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Abstract– The performance of various estimators, such as maximum a posteriori (MAP), strongly 
depends on correctness of the proposed model for distribution of noise-free data. Therefore, the 
selection of a proper model for the distribution of wavelet coefficients is very important in wavelet 
based image denoising. This paper presents a new image denoising algorithm based on the 
modeling of wavelet coefficients in each subband with a mixture of Laplace random variables. 
Indeed, we design a MAP estimator which relies on mixture distributions. Using this relatively 
new statistical model we are better able to capture the heavy-tailed nature of wavelet coefficients. 
The simulation results show that our proposed technique achieves better performance than several 
published methods, both visually and in terms of root mean squared error (RMSE).           
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1. INTRODUCTION 
 

Usually, noise reduction—the process of noise-free data estimation from noisy data observation—is an 
essential part of many image processing systems (Fig. 1). The main sources of noise arise from the 
imaging devices during image formation and channels during transmission [1]. A suitable noise reduction 
algorithm is used to reconstruct the main information of the image, so that the obtained image will have 
the greatest peak signal-to-noise ratio (PSNR) and least visual artifacts [1]. In recent years there has been 
a fair amount of research on wavelet-based image de-noising [2-8]. The motivation of denoising in the 
wavelet domain is that, while the wavelet transform is good at energy compaction, the small coefficients 
are more likely caused by noise, and the large coefficients caused by important signal features [5]. The 
small coefficients can be thresholded without affecting the significant features of the image [3]. 
Thresholding is a simple non-linear technique, which usually operates on one wavelet coefficient at a time 
[2]. In its most basic form, each coefficient is thresholded by comparing against the threshold: if the 
coefficient is smaller than the threshold, set to zero; otherwise it is kept or modified. Replacing the small 
noisy coefficients by zero and applying the inverse wavelet transform on the result may lead to 
reconstruction with the essential signal characteristics and with less noise [3]. 

Many of the wavelet based denoising algorithms have been developed based on soft thresholding 
proposed by Donoho [2], and examples of alternative approaches can be found  in [5-11]. Generally, these 
methods lead to a threshold value that must be estimated correctly in order to obtain a good performance. 
Early methods, such as VisuShrink [3] use a universal threshold, while more recent ones, such as 
SureShrink [4] are subband adaptive algorithms and have better performance. BayesShrink [5], which is 
also a data-driven subband adaptive technique, outperforms both Visu-Shrink and SureShrink. 
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Fig. 1. Image processing chain [1] 

 
The problem of wavelet based image denoising can be expressed as an estimation of clean 

coefficients from noisy data with Bayesian estimation techniques. If the MAP estimator is used for this 
problem, the solution requires a priori knowledge about the distribution of wavelet coefficients. Based on 
the distribution type, the corresponding estimator (shrinkage function) is obtained. 

Various probability density functions (pdfs) such as Gaussian, Laplace, generalized Gaussian or other 
distributions were proposed for modeling noise-free wavelet coefficients [11-12]. For example, the 
classical soft threshold shrinkage function can be obtained by a Laplacian assumption. Bayesian methods 
for image denoising using other distributions have also been proposed [13-17]. 

In this paper we use a mixture of Laplace random variables to model the wavelet coefficients in each 
subband. Because the energy compactness property of the wavelet makes it reasonable to assume that 
essentially, only a few large coefficients contain information about the underlying image, the marginal 
distribution of wavelet coefficients is highly kurtoutic, and can be described using suitable long-tailed 
distributions [11]. In [18], the wavelet-based hidden Markov model (HMM) is proposed for statistical 
signal processing and a mixture of Gaussian distributions is used for modeling this heavy-tailed property 
of wavelet coefficients. Our approach is similar to the method reported in [18], but we use Laplace 
components instead of Gaussian components. Because Laplace pdf has a large peak at zero and its tails 
fall significantly slower than a Gaussian pdf of the same variance, a mixture of Laplace pdfs can improve 
the modeling of wavelet coefficients distribution. 

