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Abstract– In this study, the vibration and stability of orthotropic plates, moving on elastic 
foundation or elastic supports and subjected to in-plane forces, are investigated by classical plate 
theory. Firstly, a solution based on the exact finite strip method is developed for multi-span 
moving plates on an elastic foundation. Then a formulation which is an extension of the 
approximate finite strip method is presented for axially moving plates on discrete or distributed 
elastic supports. By some examples, the reliability of both proposed methods is investigated for the 
stability and the vibration analysis.           
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1. INTRODUCTION 
 

From the point of view of mechanics, the out of plane vibration or instability is a typical phenomenon of 
axially moving materials, encompassing systems such as moving strings and belts, high speed magnetic 
tapes, paper and plastic sheets in process, band saw blades, conveyor belts, etc. Recent developments in 
research into axially moving materials are reviewed by Wickert & Mote [1] and Pellicano & Vestroni [2]. 

In axially traveling systems, the transverse vibration of the moving material often becomes a serious 
problem in achieving good quality. The axial speed of a structure may significantly affect dynamic 
characteristics of the system even at low velocity, giving rise to variations of natural frequencies and 
complex modes. In a certain critical speed, first, natural frequency vanishes and the axially moving 
structure may experience severe vibrations and bifurcation instability. Thus, accurate prediction of 
stability and vibration characteristics of such structures is a requisite for the analysis and optimal design of 
a broad class of technological devices.  

Avoiding complication, a lot of earlier works for modeling two-dimensional axially moving continua 
used the one-dimensional string or beam theory instead of the plate theory. Although this simplification 
leads to reasonable results for a narrow strip, two-dimensional analysis is required for the modeling of 
many problems such as wide width plates, various forces across the width, no free lateral boundaries, 
intermediate supports, catching higher modes of vibration or buckling etc.        

Following the early work of Ulsoy and Mote [3] for two-dimensional plate modeling of a wide band 
saw blade, some research efforts have been directed toward studying the dynamic behavior of axially 
moving plates. In 1995, Lengoc and Mccalion [4] considered cutting conditions on the dynamic response 
of bandsaw blades. Lin [5] investigated the stability and the vibration characteristics of a single-span 
moving isotropic plate. A mixed finite element formulation was developed by Wang [6] for a traveling 
orthotropic plate. Lou and Hutton [7] presented the formulation of a moving triangular isotropic plate 
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element and compared the results with the Rayleigh-Ritz method. A spectral element method was 
formulated by Kim et al. [8], for thin plates moving with constant speed under a uniform axial tension and 
more recently, equilibrium, membrane force and buckling stability of full simply supported traveling 
plates were obtained analytically by Luo and Hamidzade [9]. 

The objective of this paper is to analyze stability and free vibration of orthotropic plates moving on 
distributed or discrete elastic supports by the classical plate theory, which can be used to represent two-
dimensional moving media supported by air bearings, recording heads, tensioner arms and the like. Also, 
by considering elastic supports with unlimited stiffness, rigid intermediate rollers and local supports can 
be modeled. Previous works on elastically supported moving materials are limited to one-dimensional 
string models [10-13].  

In this study, two types of the finite strip method (FSM) are developed for elastically supported, 
axially moving plates. For the prediction of natural frequencies and buckling stresses of flat-plate 
structures, what may be termed an exact finite strip method (E-FSM) may be used in some circumstances, 
wherein the strip properties are based on the direct solution of the governing deferential equations of 
classical plate theory. It happens that it was also in 1968 that pioneering works in this area were published 
by Wittrick [14, 15] and by Smith [16]. As well as the E-FSM, approximate energy-based or work-based 
finite strip method (A-FSM), based on the use of an assumed displacement field, has been considerably 
developed and has been proven effective in a large number of engineering applications particularly in the 
analysis of plate and plate assemblies [17-22]. The reader is referred to the early text of Cheung [23] and 
recent text of Cheung and Tham [24] for general descriptions. 

By the E-FSM developed in this study, an exact stiffness matrix for dynamic stability and vibration of 
a multi-span orthotropic plate guided by an elastic foundation is derived. The plate is assumed to be 
subjected to a state of plane stress which is laterally invariant, and it is further assumed that the mode of 
vibration varies sinusoidally in the lateral direction. The exact solutions obtained for such plates are 
indeed valuable, as they serve as important benchmark solutions for checking the convergence, validity 
and accuracy of numerical methods for the analysis of axially moving plates. 

Based on Hamilton's principal, the approximate finite strip (A-FSM) is extended for orthotropic plates 
moving on discrete or distributed elastic supports. The displacement functions of each finite strip are 
assumed to be Hermitian polynomials in the direction of strip width, while in the longitudinal direction 
sinusoidal trigonometric functions or bubble functions corresponding to the pre-set end boundaries of the 
plate have been used. 
 

