (6)) starts with a depth  slightly 
above the critical depth Ycl at the x=0 end of the gutter associated with Ql, and ends at Xs.  For F4 the ODE 
is solved starting with a depth slightly above the critical depth Ycr at x=L end of the gutter associated with 
Qr, and ending the solution at position Xs.  The solution on the left side of Xs (e.g. F3) uses Q as negative 
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as mentioned above, and Sf will be computed from Sf =|nQ(P/A)2/3/(CuA)|[nQ(P/A)2/3/(CuA), thus 
producing a negative value for Sf.  On the left side of Xs the term 2Qq*/(gA2) in the numerator of the ODE, 
Eq. (2),  adds to its positive amount causing the depth Y to increase in the positive x direction. When 
solving the ODE on the right of Xs, the computed values for both Sf and 2Qq*/(gA2) in the numerator of 
the ODE are positive and the negative sign in front of these terms will cause the depth Y to decrease in the 
positive x direction. 

Often gutters have a cross-section that consists of one-half of a triangle as shown in Fig. 2.  

 
Fig. 2.  Cross-Section of Gutter 

 
For such triangular gutters, the area, perimeter and top width are given by, A = 0.5mY2, P = Y + 
Y(1+m2)1/2 = Y{1+(1+m2)1/2} and T = mY, respectively. (Notice these are different than the special 
trapezoidal section with b = 0.)  For triangular gutters the first two of the above four equations become 
(the critical flow equations): 

 
F1 = mYclQl

2 - .125gm3Ycl
6 = 0   or Ycl = [8Ql

2/(gm2)]0.2 (8) 
 

F2 = mYcrQr
2 - .125gm3Ycr

6 = 0   or Ycr = [8Qr
2/(gm2)]0.2 (9) 

 

b) Solution of combined systems of algebraic and ordinary differential equations 
 

An adaptation of the Newton Method is well suited for solving combined systems of algebraic and 
ODE’s such as Eqs. 4-7. The Newton iterative formula for solving a system of equations can be written as 
[5, 8],           
             {x}(m+1) = {x}(m) - [D]-1{F}(m)  (10)  

 
in which {x} is the column vector of unknowns, {F} is a column vector of equations, [D] is called the 

Jacobian and is a square matrix of partial derivatives, i.e.  
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These partial derivatives must be evaluated numerically for the equations coming from solutions of ODE’s, 
and can be evaluated numerically for the algebraic equations. A numerical evaluation of these partial 
derivatives requires that the equation Fi   be computed twice, or 

 
                                                    ∂Fi      Fi(x1,x2, . . xj+∆xj,  . . xn∆ -   Fi(x1,x2, . . xn) 

    ──  =   ──────────────────────────── 
                      ∂xj                                    ∆xj               
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Equation (10) indicates that the Newton method solves a system of nonlinear equations by iteratively solving 
a system of linear equations because [D]-1{F} represents the solution of the linear system of equations  
 

             [D]{z} = {F}       (11) 
  
That is that the amount subtracted from the current estimate of the unknown vector is the solution {z} to the 
above linear system of equations. Thus in practice the Newton method solves a system of equations by the 
iterative formula,  

                  {x}(m+1) = {x}(m) - {z}                                                                   (12) 
 
where the superscript (m) denotes the iteration number. Each ODE might be considered a function of 
unknowns as described in [5], Chapter 12.  When the correct combination of these unknowns are used, then 
each ODE will produce the dependent value (for our ODE’s the Y’s) that satisfy the other equations. Thus 
Eqs. (6) and (7) are written as given above so that the Newton Method drives the solution of the ODE’s, 
Ysode(Ycl) and Ysode(Ycr) toward Ys.  In writing a computer program to solve a system of equations such as 
Eq. (4) through 7, one wants to use subroutines (or functions) that use the Runge-Kutta [6], Bulirsch-Stoer 
[7], or some other method for solving ODE’s, and also a linear algebra subroutine (or function) to solve the 
linear system, Eq. (11).  Also this program should contain a subroutine (function) to evaluate the equations, 
i.e., Eqs. (4-7) (below this subroutine is named FUN.)  This subroutine will call on the ODE-Solver to 
evaluate the ODE-equations, i.e. Eqs. (6) and (7).  In this program the unknown vector will be stored in an 
array, say X(4),  that holds the iterative values for Ycl, Ycr, Ys and Xs for the above problem.  Also two 
arrays, say F(4) and F1(4) for the above problem, are needed to store the values of the equations.  Then the 
portion of the program that implements the Newton Method could be as given below (Fortran has been used 
and comments after the statements indicate what each statement does.) This portion of the main program is 
written in general so that if the parameter N is changed, a larger system of equations can be solved using the 
same code. (The CD in the back cover of [5] contains source code in Fortran and C to solve ODE’s, 
ODESOL, and solve linear algebraic equations, SOLVEQ.)  
 
      M=0             // set Newton’s iteration counter to 0 
10    CALL FUN(F)     // supplies the values to the equations which when satisfied = 0 
      DO 20 J=1,N   // This Do loop numerically evaluates the derivatives in the Jacobian 
      XX=X(J)      // XX stores original value of unknown 
      X(J)=1.005*X(J)   // increments unknown,i.e., gives xj+)xj 
      CALL FUN(F1)      // Evaluates equations with incremented unknown 
      DO 15 I=1,N       // This DO loop numerically evaluates the elements in the Jacobian. 
15    D(I,J)=(F1(I)-F(I))/(X(J)-XX)  // index I denotes the row and J the column 
20    X(J)=XX           //  Sets unknown back to non-incremented value 
      CALL SOLVEQ(N,1,N,D,F,1,DD,INDX) // returns solution {z} of [D]{z}={F} in array F 
      DIF=0. 
      DO 30 I=1,N      //  This Do loop implements Newton iterative formula {x}={x}-{z} 
      X(I)=X(I)-F(I)    //  substracts correction 
30    DIF=DIF+ABS(F(I))  // accumulates absolute values of corrections 
      M=M+1              // increments Newton’s iteration counter 
      IF(NCT.LT.MAX .AND. DIF.GT.ERR) GO TO 10 // repeat another Newton iteration until convergence 
 
c) Gutter flow – handled separately (continued) 
  

There are so many variables involved in the flow into a gutter that it is not practical to provide design 
charts that relate all these variables.  Therefore, consider lateral inflow into a gutter that is 280 m long, and is 
triangular in shape with a side slope m = 4, a Mannings n = .013, and a bottom slope So=0.0009.  The flow 
variables for the following 15 situations, in which the lateral inflow varies across the gutter as given below, 
have been solved and the solutions are given in Table 1.  (The coefficient ao=0 in the quadratic equation 
defining the inflow q* in all solutions.) 