The rest of this paper is organized as follows. After a brief review on the basic idea of Bayesian 
denoising in Section 2, we describe how soft thresholding can be obtained using the Laplace pdf in 
Section 2a. To apply the soft threshold rule, we need to know some parameters. The estimation of these 
parameters is described in Section 2a.1. In Section 2b the theoretical base of denoising with the Laplacian 
mixture model is introduced. In order to be able to compare the ability of our model to capture the heavy-
tailed property of wavelet coefficients in each subband with a simple model, both single Laplace and 
mixed Laplace are used for modeling the histograms of wavelet coefficients in Section 2a.2 and Section 
2b.1 respectively. We obtain the shrinkage function derived from our Laplacian mixture model namely, 
LapMixShrink, in Section 2b.2. In Section 3 we use our model for wavelet-based denoising of several 
images corrupted with additive Gaussian noise at various noise levels. The simulation results in 
comparison with the VisuShrink, SureShrink, BayesShrink and hidden Markov tree (HMT) show that our 
algorithm achieves better performance, both visually and in terms of RMSE. Finally the concluding 
remarks are given in Section 4. To apply the LapMixShrink rule we need to implement the Expectation 
Maximization (EM) algorithm to determine the parameters of a mixture model. A simple description of the 
EM algorithm can be found in the Appendix. 
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2. BAYESIAN DENOISING 
 
In this section, the denoising of an image corrupted by white Gaussian noise will be considered. We 
observe a noisy signal nxg +=  where n  is independent, white, zero-mean Gaussian noise and we wish to 
estimate the noise-free signal x  as accurately as possible according to some criteria [3]. In the wavelet 
domain, if we use an orthogonal wavelet transform, the problem can be formulated as nwy += , where y  
is the noisy wavelet coefficient, w  is the noise-free wavelet coefficient, and n  is noise, which is 
independent white zero mean Gaussian [3].  

If )(wpW  denotes pdf of random variable W  for  wW =  and )|(| ywp YW  denotes the conditional pdf 
of random variable W  for wW =  when given random variable Y for yY = , the MAP estimator below will 
be used to estimate w  from the noisy observation y  [5]. This estimator is defined as 
 

y)|(wpargmax(y)ŵ y|w
w

=                                                    (1) 

Using Bayesian rule [5] we get 

(y)p
(w)pw)|(yp

y)|(wp
y

ww|y
y|w =  

Therefore, one gets 

(y)p
(w)pw)|(yp

argmax(y)ŵ
y

ww|y

w
=  

 
Because the term )(ypy  does not depend on w , the value of w  that maximizes the right hand side is not 
influenced by the denominator. Therefore the MAP estimate of w  is given by 
 

(w)]pw)|(y[pargmax(y)ŵ ww|y
w

=  

 
Because y  is the sum of w  and n , a zero-mean Gaussian pdf, when w  is a known constant, y  will be a 
Gaussian pdf with mean w . Therefore, if the pdf of n  is )(npn , then )|(| wyp wy  will be )( wypn − .  
Thus, Eq. (1) can be written as  

(w)]pw).(y[pargmax(y)ŵ wn
w

−=                                                       (2) 

 
Equation (2) is also equivalent to  
 

f(w)]w))(y[log(pargmax(y)ŵ n
w

+−=                                              (3) 

where ))(log()( wpwf w= . 
We have assumed the noise is zero mean Gaussian with variance nσ , 
 

)exp(.:),()( 2
n

2

n
nn

2
n

2
1nGaussiannp

σ
−

πσ
=σ=                             (4) 

Replacing (4) in (3) yields  

)](
2

)([maxarg)(ˆ
2

2
wfwyyw

nw
+

−
−=

σ
 

 
Therefore we can obtain the MAP estimate of w  by setting the derivative with respect to ŵ  equal to zero. 
That gives the following equation to solve for ŵ . 
 