2. EQUATION OF MOTION 
 
An orthotropic plate moving on an elastic foundation and some local elastic supports is shown in Fig. 1. 
The plate has a constant velocity v along x-direction which is mentioned as the axial direction. By using 
Hamilton’s principle, the equation of motion for transverse displacement w in the fixed coordinate (x,y,z) 
can be derived. Assuming that the boundaries are fixed both at the inlet and the outlet, the fluxes in and 
out are equal and the net energy flux through the boundaries is zero. Therefore Hamilton’s principle takes 
the familiar form 

0tTUf

i

t

t
=−δ∫ d)(                                                           (1) 

 
where U is the total potential energy of the particles which fill domain A and T is the kinetic energy of the 
structure mass. U includes the strain energy due to bending Ub, the effect of in-plane forces on the 
transverse deflection Ug, and the potential energy of elastic foundation and elastic supports Us. 
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Fig. 1. An elastically supported, axially moving orthotropic plate 

 
sgb UUUU ++=                                                                 (2) 

 
The strain energy for bending of the orthotropic thin plate with median surface A is 
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where Dij are stiffness coefficients of the plate. The potential energy due to in-plane forces is 
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in which Nx and Ny are in-plane forces per unit length in the x and y-directions respectively (positive when 
tensile) and Nxy is shear force per unit length. The potential energy of the elastic foundation and local 
discrete or distributed elastic supports is  
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in which fκ  is elastic foundation stiffness, isκ  are stiffness functions for the local elastic supports and 
nes is the number of these supports in the area A. The local supports may be discrete line or point supports 
or a uniformly distributed support in a rectangle area. isκ  is defined for a frictionless elastic line support 
parallel to the y-direction at x =xp, as:  

)( plis xx −= δκκ                                                            (6) 
 
For an elastic point support located at (xp,yp), isκ is expressed as  

)()( pppis yyxx −−= δδκκ                                                  (7)  
and for a uniformly distributed elastic support with a rectangle area in xp<x<xq, yp<y<yq, isκ  is defined by  

)]−−×)]−−κ=κ pqpqdis yyyy[xxxx[ )((H)((H                          (8) 
 
where δ(x) and H(x) are Dirac delta function and Heaviside unit function, respectively. lκ , pκ and dκ  are 
the spring stiffness for line, point and uniformly distributed supports, respectively. 

The kinetic energy T for the domain A can be written as:  
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where ρ is mass per volume of the plate. By making use of Hamilton’s principle in equation (1) and 
replacing the expressions of potential and kinetic energies from Eqs. (2-5) and (9), the differential 
equation of motion for the elastically supported moving orthotropic plate is derived as: 
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where 
66123 2DDD +=  

 
3. THE EXACT FINITE STRIP METHOD (E-FSM) 

 
Figure 2a shows an orthotropic plate moving on an elastic foundation with intermediate rigid rollers. The 
plate is assumed to be subjected to a basic state of plane stress which is invariant in the direction of plate 
width and simply supported along the transport direction (axial direction). It is further assumed that the 
traveling speed v is constant throughout and the rollers are frictionless, bilateral and perpendicular to the 
transport direction. 

In the free vibration analysis, it can be postulated that, whatever type of vibration mode occurs, it is 
sinusoidal in the y-direction. This means that along any line in the plate structure parallel to y-axis, 
transverse displacement w vary sinusoidally, so w can be written in the form 
 

t
nnn eyikyikxWtyxw λ)]exp())[exp((),,( −−=                                     (11) 

 
where kn =nπ/b is the wave number of the nth mode in y-direction (n =1,2,…), b is the plate width, Wn(x) 
is the shape function along the axial direction obtained by solving the equation of motion for nth mode, 
and values of λ extracted from an eigenvalue problem are, in general, complex numbers as: 
 

λ =σ + iω   
where σ and ω are the real and imaginary parts of eigenvalues λ, respectively. While all eigenvalues λ are 
purely imaginary (λ =iω), the traveling plate is stable and the values of ω are the natural frequencies of the 
plate. By increasing transport speed, the natural frequencies of the plate decrease and at a certain speed, 
the first natural frequency of vibration vanishes (ω =0) and the plate becomes unstable. This certain speed 
may be mentioned as critical speed vcr. For axial speeds higher than the critical speed, the plate can 
experience divergence or flutter instability that, in unstable conditions, the real part of at least one of the 
eigenvalues λ is non-zero (σ ≠ 0). 

The critical speed can also be obtained by a static stability analysis based on the fact that the axially 
moving plate becomes unstable if multiple equilibrium positions exist at any problem specification. The 
critical speed is the lowest speed at which multiple equilibrium positions exist [5]. From Eq. (10), the 
equilibrium position in static stability analysis satisfies the following equation 
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Also, the displacement function for buckling modes in the exact method can be written as: 
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)]exp())[exp((),( yikyikxWyxw nnn −−=                                          (13) 
 

In the present method, the plate structure is divided into a small number of components in which each 
component fills the domain between two rollers or a roller and an end boundary. For example, the 
structure shown in Fig. 2a can be divided into three components. Fig. 2b shows one of these components. 
The assumption of sinusoidal modes implies that the displacements (w1, θ1, w2, and θ2) and the additional 
forces (Q1, M1, Q2, and M2), that appear on the edge of every plate component due to vibration or 
buckling, vary sinusoidally in the y-direction (Fig. 2b). The exact stiffness matrix is extracted for each 
component and by assembling stiffness matrices of all components, overall stiffness matrix of the 
structure will be obtained. 
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   (a)                                                                                          (b) 
Fig. 2. a) A multi-span orthotropic plate moving over an elastic foundation and subjected to in-plain 

 loads. b) Displacements and forces on nodal lines due to buckling or  
vibration for one of the plate components. 

