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Abstract– Genetic Programming (GP) is a powerful machine learning technique derived from 
genetic algorithms. We used GP to generate a mathematical function for image denoising based on 
statistical features derived from detail sub-bands of wavelet transform (WT). The function 
obtained from GP for image denoising is not dependent to any parameters as represented in other 
image denoising methods based on WT. Results of the proposed image denoising method is 
compared to the VisuShrink soft threshold image denoising method, both perceptually and in 
terms of Peak Signal to Noise Ratio (PSNR).          
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1. INTRODUCTION 
 

Wavelet Transform (WT) has become a popular tool for various image processing problems [1-5]. Signals 
can be represented as the frequency contents of local regions over a range of scales in wavelet domain. 
This is the most important feature of WT for analyzing the signals in one or more dimensions. Signal 
features exist in wavelet transform coefficients that make the signal analysis and synthesis much easier. 

In this paper an image denoising method based on features estimated from the detail sub-bands of WT 
is considered. Let the image be defined by ),( jif , 1,...,1,0, −= Nji  where, N  is an integer power of 2. 
If )(⋅f  is corrupted with additive white Gaussian noise, the noisy image observation )(⋅g will be given by: 

 
),( jig = ),( jif + ),( jin  . Nji ,...2,1, =                                      (1) 

 
Where )(⋅n  is white Gaussian noise with zero mean zero and variance 2

nσ , and is independent and 
identically distributed (i.i.d). The goal is to remove the noise from ),( jig  and estimate ),(ˆ jif   which 
minimizes the mean square error (MSE) as given by: 
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In recent years there has been a fair amount of research on the image denoising based on WT [6-8]. 

The most popular methods are soft and hard thresholding introduced by Donoho and Johnson [9-11]. In 
wavelet domain, small wavelet coefficients more likely represent the noise, while large coefficients are a 
major feature of the original image. To decide which coefficient is small, a threshold is needed. Estimation 
of threshold is a major problem in this field. The widely used thresholding methods are VisuShrink [12], 
and SureShrink [13]. These two methods are based on minimizing the risk of Stein's risk estimation [14, 
15]. The image denoising methods based on thresholding are discussed by Jansen Malfait and Bultheel 
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[16]. Wavelet shrinkage denoising using cross validation had been considered in [17-19]. Multiple 
hypotheses testing is suggested in [20-23] as another thresholding technique. These works face serious 
problems because of the large numbers of hypotheses needed to be tested simultaneously. Recently, block 
thresholding is utilized rather than term by term thresholding [24-29]. In block thresholding more 
information about neighbor coefficients are available. This leads to a better estimation of threshold. 
Blocks may be overlapping [30] or non-overlapping [31].  

Soft thresholding employs a continuous function, while hard thresholding is a discontinuous function 
which causes some artifacts in denoised processing. Therefore, the soft thresholding method is preferred to 
hard thresholding [12, 32].  As mentioned above, the major problem for utilizing the soft thresholding 
method is the estimation of a good threshold. So in this work, the authors’ intention is to propose an 
expression instead of the soft-thresholding function which is threshold independent. Genetic programming 
is commonly used to discover an optimum expression (program) for problems which need such 
expressions as their solutions [33-35].  Therefore, by using GP, a novel method of image denoising based 
on features drawn from the detail sub-band of WT is presented in this contribution. Our approach depends 
only on the statistical information of detail WT sub-bands that are easy to calculate.  

This paper is arranged as follows. Section 2 discusses the Discrete Wavelet Transform (DWT). 
Wavelet shrinkage denoising is discussed in Section 3. Section 4 introduces the GP as a popular machine 
learning method to derive an expression for image noise removal. Section 5 describes simulation results. 
Finally, Section 6 draws the conclusions of this contribution. 
 

2. THE DISCRETE WAVELET TRANSFORM 
 

Wavelets are families of functions generated from a mother wavelet ( )tψ by dilation and translation 
operations: /2

, ( ) 2 (2 )m m
m n t t nψ ψ= −  [36]. The mother wavelet is constructed from the scaling function 

( )tφ , satisfying the following equation: 
 

( ) 2 ( ) (2 )
k

t h k t kφ φ
∞

=−∞
= −∑                                                   (3) 

 
The mother wavelet ( )tψ is defined as: 

 

( ) 2 ( ) (2 )
k

t g k t kψ φ
∞

=−∞
= −∑                                                 (4) 

 
where h(k)  and g(k)  are a pair of discrete quadrature mirror filters that are related  to each other as  

( ) ( 1) (1 )kg k h k= − − . Here h(k)  represents the low pass filter and  g(k) the corresponding high pass 
filter. 