 

www.SID.ir



Arc
hi

ve
 o

f S
ID

R. W. Jeppson 
 

Iranian Journal of Science & Technology, Volume 30, Number B4                                                                              August 2006 

492

       Coefficients                     Explanation 
 No.     a1       a2 
  
  1    4.x10-4      0         A constant inflow that result in a total Q=0.112 m3/s    
  2    6.x10-4      0         A constant inflow that result in a total Q=0.168 m3/s    
  3    8.x10-4      0         A constant inflow that result in a total Q=0.224 m3/s    
  4    2.x10-4  1.42857x10-6   q* at beg. 1/2 of No. 1 with increase with x so Q=0.112 
m3/s 
  5    0       2.85714x10-6   q* at beg. 0, with increase with x so Q=0.112 m3/s 
  6    6.x10-4  -1.42857x10-6  q* at beg. .0006, with decrease with x so Q=0.112 m3/s 
  7    8.x10-4  -2.85714x10-6  q* at beg. .0008, with decrease with x so Q=0.112 m3/s 
  8    3.x10-4  2.142857x10-6  q* at beg. 1/2 of No. 2 with increase with x so Q=0.168 
m3/s 
  9    0       4.28571x10-6   q* at beg. 0, with increase with x so Q=0.168 m3/s 
 10    9.x10-4  -2.14286x10-6  q* at beg. .0009, with decrease with x so Q=0.168 m3/s 
 11   12.x10-4  -4.28571x10-6  q* at beg. .0012, with decrease with x so Q=0.168 m3/s 
 12    4.x10-4  2.857143x10-6  q* at beg. 1/2 of No. 3 with increase with x so Q=0.224 
m3/s        
 13    0       5.714286x10-6  q* at beg. 0, with increase with x so Q=0.224 m3/s                   
 14   12.x10-4  -2.85714x10-6  q* at beg. .0012, with decrease with x so Q=0.224 m3/s               
 15   16.x10-4  -5.71429x10-6  q* at beg. .0016, with decrease with x so Q=0.224 m3/s               
 

Expanding the number of solutions in which the lateral inflow is constant, i.e., coefficients ao and a1 are 
zero and obtaining such a series of solutions for different bottom slopes with So varying from .0001 to .0018 
gives the results displayed in Fig. 3. The general trend of lines on these graphs indicate that the separation 
point Xs changes very little with increasing lateral inflow if the bottom slope of the channel is small. This 
trend is evident by the flatness of the curves on the first graph for So=.0001 and .00025, etc. Another 
observation is that the depth at this separate point Ys doesn’t change much with the bottom slope. For 
example, if the lateral inflow q*=.00305 m2/s then Ys=0.4 m when So=.0018, and Ys=0.57 when So=.0001. 
By comparing the 3rd and 4th graphs which provide the depths at the left and right sides, Yl and Yr, 
respectively, one notes that the variation in depth with So is slightly less on the right side than the left, but as 
one would expect, both of these depths increase with the decreasing bottom slope of the gutter, as well as 
increasing q*. 
 

Table 1.  Summary of solution results as related to pattern of q*(Triangular  
Gutter with m=4, L=280 m, n=.013, & So=.0009) 

 
Prob. 
No. 

Variation of 
Coef. of x 

Inflow q* 
Const 

Q(tot) 
(m3/s) 

Y 
(m) 

X 
(m) 

Y(left) 
(m) 

Y(right) 
(m) 

1 0.0000000 0.0004 0.112 0.196 42.0 0.108 0.215 
2 0.0000000 0.0006 0.168 0.242 49.8 0.135 0.250 
3 0.0000000 0.0008 0.224 0.280 55.5 0.159 0.277 
4 0.142857E-05 0.0002 0.112 0.189 51.8 0.095 0.219 
5 0.285714E-05 0.0000 0.112 0.196 75.8 0.081 0.223 
6 -0.142857E-05 0.0006 0.112 0.207 37.9 0.119 0.211 
7 -0.285614E-05 0.0008 0.112 0.220 36.0 0.130 0.206 
8 0.214286E-05 0.0003 0.168 0.240 63.5 0.123 0.254 
9 0.428571E-05 0.0000 0.168 0.257 91.5 0.110 0.258 

10 -0.214286E-05 0.0009 0.168 0.252 43.5 0.148 0.244 
11 -0.428571E-05 0.0012 0.168 0.265 40.3 0.159 0.239 
12 0.285714E-05 0.0004 0.224 0.281 71.8 0.146 0.283 
13 0.571429E-05 0.0000 0.224 0.296 100.1 0.133 0.287 
14 -0.285714E-05 0.0012 0.224 0.289 47.4 0.171 0.272 
15 -0.571429E-05 0.0016 0.224 0.301 43.2 0.183 0.265 
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The flow from the bottom of a gutter through grates is a problem in which the lateral outflow depends 

upon the depth of the flow at any position. The orifice formula is generally used to define this lateral 
outflow 
 

qo
* = Cd(2g)1/2(Ao/L) Y0.5 = Cd(2g)1/2(fb)Y0.5                                             (13) 

 
in which (Ao/L) is the area of the opening per unit length, with f equal to the fraction of the bottom that is 
open. Assume that the storm drain that receives the flow from the grates has the capacity to carry off the 
flow. If this is not the case then the lateral outflow will be restricted by the hydraulics of the storm drain 
system of pipes, etc. The ODE that describes the change in depth across an outflow grate is Eq. (3).  The 
flow rate Q will need to be obtained by numerically integrating the lateral outflow, i.e., 
 