0=′+
− )ŵ(f
σ

ŵy
2
n

                                                                    (5) 
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For example, if )(wpw  is assumed to be ),( σwGaussian , then 22 2/)2log()( σσπ wwf −−= , and the 
estimator can be written as 
 

y
σσ

σ(y)ŵ 2
n

2

2

+
=                                                                    (6) 

 
a) Soft thresholding 
 
We now need to model )(wpw  for the distribution of wavelet coefficients. The pdf for wavelet coefficients 

)(wpw  is often modeled as a generalized (heavy-tailed) Gaussian [7], 
 

)
s
wexp(q).K(s,(w)p

q

w −=                                                       (7) 

 
where qs,  are the parameters for this model, and ),( qsK  is the normalization constant (which depends on 
s and q ). Other pdf models have also been proposed [7-17]. 
Substitution of 1=q  in (7) simplifies the equation to a Laplace pdf, 
 

)w
σ
2exp(

2σ
1:σ)Laplace(w,(w)pw −==                                 (8) 

In this case 

wwf .2)2log()(
σ

σ −−=  

and so 

)(.2)( wsignwf
σ

−=′  

therefore 

)ˆ(.2ˆ
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wsignwy n
σ
σ

+=  
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⎪
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,
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,
ˆ  

where 
σ
σ 22 nT = . 

This is the soft threshold nonlinearity based on the MAP estimator. Figure 2 shows a graph of  ŵ  as a 
function of  y . Other approaches give different formulas for choosing the threshold [11, 17]. The formula 
is often written in the following way 
 

+−= )
σ
σ2

ysign(y).((y)ŵ
2
n                                                        (9) 

Here +)(a is defined as 

⎩
⎨
⎧ <

=+ otherwisea
aif

a
00

)(  

Let’s define the soft operator as 
+−= )).((:),( ττ ggsigngsoft  

 
The soft shrinkage function (9) can be written as 
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)
σ
σ2

soft(y,(y)ŵ
2
n=                                                                (10) 

 

  
Fig. 2. Shrinkage function corresponding to the Laplace pdf  (soft threshold) 

 
The main idea in soft thresholding is to subtract the threshold value T  from all coefficients larger than T  
and to set all other coefficients to zero. The threshold σσ /2 2

nT =  has an intuitive appeal. The normalized 
threshold, σσσ /2/ nnT = , is inversely proportional to σ , the standard deviation of w , and proportional 
to nσ , the noise standard deviation. When 1/ <<σσn , the signal is much stronger than the noise. 
Therefore nT σ/  is chosen to be small in order to preserve most of the signal and remove some of the 
noise. Vice versa, when 1/ >>σσ n , the noise dominates. In this case, the normalized threshold is chosen 
to be large to remove the noise, which has overwhelmed the signal. Thus, this threshold is adapted to both 
the signal and noise characteristics, which are reflected in parameters nσ  and σ  [5]. 
 
1. Parameters estimation: To apply the soft threshold rule we need to know nσ  and σ . Experiments 
show that σ  is quite different from scale to scale. Figure 3 shows the standard deviation of each wavelet 
subband for the Lena image. Thus, we must estimate a different σ  for each subband only from the noisy 
data. In fact, the results lead to a subband-dependent threshold.  

Because the wavelet coefficients of the noise free image and the noise are independent, we have 
 

VAR[n]VAR[w]VAR[y] +=  
 
in which VAR[x]  is variance of the random variable x . 
 

            
Fig. 3.  Standard deviation of each wavelet subband for Lena image 
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As we assume that the variance of the noise is known, we write 
 

22 ][ nyVAR σσ −=  
 
The variance of y  can be computed from each subband using the standard formula [3], where we assume 
all quantities are zero mean,  

][][ 2yMEANyVAR =  
 
where ][xMEAN  is the empirical mean [3] of x . 
So we estimate σ  as 

2
n

2 σ]MEAN[yσ̂ −=  
 
In case we have a negative value under the square root (it is possible because these are estimates) we can 
use 
 

,0)σ]max(MEAN[yσ̂ 2
n

2 −=                                                      (11) 
 
When nσ  is unknown, to estimate the noise variance from the noisy wavelet coefficients, a robust median 
estimator is used from the finest scale wavelet coefficients [3]. 
 

scalefinestinHHsubbandy
67450

ymedian

i

i2
n

∈

=σ ,
.