 
In the free vibration study, the determination of the exact stiffness matrix for the component shown in 

Fig. 2b requires solving the differential equation of motion presented in Eq. (10) as satisfy the boundary 
conditions. Substituting w from Eq. (11) into equation of motion (10) in the absence of shear in-plane 
force (Nxy=0) and local supports ( 0is =κ ), gives an ordinary differential equation with complex terms for 
nth mode as 
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When Ny is a function of x, because of the variable coefficient of Wn in the equation, a solution in the 
general case can only be obtained by a numerical integration method. If, however, Ny is constant, the 
differential equation has constant coefficients and it becomes possible to obtain an exact general solution, 
leading to explicit expressions for the elements of the stiffness matrix. For uniform Ny, the solution of this 
forth order differential equation can be written in the general form of 
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where Amn are coefficients derived from boundary conditions at x =0 and x =l and rmn, the wave 

numbers in x-direction can be obtained by substituting Eq. (15) into Eq. (14), which yields a polynomial 
equation for nth mode as   
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Equation (16) has four roots (m =1 to 4) corresponding to each mode (n =1, 2, 3…), which, in general, are 
complex.  

In the stability study, by using Eqs. (12), (13) and (15), Eq. (16) is eliminated as the following form 
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For a component of the moving plate shown in Fig. 2b, the displacement function of the element 

assumed by Eqs. (11) or (13) satisfies the boundary conditions at y =0 and y =b as at these two sides the 
transverse displacement w and resultant bending moment per unit length of x-direction My vanish. By 
satisfying the boundary conditions on two other sides, the stiffness matrix of the element can be obtained. 
These edge conditions, as shown in Fig. 2b, are defined by  
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where, the resultant shear force and bending moment per unit length of y-direction (Qx and Mx 
respectively) are related to w by the following equations. 
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In the equation of shearing force Qx, allowance has been made for the Kirchhoff edge effect and for the 
components of the in-plane loads arising from distortion of the plate. The effect of the axial velocity on 
the edge shear has also been considered [4]. 

Edge displacements and edge forces vectors can be defined by 
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TQMQMp },,,{}{ 2211=                                                         (24) 
 

Using expressions (11), (15) and (19) through (24) edge displacements and edge forces vectors in free 
vibration may be written as: 
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Combining Eqs. (27) and (28) by elimination {An} yields 

 
}]{[}{ nnn dsp =                                                           (29) 

where 
1]][[][ −= nnn XYs                                                          (30) 

 
Here, [sn] is the exact stiffness matrix of a component of the plate that in general contains complex 

elements associated with the transport speed v; however, it is Hermitian in form. In the free vibration 
analysis, the elements of the stiffness matrix are transcendental functions of the natural frequencies, axial 
velocity, in-plane forces, and of the wave numbers in x and y-directions. By assembling the stiffness 
matrix of all elements of the moving plate and eliminating constrained degrees of freedom, the overall 
exact stiffness matrix of the multi-span orthotropic plate moving over an elastic foundation [Sn] is 
obtained. By the present method, precise results can be obtained by only a few components, leading to a 
small order of overall stiffness matrix. The natural frequencies can be determined by vanishing the 
determinant of [Sn], i.e. 

det[Sn(λ)] =0                                                                   (31)  
Equations (27) through (30) can be used for static stability analysis too, by replacing λ with zero. 

Here, an eigenvalue problem is also produced, but its eigenvalue is the axial speed. Thus the critical speed 
vcr is obtained by the following expression.  

det[Sn(vcr)] =0                                                                  (32) 
 
Although the E-FSM method leads to the precise results for vibration and dynamic stability of axially 
moving orthotropic plates on an elastic foundation by only a few components, the method has some 
restrictions concerning boundary conditions, various plane stresses and elastic supports. Moreover, in the 
exact method, the coefficients of the overall stiffness matrix are not linear functions of the eigenvalues, 
and standard eigenvalue routines can not be used to extract natural frequencies or critical speed. In the 
next section, an energy-based finite strip method is developed for an orthotropic plate moving on an 
elastic foundation and local elastic supports to remove restrictions of the exact method.  
 