Q = Qo - Ιqo
*dx                                                                         (14) 

 
in which Qo is the flow rate at the beginning of the grate.  An easy, not very precise, but generally 
adequate means for carrying out the numerical integration is to use the trapezoidal rule, or 
 

Ιqo
*dx = Γ{(xi+1-xi)[(qo

*)i + (qo
*)i+1]/2} = Γ{)x(qo

*)av}                                    (15) 
 
in which subscript i denotes the past position and subscript i+1 denotes the current position. For the 
solutions that follow, the grate will be given a triangular section (as the gutter) as shown in Fig. 2 when 
solving for area, perimeter, etc., but when using Eq. (13) the discharge will be assumed through a flat 
bottom with a width b. 

Fig. 3. Graphs showing the relationship of the four solved variables to q* and So for our gutter 

d) Flow into grates on bottom of channel–again outflow handled separately
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If the flow in the gutter at both ends of the grate, is critical, as assumed in the gutter flow described 
previously, then the solution to the ODE will begin with a depth just slightly below critical depth, 
resulting in a negative denominator for the ODE, causing the depth to generally decrease in the x direction 
as shown in Fig. 4. Under these assumptions the solution of Eq. (3) can proceed until the depth becomes 
zero, or the flow rate becomes zero (both of which should occur essentially simultaneously.) The resulting 
distances provide the length of grate needed to discharge the flow from both the left and right sides of the 
gutter, and their sum is the length of grate needed. Table 2 provides results from solutions for which Fig. 3 
applies in which the lateral inflow is varied from a q* = 0.01 m2/s, near the largest abscissa value on the 
graphs, to q*=0.00001 m2/s.  In obtaining these solutions the grate was assumed to have a bottom width b 
= 0.3 m and a side slope beyond this of m = 4, a bottom slope So=.0009 and Mannings n=.013. One-half of 
the 0.3 m bottom was assumed open, i.e., f=0.5 and the discharge coefficient was assumed to be Cd=0.45. 
 

 
Fig. 4. Supercritical flow into grates 

 
Table 2.  Lengths of grates needed to discharge the lateral inflow from the 

previous gutter with a length of L = 280 m 
 

   q*   Ys    Xs   Yl  Yr  Qtot  Lr  Ll  Ltot 
 (m3/s)  (m)   (m)  (m)  (m)  (m)  (m) (m)  (m) 
0.010000  0.8610 99.4831  0.5502 0.6983 2.8000   4.00   10.35  14.35  
0.007500  0.7642 95.4515  0.4824 0.6280 2.1000   3.00   8.30  11.30  
0.005625  0.6774 91.0944  0.4220 0.5649 1.5750   2.40   6.65   9.05  
0.004219  0.5994 86.4719  0.3684 0.5084 1.1812   1.80   5.30   7.10  
0.003164  0.5293 81.6047  0.3208 0.4577  0.8859   1.40   4.20   5.60  
0.002373  0.4663 76.4696  0.2786 0.4121  0.6645   1.00   3.30   4.30  
0.001780  0.4096 71.1217  0.2412 0.3712  0.4983    0.80   2.60   3.40  
0.001335  0.3586 65.5984  0.2082 0.3343  0.3738    0.60   1.95   2.55  
0.001001  0.3127 59.9516  0.1790 0.3011  0.2803    0.40   1.45   1.85  
0.000751  0.2714 54.1960  0.1532 0.2711  0.2102    0.40    0.95   1.35  
0.000563  0.2345 48.5359  0.1307 0.2441  0.1577    0.20    0.55    0.75  
0.000422  0.2015 43.0383  0.1110 0.2196  0.1183    0.20    0.15    0.35  
0.000317  0.1722 37.6955  0.0938 0.1975  0.0887    0.20    0.05    0.25  
0.000238  0.1465 32.7211  0.0790 0.1774  0.0665    0.20    0.05    0.25  
0.000178  0.1240 28.1094  0.0663 0.1593  0.0499    0.08    0.01   0.09  
0.000134  0.1046 24.0098  0.0555 0.1429  0.0374    0.04    0.01    0.05  
0.000100  0.0880 20.3881  0.0463 0.1281  0.0281    0.04    0.01    0.05  
0.000075  0.0739 17.2467  0.0386 0.1147  0.0210    0.04    0.01    0.05  
0.000056  0.0620 14.5584  0.0321 0.1027  0.0158    0.04    0.01    0.05  
0.000042  0.0520 12.2875  0.0268 0.0918  0.0118    0.04    0.01    0.05  
0.000032  0.0436 10.3610  0.0223 0.0821  0.0089    0.04    0.01    0.05  
0.000024  0.0366 8.7299  0.0186 0.0733  0.0067    0.04    0.01    0.05  
0.000018  0.0307 7.3692  0.0155 0.0655  0.0050    0.04    0.01    0.05  
0.000013  0.0257 6.2142  0.0129 0.0585 0.0037    0.04    0.01    0.05  
0.000010  0.0216 5.2400  0.0107 0.0522  0.0028    0.04    0.01    0.05  

 
Let's examine the case in which the grate is relatively short so only a portion of the flow is taken from 

the grate. Then two of the possible situations are shown in Fig. 5; the first contains subcritical flow 
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through the entire grate length, and upstream and downstream therefrom the flows are also subcritical with 
the downstream depth as the control; the second contains supercritical flow throughout the grate, and the 
upstream depth Y1 is the control. If the channel downstream is not steep, in the second case, then a 
supercritical flow over the first portion of the grate will result in a hydraulic jump either within the grate 
length, or in the downstream channel. 