)(
                                          (12) 

 
2. Modeling wavelet coefficients as a single Laplace distribution: In this section, a single Laplace pdf 
is used to model a histogram of a 512512×  Lena image in each subband. Figure 4 illustrates the 
histograms of the wavelet coefficients in the second scale and the best Laplace pdf is fitted to these 
histograms. 

We use soft thresholding for noise reduction of the 512512×  Lena image. Zero mean white Gaussian 
noise is added to the original image ( 10=nσ ). The RMSE between the original image and the processed 
image in a standard wavelet domain is calculated to be 4.97. The RMSE between the original image and 
the noisy image is simply nσ , the standard deviation of the noise, for this example is set at 10. Therefore, 
the wavelet domain soft thresholding reduced this noise level by more than a factor of 2. Figure 5 shows a 
break down of the square error in each subband. Because a few large coefficients which correspond to 
coarser scales represent the main features of the signal, noise mostly affects small coefficients 
corresponding to the finer scales. Therefore, we can see in this figure that most of the square error occurs 
in the finer scales. The original image, the noisy image and the denoised image produced using the soft 
threshold, are illustrated in Fig. 6. 

Due to the effectiveness and simplicity of soft thresholding, it is frequently used in the literature, but 
other shrinkage functions have also been proposed [13-17]. For example, Fig. 7 shows the differences 
between soft thresholding, hard thresholding [2-4] and garrot thresholding [8]. 

Both the hard and soft shrinkages have advantages and disadvantages. The soft shrinkage estimates 
tend to have a bigger bias, due to the shrinkage of large coefficients. Due to the discontinuities of the 
shrinkage function, the hard shrinkage estimates tend to have a larger variance and can be unstable—that 
is, sensitive to small changes in the data. Garrot shrinkage offers smaller RMSE than hard thresholding 
and a bigger RMSE than soft thresholding. Also, it generally has less sensitivity to small perturbations in 
the data than hard thresholding and a smaller bias than soft shrinkage [8].  
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Although soft thresholding usually has acceptable results for denoising, it does not have a good 
performance for other kinds of noise such as Poisson, which is signal-dependent. In this case, algorithms 
that use local variances have better results [17, 19].  

 

   
Fig. 4. Histograms of the wavelet coefficients and the best fitted Laplace model in second scale of Lena image 

 
b) Denoising based on mixture models 
 
A mixture model for a random variable has a pdf that is the sum of two simpler pdfs, 
 

(w)pa)(1(w)app(w) 21 −+=                                                          (13) 
 
When )(1 wp  and )(2 wp  are two nonnegative functions that integrate into 1, then )(wp  will be a valid pdf. 

If each )(1 wp  and )(2 wp  has one parameter such as their variance, then )(wp  will have 3 parameters. 
The mixture model has more parameters than either )(1 wp  or )(2 wp  has alone, so it is more flexible for 
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matching the histogram of a given dataset. If there are too many parameters, then it will be difficult to 
estimate those parameters accurately from the data. There is a trade off between the number of parameters 
and the ability to estimate them. 
In the following sections we will use a mixture of two Laplace pdfs: 
 

)w
σ

2exp(
2σ

1a)(1)w
σ

2exp(
2σ

1a

)σLaplace(w,a).(1)σLaplace(w,.a(w)p

2211

21w

−−+−=

−+=

                                     (14) 

 
to model the distribution of wavelet coefficients of images. It will be necessary to estimate the three 
parameters 21,σσ  and a   from the data. While 1σ  and 2σ  represent the standard deviation of the 
individual components, they are not very easily related to the standard deviation of the random variable w , 
for example 
 

2
2

22
1

2 )1(][ σσ aawVAR −+≠  
 
Nor are other simple relations available. The estimation of the three parameters is more difficult than it is 
for a single component model. For a mixture model, an iterative numerical algorithm is required to 
estimate the parameters. The most frequently used algorithm to determine the parameters of a mixture 
model is the EM algorithm. A simple description of the EM algorithm can be found in the Appendix. 
 