4. THE APPROXIMATE FINITE STRIP METHOD (A-FSM) 
 
Consider an axially moving orthotropic plate with arbitrary boundary conditions and in-plane forces which 
is supported by distributed or discrete elastic springs (Fig. 3a). The plate has the length L, width b, and 
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thickness h in the x, y and z-directions, respectively. For each finite strip of the plate, shown in Fig. 3b, the 
transverse displacement function can be expressed in the natural coordinates (ξ,η) as 
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where Sn(ξ) is the nth term of the basic function series in the axial direction, f(η) is the interpolation 
function in the lateral direction and dn(t) is the vector of degrees of freedom corresponding to the nth 
harmonic which is given by  
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Fig. 3. a) An elastically supported, axially moving orthotropic plate which is divided to some finite strips. 
b) nodal line displacements for one  of the finite strips of the plate 

 
A Hermitian polynomial function has been chosen for the interpolation vector f(η) for a strip with the 
width a as: 
  

)23(),(),231(),21()( 3232322 ηηηηηηηηηη −+−+−+−= aaf                  (35) 
 
where η =y/a. Also, trigonometric or bubble functions are considered as basic functions Sn(ξ) 
corresponding to particular end conditions. Sn(ξ) corresponding to different types of end conditions at x = 
0 and x = L are given by 
Trigonometric functions:  
  
                         πξξ nSn sin)( =                                              for both simply supported  
                         πξπξξ sinsin)( ×= nSn                                for both clamped  
 
Bubble functions: 
 

                         nn
nnS )1(

2
1)( 2 ξξξ −=                                   for both simply supported 

 
in which   ξ =x/L and n =1,2,… . Other basic functions can certainly be used here, such as the mode 
shapes of free vibration of a beam [18], but the basic functions introduced above have a faster 
convergence rate.                                                                                                           
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The energy method based on Hamilton's principle of Eq. (1) is adopted to develop the A-FSM for the 
axially moving orthotropic plate on elastic foundation and elastic supports. By using Eq. (3) for the 
bending strain energy of the plate Ub and replacing the displacement field of a strip from Eq. (33), it can 
be written as: 
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where [kb] is the bending stiffness matrix of the strip and may be obtained by 
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in which st denotes the area of the strip and [Bn] and [D] are defined as 
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Also, from Eqs. (4) and (33), the potential energy due to in-plane forces Ug can be obtained by 
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in which ][ s

gk is the stability matrix for a stationary plate, as: 
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where a prime denotes differentiation with respect to ξ.  

The potential energy of the spring systems Us for each strip which is guided by an elastic foundation 
and nes elastic supports is obtained by Eqs. (5) and (33) as: 
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where [ks] denotes the spring stiffness matrix including the stiffness matrix of the elastic foundation 

][ f
sk and the stiffness matrices of the local elastic supports ][ isk  as: 
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][][][                                                      (43) 

in which 

ASSff
L

k nm

T

st

f
smn

f
s d1][ ∫= κ                                                (44) 
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ASSff
L

k nm

T

st
ismnis d1][ ∫= κ                                                (45) 

 
Thus, the variation of the total potential energy in Eq. (1) is written as 

 

 d }){][][]([}{d
1 1

tdkkkdtU f

i

f

i

t

t

r

m

r

n
nmnsmn

s
gmnb

T
m

t

t ∫ ∑∑∫
= =

++δ=δ                       (46) 

 
The kinetic energy for every strip of the moving plate T of Eq. (9) can be extended in the following 

form 
 

AhA
t
w

x
whA

x
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t
whT

st st st
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2
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2
12

2
12

2
1 d2d)(d)( vvv2∫ ∫ ∫ +

∂
∂

∂
∂

+
∂
∂

+
∂
∂

= ρρρρ              (47) 

or 
cg TTTTT +++= v0                                                          (48) 

 
The first term of Eq. (47), T0, is the kinetic energy for a non-moving plate and the variation of T0 

together with displacement function of Eq. (33) leads to 
 

∫ ∫ ∑∑
= =

δ−=δ f

i

f

i

t

t

t

t
nmn

T
r

m

r

n
m tdmdtT d}{][}{d

1 1
0

&&                                          (49) 

 
in which a dot means differentiation with respect to t and [m] is the mass matrix expressed by 
 

ASSffhm nm

T

st
mn d][ ∫= ρ                                                     (50) 

 
The second term of Eq. (37), Tg, is related to the effect of axial speed on the transverse deflection. By 
using Eq. (33), we have 
 

∫ ∫ ∑∑
= =

δ=δ f

i

f

i

t

t

t

t
nmn

m
g

T
r

m

r

n
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1 1

                                            (51) 

 
where ][ m

gk , which can be called the stability matrix of an axially moving plate is obtained by  
 

ASSffh
L

k nm

T

st
mn

m
g d1][ 2

′′= ∫ 2vρ                                            (52) 

 
The third term Tv has the form of 
 

∫ ∂
∂

∂
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A
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It can be found that   
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and by substituting the displacement field of Eq. (33) into Eq. (54), it may be written 
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where the gyroscopic [g] matrix is 
 

ASSSSffh
L

g nmnm
st

T
mn )d-(1][ ′′= ∫ vρ                                      (56) 