 
Fig. 5.  Two cases of incomplete inflow through a grate 

 
For the first case, if the channel is mild and long downstream from the grate, then normal depth Yo2, 

based on the flow rate Q2 remaining in the channel will exist at the end of the grate, and since the term 
Qqo

*/(gA2) contributes to the positiveness of the numerator of the ODE and its denominator is positive 
since Fr

2<1, the depth increases across the grate as shown in the sketch.  An M2-GVF will occur upstream 
from the grate. The solution to this subcritical flow situation is to simultaneously satisfy Mannings 
Equation in the downstream channel and solve the ODE through the grate to give the variation in depth 
across the grate, as well as evaluate Ιqo

*dx so the continuity equation Q1 = Q2 + Ιqo
*dx can be satisfied.  In 

other words there are three unknowns involved, Y1, Y2 = Yo2 and Q2.  The three available equations are: 
(1) Mannings Equation in the downstream channel, (2) the ODE across the grate, and (3) the continuity 
equation, or 
 

F1=nQ2P2/3 - CuA5/3So
1/2 =0                                                                (16) 

 
F2=Y1-Y1ode(Yo2)=0 (with Y1ode from the sol. of Eq. 3 from x=L to 0)                         (17) 

 
F3=Q1-Q2-Ιqo

*dx =0                             (18) 
 

Table 3 provides solutions in which subcritical flow occurs across the grate. For these solutions the 
length of the grate is L = 0.5 m, its Cd=0.45, its bottom width b = 0.3 m, f=0.5, and m = 4.  The channel is 
n=.013, and its bottom slope is So=0.0009.  Note as the inflow decreases (or similarly if the length of grate 
increases), the upstream Froude Number gets closer to unity, and the smallest Q1=0.5 m3/s in Table 3 is 
close to the limit for having subcritical flow across the grate since Frl = .883. 

If the channel is steep (the second case in Fig. 5) so the upstream flow is supercritical, then the 
denominator of the ODE is negative and the depth will decrease across the grate.  The upstream depth will  
 

Table 3.  Solutions with subcritical flow across grate and uniform 
flow downstream therefrom 

 
Q1 

(m3/s) 
Y1 
(m) 

Y2  
(m) 

Ιqo*dx 
(m3/s) 

Q2 
(m3/s) 

Fr1 Fr2 

1.1 0.660 .686 0.123 0.977 .703 0.566 
1.0 0.632 0.659 0.120 0.880 0.712 0.563 
0.9 0.602 0.631 0.118 0.782 0.724 0.558 
0.8 0.601 0.569 0.113 0.686 0.740 0.554 
0.7 0.532 0.532 0.111 0.589 0.751 0.549 
0.6 0.491 0.491 0.107 0.493 0.781 0.543 
0.5 0.439 0.439 0.103 0.397 0.883 0.535 
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not be affected by the outflow from the grate, so the solution can proceed by solving the ODE starting 
with depth Y1 at the upstream end of the grate and let this solution provide the outflow  Ιqo

*dx as well as 
the depth Y2 at the end of the grate. 

If the grate is followed by another gutter with lateral inflow, or something else that effects the flow so 
that normal depth does not exist downstream then we may want to solve the problem with subcritical flow 
over the grate, but be able to specify what the flow rate is that leaves the end of the grate as well as what 
flow rate enters.  In other words, the depths at the beginning and end of the grate are sought that will cause 
a specified amount of outflow over the grate. For this problem two equations are available; the solution of 
the ODE across the grate and the continuity equation, namely Eqs. (18) and (1).  The only difference is 
that the depth Y2 will be used in place of the normal depth Yo2 in Eq. (18). These two equations solve for 
the depths at the beginning and end of the grate, Y1 and Y2, respectively, with the flow rates entering and 
leaving the grate Qin = Q1 and Qout,= Q2, respectively, specified.   

Table 4 contains a series of such solutions for the grate dealt with earlier, in which all specified 
outflow Qout=0 and the inflow Qin are as shown in the first column. Note how the upstream Froude 
Number, Fr1, increases with decreasing Qin. The solution fails when Qin is given as 0.071 m3/s because for 
this and smaller values the flow is supercritical, at least over the first portion of the grate. 
 

Table 4.  Solution of the subcritical flow through grate with L=0.5 m, n=.013, So=.0009, f=.5 & Cd=.45 
(Inflow as given in column 1 with zero outflow) 

 
Qin (m3/s) Y1 (m) Y2 (m) Fr1 

0.200 1.790 1.790 0.011 
0.140 0.877 0.877 0.044 
0.100 0.449 0.445 0.171 
0.080 0.291 0.277 0.449 
0.078 0.278 0.260 0.509 
0.076 0.265 0.244 0.586 
0.074 0.253 0.225 0.693 
0.072 0.241 0.200 0.905 

 

3. COMBINED PROBLEM-GUTTER INFLOW AND GRATE OUTFLOW 
 

If the length of the grate (or lateral outflow length) is less than that needed for all of the gutter flow at the 
beginning of the grate to enter, the depth feather down to zero, and it is necessary to combine the problems 
of lateral inflow along the length of the gutter with the lateral outflow along the length of the grate. First, 
consider the case where the flow throughout both the lateral inflow length and the lateral outflow length 
are subcritical. This means that the depth of water over the grate, or outflow length, is sufficient to cause 
the depths in the gutter both upstream and downstream from the grate to be above critical depth.  For this 
case the depths throughout the lateral outflow length of the grate are subcritical, and this outflow is not 
separated from the lateral inflow by a control caused by the depth being critical at either the upstream or 
downstream end of the grate (or gutter). 