  
Fig.  5.  Square error in each subband of Lena image after soft thresholding 

 

  
Fig. 6.  Soft thresholding of Lena image corrupted with additive Gaussian noise with standard deviation 10 
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Fig. 7. Difference between soft, hard and garrot thresholding and RMSE in each  

subband of Lena image after denoising with these methods 
 

Note that the random variable w  in (13) is not the result of adding two random variables. If that were 
the case, then )(wp  would be a convolution of  )(1 wp  and )(2 wp . Instead, w  can be generated using a 
two step procedure. First, generate a binary random variable v  according to 
 

avpavp −==== 1)2(,)1(  
 

The value of v  will be either 1 or 2. For 1=v , 1p  is used to generate w , while for 2=v , 2p  is used 
to generate w . Because this procedure produces a random variable w  with the pdf in Eq. (13), w  can be 
considered as being generated by either 1p  or by 2p   (even if that is not how w  is physically produced). 
 
1. Modeling wavelet coefficients as a mixture of Laplace pdfs: In [18] a mixture of two Gaussian pdfs 
is proposed for modeling wavelet coefficients distribution 
 

)σ,Gaussian(wa).(1)σ,Gaussian(w.a(w)p 21w −+=                                     (15) 
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Because the Laplace pdf has a large peak at zero and tails that fall significantly slower than a Gaussian pdf 
of the same variance, a mixture of Laplace pdfs can improve the modeling of wavelet coefficients 
distribution. 

In this section, a mixture of two Laplace distributions is used to model the wavelet coefficients of a 
512512×  Lena image in each subband. Figure 8 shows the mixture pdf obtained using the EM algorithm, 

together with the histogram for the second scale. We see that the mixture of two Laplace pdfs follows the 
histogram much more closely than both the Gaussian mixture model and a single Laplace pdf (Fig. 9). 

The nonlinear soft threshold rule for wavelet-based image denoising is the MAP estimator of the 
coefficients in Gaussian noise when the noise free coefficients are distributed according to the Laplace 
distribution. However, the plots in this section show that the Laplace distribution is not always an accurate 
model for the distribution of the noise-free coefficients, therefore, an alternative non-linearity derived 
using the mixture model may work more effectively than the soft threshold rule. In the next section we 
will illustrate the nonlinear shrinkage rule derived from the Laplacian mixture model, and later compare 
its performance with the soft threshold rule. 
 
2. Threshold functions derived from the mixture models: This section describes a non-linear shrinkage 
function for wavelet-based denoising derived by assuming that noise-free wavelet coefficients follow a 
mixture model. Specifically, we assume that the noise-free wavelet coefficients are modeled as a mixture 
of two Laplace random variables. 

If w  follows the mixture pdf, )()()( 21 wbpwapwp +=   where 1=+ ba  and 1p  and 2p  are valid pdfs 
individually, then how can we estimate w  from a noisy observation nwy += , where n  is an independent 
zero-mean Gaussian random variable with standard deviation nσ ? Because the estimate of w  depends on 
y , it is denoted by )(ˆ yw . 