 
Finally, the forth term Tc is a constant value for a moving plate which has a constant velocity (this term is 
omitted by variation). By using Hamilton's principle in Eq. (1) for free vibration, the governing equation 
of motion for the elastically supported, axially moving orthotropic plate can be formulated as 
 

}0{}]){[]([}]{[}]{[ =−++ dkkdgdm g
&&&                                         (57) 

 
in which total stiffness matrix [k] and total stability matrix [kg] are 
 

][][][ sb kkk +=                                                                 (58) 
 

][][][ s
g

m
gg kkk −=                                                                (59) 

 
By assembling [m], [g] and [k] matrices and also {d}, }{d&  and }{d&&  vectors of all strips of the moving 
plate and eliminating constrained degrees of freedom, Eq. (57) for the whole plate is obtained as 
 

}0{}]){[]([}]{[}]{[ =−++ δδδ gKKGM &&&                                          (60) 
 

For free vibration analysis, the degrees of freedom vector can be represented as 
 

teλδδ }ˆ{}{ =                                                                     (61) 
 
where λ is, in general, a complex number. Substituting Eq. (61) into Eq. (60) gives 
 

}0{}ˆ]){[]([}ˆ]{[}ˆ]{[2 =−++ δδλδλ gKKGM                                  (62) 
 
and the Eq. (62) can be rewritten in the form of 
 

}0{}]{[}]{[ =+ δΛδΓλ                                                         (63) 
where  
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KK

KKG

g

gΛ      (64) 

 
In the eigenvalue problem (63), [Γ ] is a symmetric matrix and [Λ] is a skew-symmetric one. The 
eigenvalues λ  which are generally complex, can be obtained from a non-symmetric eigenvalue solver. 
The interpretation of λ in the A-FSM is the same as the E-FSM. 

For buckling analysis, equation of motion (61) is eliminated in the form of 
 

}0{}]){[]([ =− δgKK                                                             (65) 
 
where [Kg] is a linear function of the square of the axial speed v2, so Eq. (65) is an eigenvalue problem, by 
which the critical speed of the plate vcr can be derived.   

 
5. NUMERICAL INVESTIGATIONS  

a) General 
 
The orthotropic plates treated in the numerical results have dimensionless orthotropic material properties 
of Ey/Ex=0.5, Gxy/Ex=0.25, and νxy=0.2, where Ex and Ey are major and minor elastic modulus of the plate, 
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respectively and Gxy is the shear modulus. Also, νxy and νyx are the plate major and minor Poisson’s ratios, 
respectively which have the relation of νxy/νyx=Ex/Ey. Non-dimensional variables used in the results are 
introduced as  

11
2

2

2 D
hb ρ

π
ωΩ = ,     

11

),(),(
D

hbcc crcr
ρ

π
vv= ,     

11
2

2

),,(),,(
D

bNNNkkk xyyxxyyx π
= , 

 
b
Lr = ,     

11

4

),(),
D
b

dfdf κκΚΚ =( ,     
11

2

D
b

pp κΚ =                                       (66) 

 
where Ω  is dimensionless frequency of vibration, c and ccr denote non-dimensional axial speed and 
critical axial speed of the plate, respectively, kx and ky are in-plane load parameters along x and y-
directions, respectively (positive when tensile) and kxy is shear load parameter. r is aspect ratio of the plate, 
Κf and Κd are stiffness parameters of the elastic foundation and local distributed elastic support, 
respectively, and Κp is the non-dimensional stiffness of elastic point support. D11 in the relations (66) is 
defined as:  

)( yxxy

x
11 112

E
D

νν−
=                                                           (67) 

 
For the E-FSM method, the parameter n implies the number of half-waves in the direction 

perpendicular to the simple edges. Also, for the A-FSM, m and NS are the number of terms of basic 
functions and the number of finite strips, respectively. For convenience, four capital letters are used to 
describe the edges of plates. The symbolism CFSF, for example, identifies a plate with edges clamped, 
free, simply supported and free; start counting counter-clockwise from the left edge of the plate.  
 
b) Comparison study 
 

To illustrate the ability of the A-FSM in the modeling of elastically supported plates, a comparison 
study has been made with the results obtained by Cheung et al. [20] for a stationary isotropic plate on a 
non-homogeneous elastic foundation shown in Fig. 4. The plate is simply supported at all edges. In Table 
1, the first frequency parameter of the plate is given for different values of stiffness of local distributed 
elastic supports.  

Two types of basic functions have been used to extract the results; the trigonometric and the bubble 
functions. As shown in the table, the results have been obtained with m=1, 3 and 5, and NS=10. Since the 
nature of free vibration modes of a simply supported plate is sinusoidal, the trigonometric series leads to 
better results for m=1, but the rate of convergence is faster for the bubble function series. Anyway, the 
results obtained by both basic functions with m=3 have a complete agreement with the results of reference 
[20]. 