Assume that there are a series of grates equally spaced along a gutter that receives a constant lateral 
inflow q*, so that the problem can be defined as depicted in Fig. 6, in which the length being considered 
can start in the gutter at the end of the grate, proceed through the gutter, and then finally though the grate.  
If one wishes to find the point Xm in the grate where the flow rate Q goes to zero then the control section 
can begin here and then proceed to the gutter, then through the gutter length, and finally through the grate 
to the same point in the outflow length where the flow rate is zero. 
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Fig. 6.  Combined problem of lateral inflow into gutter which is discharged through grates 

 
Assume the following variables are known and constant: b, m, So, n, L, LG and q*.   The unknown 

variables are: (1) the depth on the left side Yl at the position between the lateral inflow and lateral outflow 
sections and Yl>Ycl based on Ql = Xsq*;  (2) the depth on the right side Yr between the lateral inflow and 
lateral outflow sections and Yr>Ycr based on Qr = (L-Xs)q*;  (3)  the depth Ys in the gutter lateral inflow 
length where the flow rate is zero, i.e., the flow separates from moving left to right;  (4)  the position Xs 
where the flow in the gutter separates.  In addition to these four variables one might add: (5) the depth Ym 
within the grate outflow length where the flow separates in moving from upstream to downstream, i.e., 
where Q = 0 within the grate length; and (6), the position Xm where this Q = 0 occurs. These latter two 
variables shown on Fig. 6 can be determined by the solution of the spatially varied flow through out the 
entire grate length. In the description that follows consider only the first four variables as unknown by 
solving the ODE over the entire length of the grate, thus incorporating Ym and Xm as part of this solution. 

To solve these four unknown variables requires the simultaneous solution of the following four 
equations:  

F1 = Ys - Ysode(Yl) = 0     with ODE solved from x=0 to x=Xs                           (19) 
 

F2 = Ys - Ysode(Yr) = 0     with ODE solved from x=L to x=Xs                           (20) 
 

F3 = Yl - Ylode(Yr) = 0     with ODE solved from x'=0 to x'=LG                         (21) 
 
                                                  LG     

F4 = Lq* - Ιqo
*dx’ = 0      Continuity Eq.                                                            (22) 

                                                   0 

Note that the first two equations are identical to Eq. 6 and 7 used to solve the gutter flow in which critical 
depths at both ends were assumed, but the starting depths Yl and Yr are now above the critical depths.   

It has already been noted that because the lateral inflow term 2Qq*/(gA2) adds to the negativeness of 
the numerator of the ODE on the right side of Xs, and to the positiveness of the numerator of the ODE on 
the left side of Xs, that the depth Ys will be larger than  both Yl  and Yr.  Where Q is positive within the 
grate length, the term Qqo

*/(gA2) in Eq. 2 adds to the numerator’s positiveness thus making Ym larger than 
Yr, generally.  Likewise where Q is negative from position LG-Xm in the grate to position LG, this term 
tends to make Ym larger than Yl.  With a slope So greater than zero one would expect Xm to be larger than 
LG/2, and therefore the length LG-Xm will generally be quite small in consideration that the length of the 
grate will generally be much smaller than the length of the gutter.  Therefore, generally there will not be as 
much difference between Yl and Yr (and Ym) as there will be if the depths are critical at both ends of the 
gutter. The position Xs in the gutter that separates positive from negative Q's would be expected to be 
smaller than L/2, even for relatively small slopes So.  In fact the effects of the increased depth, since larger 
depths are required for the accumulated inflow to exit through the grates, can easily result in no length of 
negative Q through the gutter, also resulting in no length of negative Q through the grate. 

Table 5 contains such solutions for a gutter-grate combination using the example gutter and grate 
dealt with previously.  For the first nine solutions in this table the bottom slope has been specified as 
So=0.0 (flat) so the position where the inflow and outflow separates from moving upstream and 
downstream are in the middle of the gutter and grate respectively, i.e. a 140 m and 0.25 m.  Notice how 
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rapidly the depths decrease with decreasing lateral inflows until when q*=0.000216 m2/s, the Froude 
Number at the two ends of the gutter approach unity. For smaller values of q*, critical depths govern at the 
ends of the gutter so it can be solved separately as described earlier.  For the larger values of q* the grate 
cannot discharge the flow until the depth becomes sufficiently large, and for the solutions using the larger 
q*’s there is essentially no change in depth over the entire gutter-grate system.  For these cases the 
problem might be solved by finding this needed depth so the inflow that has been accumulated over the 
gutter length is discharged through the grate. For these larger q* (q*>. 0004 in Table 5)this near constant 
depth can be computed from Eq. (13).  The total accumulated inflow over the gutter is Lq* and this 
amount must go into the grate, or Lq*= Cd(2g).5{fbLG}Y.5, or upon substituting in the values used for this 
gutter-grate system Y= (1872.98q*)2, thus when q*=.0004 m2/s, Y=0.561 m.   Notice further from this 
example how rapidly the position of separation in the gutter moves to its upstream end as the bottom slope 
So of the system increases, with q*=.0003 m2/s (the last three solutions in Table 5.)  In this example a 
bottom slope of So=.00015 results in no reverse flow in the gutter, since Xs is zero or less. 

 
Table 5.  Solution to a combined Gutter-grate under subcritical flow conditions. (gutter:L=280 m,m=4, 

n=.013; grate:LG=0.5 m,n=.013,b=0.3 m,f=0.5,Cd=0.45) 
 

   So    q* m2/s)   Yl   (m)    Yr (m)    Ys (m)   Xs (m)   Frl   Frr   Xm (m)  Ym  (m) 
  0.0 0.001  3.508  3.508  3.508 140.0 0.001  0.001 0.250 3.508 
  0.0 0.0009  2.842  2.842  2.842 140.0  0.002  0.002 0.250 2.842 
  0.0 0.0008  1.068  1.068  1.068 140.0  0.021  0.022 0.250 1.068 
  0.0 0.0005  0.877  0.877  0.877 140.0   0.022 0.022 0.250 0.877 
  0.0 0.0004  0.561  0.561  0.562 140.0  0.054  0.054 0.250 0.561 
  0.0 0.0003  0.314  0.314  0.323 140.0  0.171  0.171 0.250 0.316 
  0.0 0.00025  0.214  0.214  0.245 140.0  0.372  0.372 0.250 0.222 
  0.0 0.00022  0.154  0.154  0.220 140.0  0.744  0.744 0.250 0.175 
  0.0 0.000216  0.142  0.141  0.218 140.0  0.903  0.907 0.250 0.170 
0.00005 0.0003  0.316  0.312  0.323  87.0  0.104  0.240 0.356 0.317 
0.0001 0.0003  0.318  0.311  0.322  39.6  0.047  0.303 0.431 0.318 
0.00015 0.0003  0.319  0.309  0.319  -0.7  0.000  0.358 0.500 0.319 
 