The wavelet transform represents the decomposition of a function into a family of wavelet functions 

, ( )m n tψ . In other words, using the wavelet transform, any arbitrary function f can be written as a 
superposition of wavelets [37]. Closely related with the wavelet transform is the multi-resolution analysis 
concept which is particularly appropriate for image analysis. So the one dimensional WT can easily be 
extended into two dimension.  

The wavelet transform breaks an image down into four decimated images. They are subsampled by 
keeping every other pixel. The results consist of one image that has been high-pass (HP) filtered in both 
horizontal and vertical directions, one that has been high-pass filtered in the vertical and low-pass (LP) 
filtered in the horizontal, one that has been low-passed in the vertical and high-passed in the horizontal, 
and one that has been low –pass filtered in both horizontal and vertical directions.  

Figure 1 shows the result of four bands (WT) on the Lena image based on Haar basis vectors [1]. The 
location of frequency bands in a four-band wavelet transform image is shown in Fig. 2. 
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Fig. 1. Four bands WT of Lena image                               Fig. 2. Locations of WT sub-bands 

 
3. DENOISING BY WAVELET SHRINKAGE THRESHOLDING 

 
Let )(⋅w and )(1 ⋅−w denote the forward and inverse wavelet transform operators. Let ),( λ⋅D denote the 
denoising operator with soft threshold λ. The goal is to use wavelet shrinkage denoising on )(⋅g  in order 
to recover )(ˆ ⋅f  as an estimate of )(⋅f  with minimum mean square error. Then, the three steps below 
summarize the procedure  

y w(g)=                                                                      (5) 
 

)z   D(y, λ=                                                                    (6) 
 

1ˆ -f   w (z)=                                                                     (7) 
 

where y is the detail sub-bands of  DWT.  z denotes the modified coefficients  of  DWT. The rule D(y,λ) 
≡  sgn(y) max(0, |y| −  λ) defined by Donoho and Johnson is nonlinear soft thresholding. The operator D 
nulls all values of y for which |y| ≤  λ. Also all values of y for which |y| > λ shrink toward the origin by an 
amount λ. It is the latter aspect that has led to D being called the shrinkage operator in addition to the soft 
thresholding operator.  

For example, VisuShrink is a practical wavelet domain global threshold procedure. In this method the 
value of threshold is obtained from 2logn Lσ . Here 2

nσ  is noise variance and L is the length of the data. In 
this paper a global denoising expression obtained by GP is introduced. So, the results of the proposed 
method are compared with the VisuShrink denoising method.  
 

4. GP AS A TOOL TO GENERATE DENOISING EXPRESSIONS  
Darwinian natural selection that involves both reproduction and the principle of the survival of the fittest 
causes biological species to robustly adapt to their environments. John Holland of the University of 
Michigan [38] introduced the algorithmic computer simulation of biological evolution that is called 
Genetic Algorithm (GA). 

GAs are used for solving problems as a robust search method. Optimization problems are problems 
that can be solved by this nature-inspired type of algorithm. 

Holland's works apparently illustrate the importance of using simulated genetic operators (crossover, 
mutation) [39]. He also presents, in his works, some methods that show how one can use genetic operators 
to give better performance for solving problems in adaptive systems. 

GP was introduced by John Koza [40, 41] as a powerful machine learning method to solve problems 
requiring the discovery of a computer program or symbolic expressions as their solutions. GP follows the 
paradigms that are used in GAs. 

 
     LP/LP 

 
   HP/LP 

 
     LP/HP 

 
   HP/HP 
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Machine learning of a function, planning in artificial intelligence and robotics symbolic function 
identifications, time optimal control and a various range of problems [42, 43] require an optimal 
expression or computer program as their solutions.  

The GP can be divided into a number of sequential steps defined below [41]: 
 

1) Create a random population of symbolic expressions (programs) using symbolic functions in 
conjunction with both symbolic and constant terminals. 