 
Fig. 4. A SSSS square isotropic plate on symmetrically 

distributed elastic supports 
 

κ d 1

κ d 0

h

0.6bb 

κ d 0 κ d 0κ d 1
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Table 1. Fundamental frequency parameter Ω1 for a stationary isotropic square  
plate on non-homogeneous elastic foundation. (ν=0.3) 

 
Κd 0 Κd 1 A-FSM *  Ref [20] 

  m =1 m =3 m =5   

0 320 1.2917 
1.3112+ 

1.2913 
1.2912 

1.2912 
1.2912  

1.291 

0 800 1.6329 
1.6423 

1.6310 
1.6308 

1.6308 
1.6308  

1.631 

0 1600 2.0273 
2.0773 

2.0716 
2.0711 

2.0711 
2.0710  

2.071 

320 800 1.6802 
1.6932 

1.6795 
1.6794 

1.6794 
1.6794  

1.679 

320 1600 
 

2.1168 
2.1192 

2.1128 
2.1125 

2.1125 
2.1124  

2.113 

 
 *NS=10 

+ underlined numbers are associated with bubble functions and others obtained by trigonometric functions. 
 

To demonstrate the reliability of the A-FSM in the analysis of moving plates, natural frequencies of a 
single-span SFSF isotropic plate subjected to a uniform axial tension (Fig.5), are compared with those 
obtained by Lou and Hutton using Rayleigh-Ritz method [7]. The dimensionless natural frequencies of the 
first ten modes are shown in Table 2 for a stationary plate and a moving one with c=1.839. The other 
dimensionless parameters of the problem are: r =2.92, ν =0.3 and kx =9.157. The FSM results have been 
obtained by m=7 and NS=16 for the highest mode. A very close agreement is observed. 

For comparing the E-FSM with the A-FSM, a double-span moving orthotropic plate, shown in Fig. 6, 
is analyzed by both methods. The plate is subjected to biaxial in-plane forces (Nx and Ny) and supported by 
an elastic foundation with stiffness κf in one of the spans. As shown in the figure, the plate has clamped 
boundaries at X=0 and X=L, and simple supports at Y=0, Y=b (CSCS). The parameters of this example 
are: Κf =4000,   kx=10, ky=-2 and r=2. 

In the finite strip formulation developed in Section 4, longitudinal direction of the strips has been 
considered along the axial speed direction (Fig. 3). Nevertheless, an alternative finite strip formulation can 
also be extended in which the strips longitudinal direction be perpendicular to the speed direction (Fig. 6). 
The present example has been solved by means of this alternative formulation in which the finite strip 
displacement field of Eq. (33) is replaced with  
 

∑
=

=
r

n
nn tdfSw

1

)}({)()( ξη                                                  (68) 

 
in which η =y/b and ξ =x/l as shown in Fig. 6b. Here, Sn(η) are the basic functions which develop 
transverse displacement w along strip length (y-direction) and f(ξ) are Hermitian polynomials for 
interpolating w along the width of the strip (x-direction). The other relationships corresponding to this 
formulation can be derived based on the displacement field defined in Eq. (68). 
 

b

L

Nx Nx
v

S S

F

F

x
y

 
Fig. 5. An axially moving isotropic plate subjected to uniform axial tension 
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b
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v
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w1n w2n

θ 2nθ 1n

v

l
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y,ηX
Y

(a)

(b)

 
Fig. 6. a) A double-span axially moving orthotropic plate supported by 

an elastic foundation in one of its spans. b) one of 
 finite strips of the plate 

 
Table 2. Normalized natural frequencies Ωi of the SFSF isotropic plate for 

 stationary and moving situations. (ν =0.3) 
 

Mode Stationary plate Moving plate 
 A-FSM Ref. [7]  A-FSM Ref. [7] 

1 0.0826 0.0827  0.0533 0.0534 

2 0.0899 0.0902  0.0629 0.0629 

3 0.1682 0.1683  0.1150 0.1151 

4 0.1827 0.1827  0.1330 0.1331 

5 0.2118 0.2118  0.1850 0.1850 

6 0.2597 0.2599  0.1907 0.1909 

7 0.2808 0.2811  0.2152 0.2155 

8 0.2890 0.2890  0.2470 0.2470 

9 0.3596 0.3597  0.2824 0.2832 

10 0.3868 0.3874  0.3122 0.3130 
 

For this example, the critical speed and the first five frequencies of vibration associated with c=0.4ccr 

have been listed in Table 3. The A-FSM results have been obtained by the alternative formulation with a 
different number of finite strips NS. By the formulation, modeling of the roller located at X= 0.8b, is 
simply done by setting the deflection of the corresponding nodal line to zero. With 15 strips in the length 
L, the results are very close to the exact values.  

Also, validity of the results obtained from the E-FSM has been examined by comparing them with the 
results of A-FSM. The E-FSM results  have been derived only by two plate components corresponding to 
two spans of the plate and only by one degree of freedom associated with the rotation of the nodal line at 
X= 0.8b. As shown in Table 3, the results of A-FSM and E-FSM are agreeable.  