4. NO NEGATIVE FLOW RATES  
When the combination of variables for a gutter-grate problem result in no reverse flow at the beginning of 
the gutter, the mathematical problem simplifies because the position Xs that separates positive from 
negative flows is known; Xs = 0 and Ys does not exist.  However, unless other variables are just the right 
magnitude there will be flow in the channel at the end of the grate, i.e. the grate will not discharge all of 
the flow that accumulates over the inflow length of gutter.  While there are other ways of posing the 
problem, assume that the unknowns are: (1) the depth Yl on the left side of the gutter, which is also let to 
be the depth at the end of the grate, (2) the depth Yr on the right side of the gutter, which is also the depth 
at the beginning of the grate, and (3) the flow rate Qout that leaves the end of the grate to add to the flow in 
the next series of gutter grates, as shown in Fig. 7.  

 
Fig. 7.  Wall after gutter to prevent downstream flow 
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The three equations needed to solve for these three unknowns are:  
 

F1 = Yr - Yrode(Yl) = 0   with the ODE solved over x = 0 to x = L                          (23) 
 

F2 = Yl - Ylode(Yr) = 0   with the ODE solved over x'= 0 to x'= LG                         (24) 
 
                                                                                         LG 

F3 =  q*L - Ιqo*dx' - Qout = 0                                                  (25) 
                                                                                           0  
a) Last grate with vertical wall at end 

 
At the end of a gutter-grate system assume that the channel ends, as shown in Fig. 8, so that no flow 

passes beyond the last grate.  If the lateral inflow is larger than can be discharged by the preceding grates 
then the depth will increase over this last grate so that all flow rates coming from previous gutter-grates 
will be discharged through this last grate. For this last gutter-grate the same three equations, 24-26 are 
available with F2 modified so that rather than forcing the depth from the solution of the ODE to be the 
same as the depth at the beginning of the gutter Yl it equals the depth at the end of the grate Ye, or Eq. 25 
becomes: 

 
F2 = Ye - Yeode(Yr) = 0   with the ODE solved over x'= 0 to x'= LG 

 
Now the outflow Qout = 0 is known, and it will be replaced by the depth Ye as an unknown.  The three 
unknowns for this end grate are: Yl ,  Yr, and Ye. 
 

 
Fig. 8.  Gutter-grate system with a vertical wall 

 
5. SUBCRITICAL FLOW THROUGH n GUTTER-GRATES 

 
As a final application consider the problem in which the lateral inflow into gutter 1 does not all discharge 
into grate 1 with its outflow Qout1 flowing into gutter 2, etc.  This process of having the excess flow passed 
into the next gutter-grate continues to the last, which will be designated the nth gutter-grate, where the 
flow is terminated with a wall so that Qoutn = 0, as shown in Fig. 9. 

Fig. 9.  A series of n gutter-grates containing subcritical flows 
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To describe the variables involved in these n gutter-grates an extra subscript will be added to denote 
the number of the gutter-grate as shown in Fig. 9.  Thus the depth on the left side of Gutter 1 will be 
identified by Yl1, and the depth on its right side, which is also the depth at the beginning of Grate 1, is Yr1. 
The depth at the end of Grate 1 will be the same depth as the beginning of gutter 2 and is Yl2, etc.  The 
depth at the end of the n (and final grate) is Ye.  A grate does not exist upstream from Gutter 1, and 
therefore assume no reverse flow occurs in this gutter, i.e. the flow at its beginning is zero (or a vertical 
wall exists at the beginning.) 

The unknown variables for this system of n gutter-grates are: Yl1, Yr1, Qout1, Yl2, Yr2, Qout2,  .   .  Yli, 
Yri, Qouti, .  .   Yln, Yrn, Ye.  In other words the number of unknowns equals 3n.  Therefore 3n simultaneous 
equations are needed, three from each gutter-grate.  For each of these gutter-grates there are two ODE's 
available and one continuity equation, as has been used in the previous applications.  This system of 3n 
equations consists of: 
 

F1 = Yr1 - Yr1ode(Yl1) = 0  with ODE solved over x=0 to x=L1 
 

F2 = Yl2 - Yl2ode(Yr1) = 0  with ODE solved over x'=0 to x'=LG1 
 

F3 = ql*Ll - Ιqo* dx - Qout1 = 0 
 

F4 = Yr2 - Yr2ode(Yl2) = 0  with ODE solved over x=0 to x=L2 
 

F5 = Yl3 - Yl3ode(Yr2) = 0  with ODE solved over x'=0 to x'=LG2 
 

F6 = q2*L2 - Ιqo* dx - Qout2 + Qout1  = 0                         (26) 
 

F3i-2 = Yri - Yriode(Yli) = 0  with ODE solved over x=0 to x=Li 
 

F3i-1 = Yli+1 - Yliode(Yr1) = 0  with ODE solved over x'=0 to x'=LGi 
 

F3i = qi*Li - Ιqo
*dx - Qouti + Qouti-1 = 0 

 