2) Evaluate each generated expression with a fitness value according to a predefined fitness function 
which measures the ability of the expression to solve the problem. 

3) Using some predefined selection techniques to select some parents for recombination. 
4) Genetically recombine the selected parents with the crossover operator to generate the new 

population. 
5) Apply the mutation operator on this pool of new population. 
6) Repeat Step 2 until predefined termination criteria are satisfied or a fixed number of generations 

are completed. 
7) The solution to the problem is the expression with the best fitness within all the generations. 

 
Generally in GP we need two sets to produce the expressions namely, function and terminal sets. In this 
work the set {Esqrt, Edivide, +,-,*} is defined as the function set and statistical features 
{ 1 2 3, ,µ µ µ , 1 2 3, ,σ σ σ } are taken as the terminal sets, where iµ  and iσ  are the means and standard 
deviations of detail WT sub-bands respectively. An additional variable y (see Eq. (5)) which represents the 
detail sub-bands of WT is also used for the evaluation of the GP expression. 

The terminals are the arguments of the functions. The combination of functions and terminals produce 
an expression that is a symbolic lisp like expression.  

To find the optimum expression for image denoising, five noisy images of Lena with zero means and 
five different standard deviations were used. The values of five different standard deviations were, 
(σn1=12.75, σn2=20.4, σn3=25.5, σn4=38.25, σn5= 63.75). Equation (8) is used as PSNR and the result of 
this equation was used to calculate the final fitness equation defined in (9). 

 

,

10

,max

20 log
i j

f i j

MSEPSNR

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= ×                                                                 (8) 
 

Fitness = 
5

1
k

k
PSNR η

=
−∑                                                                    (9) 

 
Where η  is a constant that indicates an upper bound of the PSNRs. In this paper 35=η is chosen, since, 
based on most researchers simulation results, the value of 35 is a right and proper estimation for PSNR.  
Equations (8) and (9) were used to evaluate the resulting optimum expression found by GP. 
 

5. SIMULATION RESULTS 
 

Three different test images were used. White Gaussian noise at five different levels of variances were 
generated in MATLAB using randn×σ  and added to images. The aim is to obtain an expression for 
image denoising which results in the highest possible PSNR.  Parameters used for the evaluation of the 
denoising expression in the wavelet domain are given in Table 1. In a mutation operation, a new 
individual is created by substituting a random subtree of the parent by a new randomly created tree [42]. 
Two-point cross-over is used in which two new individuals are created by swapping sub-trees of the two 
parents at 2 random points [42]. The selection method, called tournament selection, returns some random 
individuals chosen from the population using the tournament method, and duplicate individuals are 
allowed [42]. 
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Table 1. The parameters of GP algorithm 
 

Generation 
numbers 

Population 
size 

Selection 
method  

Cross-over 
type 

Cross-over 
probability 

Mutation 
probability 

300 100 Tournament  2-point 0.7 0.1 
 

The best evaluated expression by GP is indicated in Eq. (10). 
 

      3( , )D y σ =Edivide( y, Esqrt ( 3σ ))                                                    (10) 
 

Where 3σ  is the variance of HP/HP WT sub-band, y represents DWT detail sub-bands and Esqrt and 
Edivide are defined below: 

 

0
( )

0

if
Esqrt

otherwise

θ θ
θ

⎧
⎪
⎨
⎪
⎩

>
=                                                       (11) 

 

1
2

21 2

      0
( , )

      

if
Edivide

otherwise

θ
θ

θθ θ
⎧

≠⎪= ⎨
⎪∞⎩

                                             (12) 

 
Where θ  is a scalar variable and 1 2,θ θ  are the arguments of Edivide. 1θ  is a matrix and is divided 
element-wise by the scalar 2θ . Also in (12) a large numerical value is considered to treat as the infinity. 
The overall results for different images are shown in Tables 2-7. Figure 3 shows a Lena image corrupted 
with a white Gaussian noise with Standard Deviation (SD) of 38.25. In all tables, the PSNRs of the 
proposed method are compared to the VisuShrink method in the wavelet domain.  

Figures 4 and 5 indicate other test images to show the effectiveness of the proposed algorithm. Please 
note that different expressions can be obtained from GP. For example, a new expression found by GP is 
given in (13). 