One way to obtain an estimate is by the following rule: 
 

(y)ŵ(y)p(y)ŵ(y)p(y)ŵ 2b1a +=                                                (16) 
 
where )(ypa  is the probability that w  was generated by 1p , and where similarly, )(ypb  is the probability 
that w  was generated by 2p . The expression )(ˆ1 yw  is an estimate of w  based on the assumption that w  
was generated by 1p , and that similarly )(ˆ 2 yw  is an estimate of w  based on the assumption that w  was 
generated by 2p . If 1p  and 2p  are Laplace pdfs with parameters 1σ  and 2σ  respectively, then the soft 
threshold function can be used to get )(ˆ1 yw  and )(ˆ2 yw . We would have 

 

)2,()()2,()()(ˆ
2

2

1

2

σ
σ

σ
σ n

b
n

a ysoftypysoftypyw += , 

 
but we still need to determine )(ypa  and )(ypb . For these values we can use the formulas based on Bayes 
theorem [5] as follows: 
 

(y)bg(y)ag
(y)ag

(y)p
21

1
a +

=                                                            (17) 

 

(y)bg(y)ag
(y)bg

(y)p
21

2
b +

=                                                            (18) 

 
where )(1 yg  is the pdf of  y  under the assumption that w  was generated by 1p , and similarly,  )(2 yg  is 
the pdf of  y  under the assumption that w  was generated by 2p . So we have 
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)
σ
σ2

soft(y,
(y)bg(y)ag

(y)bg

)
σ
σ2

soft(y,
(y)bg(y)ag

(y)ag
(y)ŵ

2

2
n

21

2

1

2
n

21

1

+
+

+
=

                                            (19) 

 
Because y  is the sum of w  and independent Gaussian noise, the pdf of y  is the convolution of the pdf of  
w  and the Gaussian pdf, 
 

)()(
)(*)()(*)(

)(*))()(()(

21

21

21

ybgyag
ypybpypyap

ypybpyapyp

nn

ny

+=
+=

+=

 

 
If w  follows the Laplacian mixture model, according to Eq. (14) we have 
 

),(*),()( 11 nyGaussianyLaplceyg σσ= )
σ2

yexp(.
σπ2

1*)y
σ

2exp(
σ2

1
2
n

2

n11
−−=          (20) 

 
and 
 

),(*),()( 22 nyGaussianyLaplceyg σσ= )
σ2

yexp(.
σπ2

1*)y
σ

2exp(
σ2

1
2
n

2

n22
−−=          (21) 

 
)(1 yg  and )(2 yg  are not one of the standard pdfs that are commonly known. Figure 10 shows the pdf of 

the sum of a Laplace and a Gaussian random variable. A formula for pdf of y  that is the sum of a Laplace 
random variable with standard deviation iσ  and a zero-mean Gaussian random variable with variance nσ  
is given by [20] 
 

2,1,)]
2

(

)
2

().[
2

exp(
22
1)( 2

2

=
σ

+
σ
σ

+

σ
−

σ
σ

σ
−

σ
=

iyerfcx

yerfcxyyg

ni

n

ni

n

ni
i

                                     (22) 

 
where 
 

∫ −

π
=

−=
=

x t dtexerf

xerfxerfc
xerfcxxerfcx

0

22

22)(

)(1)(
)()exp()(

 

 
If we use the notation ),,( nxyLapGauss σσ  for the pdf in (22), then we will have  
 

),,(:)(
),,(:)(

22

11

n

n

yLapGaussyg
yLapGaussyg

σσ=
σσ=

 

 
and so y  will be a mixture of two LapGauss pdf with the following pdf: 
 

),,(.),,(.

)()()(

21

21

nn

y

yLapGaussbyLapGaussa

ybgyagyp

σσ+σσ

=+=
                                (23) 
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Fig. 8.  Histograms of the wavelet coefficients and the best fitted Laplacian mixture 

 model in second scale of Lena image 
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Fig. 9.  Histograms of the wavelet coefficients and the best fitted pdf in second scale of Lena image in 
 the log domain. From top left, clockwise: Gaussian pdf, Laplace pdf, a mixture of  

Laplace pdfs and a mixture of Gaussian pdfs 
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Fig. 10. pdf of the sum of a Laplace and a Gaussian random variable 

 
Figure 11 shows the histogram of the noise-free 512512×  Lena image and the mixture of two Laplace 

pdfs fitted to it, as well as the histogram of the noisy image corrupted with additive Gaussian noise with 
10=nσ  and the mixture of two LapGauss pdfs fitted to it.  
To find the shrinkage function, the LapGauss pdf is not needed directly, but only as it appears in the 

following expression 
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After canceling some common terms and rearranging we get 
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As 1)()( =+ ypyp ba  we get 
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where R is given by the formula above.  