F3n-2 = Yln - Yrnode(Yln) = 0  with ODE solved over x=0 to x=Ln 
 

F3n-1 = Ye - Ylnode(Yrn) = 0  with ODE solved over x'=0 to x'=LGn 
 

F3n = qn*Li - Ιqo* dx = 0 
 

The Jacobian matrix for use in the Newton Method from these equations forms a special banded matrix 
with one non zero element in the 1st column, i.e. D1,1 =,/ 0, with three non zero elements in the 2nd 
column, i.e. D1,2 = 1, D2,2 =,/ 0  and D3,2 =,/ 0.  In the 3rd, 6th, or overall 3i, columns that are associated 
with the variables Qouti, there are four non zero elements. In these columns the diagonal elements will 
equal D3i,3i = -1.0, and non zero elements will be in the next four rows below this diagonal position 
coming from Qouti-1 in the three equations for gutter-grate i.  In general columns 3i-2 (those associated with 
Yl) will have D3i-4,3i-2 = 1, and D3i-2,3i-2 =,/ 0 (i.e. two elements in these columns will be non zero).  Usually 
columns 3i-1 (those associated with Yr) will have D3i-2,3i-1 =1, and D3i-1,3i-1 (the diagonal element) and D3i,3i-

1 (the element just below the diagonal)  =,/ 0.  Since for the last channel Ye replaces Qoutn as the unknown 
variable, the last or (3n)th column of the Jacobian matrix will contain only one non zero element in the 
second from the last row, i.e. D3n-1,3n = 1. 

As an example problem, a series of six gutter-grates exists.  Solutions to the nine cases given in Table 
6 will be obtained.  For all of these solutions the side slope of the triangular gutter is m = 4, the Mannings 
n= .013, and a bottom slope So=0.0009, for both gutter and grate. The grates discharge though a bottom 
width b = 0.3 m, have one-half this bottom open, or f = .5, and have a discharge coefficient Cd=0.45.  Also 
for all cases the lateral inflow has been specified as q*=0.0012 m2/s.   What vary from case to case are the 
length of the gutter and the length of the grate, as given in Table 6. 
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The solutions to these 9 cases are summarized in Table 7. In addition to these variables, the solution 
provides the profiles across each of the gutters and the grates, and the varying lateral outflow from each 
such profile across each grate. Furthermore, the flow rate at each position across the gutters and grates are 
given. It is not practical to give these profiles, etc. Note the following from these solutions:  (1) All Froude 
Numbers are less than unity so the flow throughout the six gutter-grates is subcritical for all nine cases, (2) 
The depth increase from the beginning to the end of the series of gutter-grates. (This is due to the fact that 
the channel slopes downward and the grates discharge less flow than has accumulated in the upstream 
gutters, i.e. the Qout’s are positive.) (3) As the lengths of grates have been increased in increase cases 
numbers, the discharge past upstream grates, Qout is smaller, as expected, and this results in smaller depths, 
(4) The largest Froude Number of each case occurs at the right side of the first gutter where the depth is 
smallest.  (As the length of the downstream grates is increased, or the lateral inflow is increased this 
Froude Number increases, and when its value becomes unity, or close thereto, the flow downstream from 
it will change from sub- to supercritical.), (5) For Case 9 the Froude Number at the right side of Gutter 1 is 
very close to unity, and this represents a limiting combination of grate lengths for the specified lateral 
inflow q* =0.0012 m2/s. If the length of the grate is increased from 1.35 to 1.4 m critical depths occur. 
Either smaller values of q*, or longer grate lengths than used in Case 9 will result in some supercritical 
depth and hydraulic jumps. 
 

Table 6.  Cases to be solved for a series of 6 Gutter-Grates (L=length of gutter, G=length of grate) 
 
 Case 
      1      2      3     4      5       6     7     8     9 
N L G L G L G L G L G L G L G L G L  G 
1   280 0.8  280  0.8 280  1.0 280 1.0 280  1.2  280 1.3 280 1.3 280  1.3 280 1.35 
2   250 0.8  250  0.8 280  1.0 280 1.0 280  1.2  280 1.3 280 1.3 280  1.4 280 1.4 
3   200 0.9  200  0.9 280  1.0 280 1.2 280  1.2  280 1.3 280 1.4 280  1.4 280 1.4 
4   180 1.0  200  1.0 280  1.0 280 1.2 280  1.2  280 1.3 280 1.4 280  1.4 280 1.4 
5   160 1.0  200  1.0 280  1.0 280 1.2 280  1.2  280 1.3 280 1.4 280  1.4 280 1.4 
6   140 1.0  200  1.0 280  1.0 280 1.2 280  1.2  280 1.3 280 1.4 280  1.4 280 1.4 

 
Table 7.  Solutions of the principal variables for the 9 cases of 6 Gutter-Grates 

(the 6th entry under Qout is the depth Ye at end) 
 

Case 1 Case 2 Case 3 Case 4 Case 5 No 
Yl Yr Qout Frl Frr Yl Yr Qout Frl Frr Yl Yr Qout Frl Frr Yl Yr Qout Frl Frr Yl Yr Qout Frl Frr 

1 0.395 0.565 0.175 0.000 0.317 0.482 0.702 0.157 0.000 0.184 0.7510.9970.0700.0000.076 0.4360.6370.1230.000 0.234 0.386 0.542 .099 0.0000.350
2 0.576 0.749 0.291 0.157 0.221 0.707 0.915 0.254 0.084 0.129 0.9991.2480.1090.0160.053 0.6460.8730.2100.083 0.146 0.558 0.770 .155 0.0960.189
3 0.756 0.916 0.302 0.132 0.149 0.918 1.091 0.272 0.071 0.090 1.2501.5000.1200.0140.036 0.8771.1190.2090.066 0.093 0.777 1.016 .169 0.0660.107
4 0.920 1.075 0.242 0.084 0.098 1.093 1.252 0.214 0.049 0.058 1.5021.7530.1040.0100.025 1.1221.3700.1710.035 0.056 1.019 1.266 .146 0.0360.063
5 1.078 1.219 0.140 0.045 0.060 1.254 1.397 0.122 0.027 0.037 1.7542.0060.0630.0060.017 1.3721.6230.1010.018 0.034 1.269 1.519 .089 0.0180.038
6 1.221 1.346 1.347 0.019 0.033 1.398 1.523 1.524 0.012 0.021 2.0072.2582.2590.0030.012 1.6241.8761.8770.00700.020 1.520 1.772 1.7730.0070.023