1 3( , , )D y σ σ =Edivide( y, Esqrt ( 1 3σ σ× ))                                       (13) 
 

Tables 5-7 show the comparison of the proposed method with the VisuShrink denoising method for 
different test images using Eq. (13).  

 
Fig. 3.  a)  Original image of Lena, b) Image corrupted by a gaussian noise with nσ = 38.25, 

c) VisuShrink method, d) proposed method 
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Table 2. PSNR values of the proposed method and VisuShrink  
at 5 different SD of noise using Eq (10)  

nσ  Method 12.75 20.4 25.5 38.25 63.75 
VisuShrink 25.8636 23.8774 22.7027 20.1952 16.7363 
Proposed 
method 26.5025 24.2771 22.9563 20.2697 16.7186 

Noisy image 24.3682 20.3758 18.4993 15.1606 11.2815 
 

Table 3. PSNR values of the proposed method and VisuShrink  
at 5 different SD of noise using Eq. (10)  

nσ  Method 12.75 20.4 25.5 38.25 63.75 
VisuShrink 25.1284 23.4797 22.5778 20.5782 17.5810 
Proposed 
method 25.5841 23.9615 22.9311 20.7114 17.5920 

Noisy image 25.5366 21.4903 19.5950 16.2371 12.3753 
 

Table 4. PSNR values of the proposed method and VisuShrink 
 at 5 different SD of noise using Eq. (10) 

 
nσ  Method 12.75 20.4 25.5 38.25 63.75 

VisuShrink 22.8182 21.8532 21.1803 19.5050 16.8203 
Proposed 
method 23.8189 22.5912 21.7364 19.7765 16.8973 

Noisy image 25.1699 21.1016 19.1834 15.7830 11.9002 
 

 Table 5. Lena image: PSNR values of the proposed method and VisuShrink  
at 5 different SD of noise using Eq. (13) 

 
nσ  Method 12.75 20.4 25.5 38.25 63.75 

VisuShrink 25.8636 23.8774 22.7027 20.1952 16.7363 
Proposed 
method 25.9697 24.0355 22.8150 20.2298 16.7170 

Noisy image 24.3682 20.3758 18.4993 15.1606 11.2815 
 

Table 6.  Barbara image: PSNR values of the proposed method and VisuShrink  
at 5 different SD of noise using Eq. (13) 

 
nσ  Method 12.75 20.4 25.5 38.25 63.75 

VisuShrink 25.1284 23.4797 22.5778 20.5782 17.5810 
Proposed 
method 24.7226 23.4633 22.5938 20.5759 17.5612 

Noisy image 25.5366 21.4903 19.5950 16.2371 12.3753 
 

Table 7. Mandrill image: PSNR values of the proposed method and VisuShrink  
at 5 different SD of noise using Eq. (13) 

 
nσ  Method 12.75 20.4 25.5 38.25 63.75 

VisuShrink 22.8182 21.8532 21.1803 19.5050 16.8203 
Proposed 
method 22.9227 22.0085 21.3160 19.5853 16.8445 

Noisy image 25.1699 21.1016 19.1834 15.7830 11.9002 
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Fig. 4.  a) Original image of Barbara, b) Image corrupted by a gaussian noise  

with nσ = 63.75, c) VisuShrink, d) Proposed method 
 

 
Fig. 5. a) Original image of Mandrill, b) Image corrupted by a gaussian noise with nσ = 63.75, 

c) VisuShrink, d) proposed method 
 

6. CONCLUSION 
 

We have investigated and presented the application of GP for image denoising in the wavelet domain. GP 
produces and evolves symbolic equations for noise removal. The evolution process is robustly guided by a 
fitness function derived from the PSNR values.  
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As is apparent in statistical pattern recognition methods and also other applied statistical analysis 
approaches in engineering, statistical features are easy to compute and are available. So, by the use of such 
features, the problem of coming up with suitable and efficient features becomes easy. In this work the 
standard deviations and the means in detailed sub-bands of WT are used to derive expressions from GP for 
noise removal.  

Although we have used only the Lena image to extract a suitable expression by GP, the resulting 
expression showed good behavior when tested on other images.  

The proposed method indicates improved PSNRs as compared to the well-known VisuShrink 
denoising method in the wavelet domain.  
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