 

  
Fig. 11.  Histogram of the noise-free and noisy Lena image and the best fitted mixture model 

 
Like the soft threshold function, this nonlinear shrinkage function that we call LapMixShrink reduces 

(or shrinks) the value of y  to estimate w . For several different values of the model parameters, some of 
the shrinkage functions are given in Fig. 12. The nonlinear function does not shrink large values of  y   as 
much as the soft threshold function does.  

Note that in order to use this type of shrinkage function, it is necessary to estimate the parameters of 
the mixture model ( 1,σa  and 2σ ) from the noisy data. In practice, we have only noisy data nwy +=  as a 
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mixture of two LapGauss components, and assuming the noise variance nσ  is known, we can estimate the 
model parameters 1,σa  and 2σ  using the EM algorithm. The threshold functions for each subband of the 

512512×  Lena image corrupted with additive Gaussian noise with 10=nσ  after estimating parameters is 
illustrated in Fig. 13.  

 
Fig. 12. LapMixShrink function produced from a mixture of two Laplace pdf 

 

  
Fig. 13. The threshold functions LapMixShrink for Lena image in each subband 
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Instead of LapMixShrik, other nonlinear shrinkage functions can be found with other mixture models. 
For example, if w  follows the Gaussian mixture model (15), 1p  and 2p  are Gaussian pdfs with 
parameters 1σ  and 2σ  respectively. Therefore, Eq. (6) can be used to get )(ˆ1 yw  and )(ˆ 2 yw  in Eq. (16), 
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In this case, )(1 yg  and )(2 yg  in Eqs. (17) and (18) can be written as 
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Thus, Eqs. (17) and (18) can be written as 
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Therefore, we can write Eq. (16) as 
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Figure 14 shows this shrinkage function, that we have named the GaussMixShrink nonlinearity, for the 
same model parameters according to Fig. 13. 
 

3. EXPERIMENTAL RESULTS 
 
In the previous section, we have proposed a new statistical model for wavelet coefficients and obtained a 
MAP estimator for this model. This section presents image denoising examples to show the efficiency of 
this new model and compare it with other methods in the literature. We test our algorithm in a standard 
and complex wavelet transform domain. Complex wavelet transform is an over-complete wavelet 
transform featuring near shift invariance and has improved directional selectivity compared to the standard 
wavelet transform [16, 21].   

Figure 15 shows part of the original image, noisy image and denoised image obtained using our 
shrinkage functions illustrated in Fig. 13. Denoised images with GaussMixShrink and LapMixShrink in a 
standard and complex wavelet domain are illustrated in Fig. 16. We also have compared our shrinkage 
function (24) with the classical soft thresholding estimator given in (10) for image denoising. The 

512512×  Lena image is used for this purpose. Zero mean white Gaussian is added to the original image. 
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Part of the denoised image using the soft threshold and the denoised image using the LapMixShrink 
function are illustrated in Fig .17 and the LH subband of the denoised images in third scale are shown in 
Fig. 18. The denoised image using the soft threshold has a RMSE of 4.97, while the denoised image 
obtained using our shrinkage function has a RMSE of 4.83.  A comparison between the RMSE in each 
subband after denoising with soft thresholding and the LapMixShrink method is illustrated in Fig .19. 
 