 

Table 7. (Continued) 
 

Case 6 Case 7 Case 8 Case 9 No 
Yl Yr Qout Grl Frr Yl Yr Qout Frl Frr Yl Yr Qout Frl Frr Yl Yr Qout Frl Frr 

1 0.361 0.427 0.103 0.0000.638 0.3590.394 0.109 0.0000.779 0.359 0.389 0.1100.0000.802 0.358 0.3710.1030.000 0.906
2 0.468 0.606 0.168 0.1560.347 0.4500.516 0.193 0.1810.526 0.448 0.495 0.1780.1840.584 0.443 0.4890.1720.177 0.593
3 0.623 0.837 0.188 0.1240.178 0.5470.711 0.213 0.1970.280 0.533 0.692 0.2030.1940.291 0.527 0.6850.1990.193 0.296
4 0.844 1.085 0.163 0.0650.096 0.7240.952 0.185 0.1080.140 0.705 0.932 0.1790.1090.145 0.699 0.9240.1760.110 0.147
5 1.088 1.337 0.100 0.0300.055 0.9581.203 0.113 0.0470.074 0.938 1.183 0.1100.0470.076 0.930 1.1750.1090.048 0.077
6 1.339 1.590 1.591 0.0110.031 1.2061.456 1.458 0.0160.040 1.185 1.435 1.4370.0160.041 1.178 1.4281.4300.016 0.041

 

If the length of Grate 1 is increased from 1.35 m to 1.4 m, then the flow becomes critical at its 
beginning, and the flow over its first portion will be supercritical, with a hydraulic jump followed by 
subcritical flow over its remaining length. For this case, in which a hydraulic jump occurs within the 
Grate's length, the first three equations (or the 3 equations for the grate in which the jump occurs) in Eq. 
(27) are replaced by the following four equations. 
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F1=Y1j-Y1jode(Yc) = 0 with ODE solved from x=0 to Xj 
 

F2=Yl2-Yl2ode(Y2j) = 0 with ODE solved from x=Xj to LG1  
              Xj              LG1 
F3=Q1- Ιqo*dx - Ιqo*dx - Qout2 = 0   (The Continuity Equation) 

0              Xj    
F4=(m/6)[Y1j

3-Y2j
3] + 2Qj

2/(gm)[1/Y1j
2 - 1/Y2j

2] = 0  (The Momentum Equation) 
 

in which Y1j is the depth upstream of the hydraulic jump, Y2j is the depth downstream of the hydraulic 
jump, Xj is the position of the hydraulic jump, Q1 is the flow rate at the end of gutter 1 and equals L1(q1*), 
Yc is the critical depth associated with Q1 and for the triangular gutter equals [8Q1

2/(gm2)]1/5, Qj is the flow 
rate at the hydraulic jump and is obtained by subtracting the integrated outflow from the beginning of the 
grate to the position of the hydraulic jump from Q1.  The first two variables solved previously, namely Yl1 
and Yr1, are replaced by the three unknowns: Y1j , Y2j  and Xj. 

Solutions to three additional cases are given below in which the length of Grate 1 has been specified 
as 1.4 m, 1.6 m and 1.7 m, respectively in Table 8. The length of all gutters is 280 m, with an inflow of 
q*=0.0012 m2/s, and the length of Grates 2 through 6 are 1.4 m as in Case 9.  For these solutions the depth 
at the beginning of Gutter 1 is obtained by solving Eq. (2) starting with a depth just slightly above Yc and 
proceeding upstream to its beginning. This solution does not depend upon any of the variables 
downstream, and therefore does not need to be part of the simultaneous solution. Notice from these 
solutions that as the length of Grate 1 is increased, the position of the jump also increases. Eventually, 
with longer grate lengths the hydraulic jump will move into the next gutter.  This same effect will occur by 
specifying longer lengths to other downstream grates, or smaller lateral inflows to gutters. By specifying 
different bottom slopes or side slopes, etc. for individual gutters and/or grates the hydraulic jump might 
take place in a different grate, or gutter. The position where critical depth occurs will separate the problem 
into two problems; the one upstream from this position, and the one downstream from where critical flow 
occurs. 

Table 8.  Solutions of the principal variables for 3 cases of Gutter-Grates in 
which a hydraulic jump occurs in Grate 1 

     

 Case 11 (L1=1.6 m) Case 12 (L1=1.7 m) 
 

Case 10 (L1=1.4 m) 
Y1=.3107 m,Y2=.3860 m,Xj=.1441 m Y1j=.2642 m,Y2j=.3881 m,Xj=.5190 m Y1j=.2491 m,Y2j=.3843 m,Xj=.671 m 

No Y1 Yr Qout Frl Frr Yl Yr Qout Frl Frr Yl Yr Qout Frl Frr 

1 0.359 0.367 0.097 0.000 0.916 0.359 0.367 0.077 0.000 0.916 0.359 0.367 0.066 0.000 0.916
2 0.440 0.484 0.168 0.172 0.600 0.424 0.466 0.152 0.147 0.629 0.417 0.457 0.143 0.134 0.643
3 0.523 0.679 0.196 0.192 0.300 0.508 0.658 0.184 0.186 0.314 0.501 0.647 0.178 0.183 0.321
4 0.693 0.919 0.174 0.110 0.148 0.673 0.896 0.167 0.112 0.154 0.663 0.885 0.163 0.112 0.157
5 0.924 1.169 0.108 0.048 0.078 0.902 1.146 0.104 0.049 0.081 0.891 1.135 0.103 0.049 0.082
6 1.172 1.422 1.424 0.016 0.042 1.149 1.399 1.401 0.017 0.043 1.138 1.388 1.390 0.017 0.044
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