The exact stiffness matrix components are transcendental functions of the eigenvalues and a trial and 
error procedure is required to derive natural frequencies or critical speeds from the eigenfunction of the 
structure presented in Eq. (31) or (32). Fig. 7 shows the variation of det[Sn(λ)] in a logarithmic scale 
versus the vibration frequency parameter Ω for the double-span moving orthotropic plate. In the natural 
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frequencies Ωi, det[Sn(λ)] vanishes. As shown in the figure, the first and the third natural frequencies 
correspond to the mode of vibration which has a one half wave in y-direction (n=1), the second and the 
fourth ones are associated with n=2 and the fifth natural frequency concerns n=3. 
 

Table 3. Non-dimensional critical speed ccr and natural frequency parameters Ωi 
corresponding to c/ccr =0.4 for the double-span moving plate 

 
 
 
 
 
 
 
 
 
 
 
                                               + The number of half waves along y-direction n is shown in the parentheses 
 

 
Fig. 7. Absolute of overall stiffness matrix determinant with respect to 

frequency parameter in the exact method 
 
c) Numerical examples 
 

In this subsection, some examples concerning the stability and vibration of axially moving orthotropic 
plates on stationary elastic supports are solved by the E-FSM or the A-FSM. 

Figure 8 shows an axially traveling orthotropic plate which is supported by a partial elastic foundation 
with the length of β×L in the middle of the plate length L ( r=3 and Κf =4000). The plate is under uniform 
axial tension (kx=10) and has CSCS boundaries. Dynamic stability and vibration of the plate have been 
evaluated by the E-FSM with three components and four degrees of freedom. The critical speed of the 
plate and also fundamental natural frequencies concerning different axial speed ratios (c/ccr) are shown in 
Table 4 for β =0, 1/3, 1/2, 2/3 and 1.0. As the table shows, when the axial speed increases, the 
fundamental frequency decreases. For c/ccr=1, all fundamental frequencies become zero, according to the 
definition of critical speed. 

A study is carried out to demonstrate the ability of the A-FSM for modeling axially moving plates 
with elastic point supports. Figure 9 shows an orthotropic plate under a various tension which moves over 
two elastic point supports. The axial tension vary linearly along the plate width with a maximum 
normalized value of kx=2.0. The lateral edges of the plate are free and two other edges can be assumed 

A-FSM E-FSM  NS =5 NS =10 NS =15 NS =20  
ccr 3.932 3.923 3.921 3.921 3.921  (1)+ 

Ω 1 2.371 2.290 2.285 2.284 2.284  (1) 
Ω 2 2.749 2.663 2.657 2.655 2.655  (2) 
Ω 3 3.227 3.208 3.207 3.207 3.207  (1) 
Ω 4 3.419 3.399 3.397 3.397 3.397  (2) 
Ω 5 3.930 3.845 3.838 3.836 3.835  (3) 

5
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simple by connivance (SFSF). The first three natural frequencies of the plate in stationary and moving 
situations have been listed in Table 5, for different values of stiffness of elastic point supports Κp. The 
results have been obtained by trigonometric basic functions. 

 

κf

v
x

y
NxNx

β * L

b

vxh

(1-β)/2 * L (1-β)/2 * L

L=3b

 
Fig. 8. An orthotropic plate moving on a locally distributed elastic support 

 
Table 4. Exact values of dimensionless critical speed ccr and fundamental frequency Ω1  

for an orthotropic plate moving on partial elastic foundation 
 

β χcr Ω 1 
  c/ccr = 0 c/ccr = 0.25 c/ccr = 0.5 c/ccr = 0.75 

0 3.60008 .694714 .653787 .530606 .322704 
1/3 3.81198 1.64582 1.55288 1.27314 .800973 
1/2 4.00268 2.12375 2.00676 1.65477 1.06048 
2/3 4.40317 2.88380 2.72277 2.24145 1.43726 
1 4.94861 3.27851 3.06203 2.42851 1.40430 

 
Another example is associated with a SFSF orthotropic plate moving on an elastic foundation, shown 

in Fig. 10. The plate is under a uniform axial tension and a linearly various shear force with maximum 
dimensionless value of kxy0. This form of in-plane loading may occur when an eccentricity exists between 
the end rollers. The characteristics of the example are kx= 4, r =3 and c=1.0. The fundamental frequencies 
Ω1 for the plate with Κf =0, 50 and100 and kxy0=0, 1.0 and 2.0, obtained by the A-FSM with trigonometric 
basic functions, have been recorded in Table 6. Also, in Fig. 11, the variation of Ω1 versus aspect ratio r is 
shown. The results in the figure obtained by bubble basic functions correspond to kx= 0.2, kxy0=0 and 
c=0.4. 

b

4b/3Nx Nx

v

x

y

S S

F

F

4b/34b/3

b/3

v
x κp κp

b/3

 
 

Fig. 9. An orthotropic plate moving on an elastic foundation subjected  
to axial tension and various shear force 
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Table 5. Natural frequency parameters Ωi for SFSF plate with two elastic point 
             supports in stationary and moving conditions obtained by A-FSM+ 

 
Κ p Stationary plate; c =0 Moving plate; c =0.5 

 Ω  Ω 2 Ω 3 Ω  Ω 2 Ω 3 
0 0.1135 0.1969 0.2506 0.0832 0.1780 0.2088 

1e1 0.1155 0.1990 0.2515 0.8532 0.1801 0.2097 
1e2 0.1276 0.2190 0.2584 0.0980 0.1986 0.2182 
1e3 0.1448 0.2853 0.3629 0.1179 0.2397 0.3399 
1e4 0.1481 0.3004 0.4291 0.1225 0.2553 0.3869 

 

b

L=rJb
Nx Nx

vS S

F

F

Nxy Nxy

v
x

x
y

κf

  

Fig. 10. An orthotropic plate moving on an elastic foundation subjected to 
axial tension and various shear force 

 
The dynamic stability of the plate shown in Fig. 10 can be analyzed by the E-FSM, if the shear force 

Nxy vanishes. Here, the sinusoidal modes of buckling occur along x-direction that means the transverse 
displacement due to buckling, which was earlier defined by Eq. (13), must be changed as 
 

)]exp())[exp((),,( xikxikyWtyxw nnn −−=                                   (69) 
 
The other steps of the E-FSM expressed in Section 3, can be simply modified based on the displacement 
field of Eq. (69). This modified formulation is used to extract exact values of critical speed ccr for the plate 
shown in Fig. 10 with Nxy=0. Table 7 shows ccr at two values of axial tension, for different values of the 
aspect ratio and the stiffness of the elastic foundation. Also, the variation of ccr versus aspect ratio of the 
plate r has been drawn in Fig. 12 at kx=0.2 for Κf =0, 10 and 100. As shown in the figure, for the plate 
without foundation (Κf =0), ccr continuously reduces when r increases and the minimum value of ccr is 
0.441 which is the critical speed parameter of a very slender plate (r→∞). For Κf =0, the buckling of the 
plate occurs by only one half a sinusoidal wave in x-direction (n=1). The buckling behavior of the plates 
with the elastic foundation (Κf =10 and 100) differs from the plate without an elastic foundation (Κf =0). 
For the plates with an elastic foundation, the critical speed depends on the number of half wavelengths. 
The minimum values of ccr for Κf =10 and 100, are 0.914 and 1.49, respectively. 
 

Table 6. First frequency parameters Ω 1 of an orthotropic plate moving 
 on an elastic foundation derived by the A-FSM+ 

 
kxy0 Κf = 0 Κf = 50 Κf = 100 
0 0.260 0.411 0.519 

1.0 0.244 0.394 0.503 
2.0 0.197 0.353 0.465 

+m= 3, NS =6 
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Fig. 11. The variation of fundamental frequency of an SFSF orthotropic plate moving 
on an elastic foundation derived by SA-FSM (m=3, NS=6) 

 
Table 7. Exact non-dimensional critical speed ccr for a SFSF orthotropic 

plate moving on an elastic foundation 
 

r kx = 0.2 kx = 0.4 
 Κ f =0 Κ f =10 Κ f =100 Κ f =0 Κ f =10 Κ f =100 

0.5 2.0447 2.0510 2.1065 2.0930 2.0991 2.1535 
1 1.0913 1.1374 1.4891 1.1794 1.2221 1.5548 

1.5 0.7993 0.9327 1.5946 0.9159 1.0344 1.6561 
2 0.6681 1.1374 1.4891 0.8040 1.2221 1.5548 

2.5 0.5979 0.9967 1.5611 0.7466 1.0925 1.6239 
3.0 0.5561 0.9327 1.4891 0.7136 1.0344 1.5548 

 

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3 3.5 4
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c c
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n=1

n=1 2 3 4

n=1 2

Κf =0
Κf =10
Κf =100

c =0.914

c =0.441

c =1.49

Fig. 12. The variation of dimensionless critical speed of an SFSF orthotropic plate moving 
on an elastic foundation obtained by exact FSM (kx=0.2) 
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6. CONCLUDING REMARKS 
 
In order to analyze elastically supported, axially moving orthotropic plates and to consider the effects of 
gyroscopic and in-plane forces on dynamic stability and vibration characteristics of such plates, two kinds 
of FSM have been presented in this study; one exact and one approximate.  

By the exact method, the exact stiffness matrix of an axially moving orthotropic plate on an elastic 
foundation has been obtained, so precise results can be derived for stability and vibration of a multi-span 
moving plate, by only a few numbers of elements. The natural frequencies and critical speed of such plates 
obtained by the exact method can serve as a benchmark for checking the accuracy of numerical methods. 
Nevertheless the exact method has some restrictions about boundaries, loads and supports. However, the 
approximate method is able to model different boundary conditions, various plane stresses and discrete 
and distributed elastic supports. 

Validity and accuracy of the methods and the rate of convergence of the A-FSM have been shown by 
some comparative studies. Furthermore, some examples have been presented to examine the ability of the 
methods for modeling different problems. The effects of aspect ratio, stiffness of elastic supports and in-
plane forces on critical speed and natural frequencies of moving plates have been studied in these 
examples.  
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