  
Fig. 14. The threshold functions GaussMixShrink for Lena image in each subband 

 

  
Fig. 15. Denoising with LapMixShrink for Lena image corrupted 

 with additive Gaussian noise with 10=nσ  
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Fig. 16. Denoising with GaussMixShrink and LapMixShrink for Lena image 

 corrupted with additive Gaussian noise with 20=nσ  
 

             
Fig. 17.  Denoising with soft thresholding and LapMixShrink for Lena image 

corrupted additive Gaussian noise with 10=nσ  
 

We also tested our algorithm for a mixture of two and three Laplace pdfs in a standard and complex 
wavelet domain using different additive Gaussian noise levels ,20,10=σn  30 to three 512512×  grayscale 
images, namely, Lena, Barbara and Boat, and compared them with VisuShrink, SureShrink, BayesShrink 
and HMT. Performance analysis is done using the PSNR measure. The results can be seen in Table 1. 
Each PSNR value in the table is averaged over ten runs. In this table, the highest PSNR value is bolded 
and the best PSNR in the standard wavelet domain is underlined. As seen from the results, our algorithm 
mostly outperforms the others.  
 

Table 1. Average PSNR values of denoised images over ten runs for different test images and noise levels of noisy, 
Visushrink, Sureshrink, Bayesshrink, HMT system and our Model 1 (two Laplace components  

in wavelet domain), our Model 2 (three Laplace components in wavelet domain), 
 our Model 3 (three Laplace components in complex wavelet domain) 

 
 Noisy VisuShrink SureShrink BayesShrink HMT Our model 1 Our model 2 Our model3

Lena         
10n =σ  28.18 28.76 33.28 33.32 33.84 33.60 33.63 34.83 
20n =σ  22.14 26.46 30.22 30.17 30.39 30.41 30.42 31.72 
30n =σ  18.62 25.14 28.38 28.48 28.35 28.67 28.75 29.91 

Boat         
10n =σ  28.16 26.49 31.19 31.80 32.28 31.94 31.99 33.00 
20n =σ  22.15 24.43 28.14 28.48 28.54 28.59 28.63 29.58 
30n =σ  18.62 23.33 26.52 26.60 26.83 26.74 26.84 27.64 

Barbara         
10n =σ  28.16 24.81 30.21 30.86 31.36 31.40 31.43 33.09 
20n =σ  22.14 22.81 25.91 27.13 27.80 27.25 27.30 28.88 
30n =σ  18.62 22.00 24.33 25.16 25.11 25.14 25.18 26.54 
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Fig. 18. Comparison between denoising with soft thresholding and LapMixShrink in scale 3, LH subband 

 

 
Fig. 19. RMSE in each subband after denoising with soft thresholding and LapMixShrink 
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4. CONCLUSION AND FUTURE WORKS 
 
In this paper we use a LapMixShrink function based on a mixture of Laplace pdfs for modeling wavelet 
coefficients in each subband. Experiments show that our model has better visual results than other 
methods such as soft thresholding. In order to show the effectiveness of the new estimator, we compared 
the LapMixShrink method with effective techniques in the literature and we see that our denoising 
algorithm mostly outperforms the others. The performance of this subband-adaptive data-driven system is 
also demonstrated on the complex wavelet domain. 

Instead of this shrinkage function, other nonlinear shrinkage functions can be used. For example, 
instead of using a Laplace pdf we can use generalized Gaussian distribution or, instead of using the MAP 
estimator for a mixture of Laplace random variables in Gaussian noise, we can use the minimum mean 
squared error (MMSE) estimator. These new pdfs and estimators may lead to better results. Also, instead 
of processing each wavelet coefficient individually, better denoising results can be achieved by processing 
groups of wavelet coefficients together [11, 15-17]. Thus, if we can use a model for wavelet coefficients 
that not only is a mixture but is also bivariate, such as, bivariate Gaussian mixture, bivariate Laplacian 
mixture, Cauchy mixture or circular symmetric Laplacian mixture, the performance of the denoising 
algorithm will be improved. Because the state-of-the-art algorithms [17, 19] generally use local adaptive 
methods, using these methods in combination with the LapMixShrink function, such as LapMixShrink 
with local parameters, may further improve the denoising results.  
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APPENDIX 
EM algorithm: 
 
The Expectation-Maximization algorithm is an iterative numerical algorithm that can be used to estimate 
the parameters of a mixture model. Each iteration consists of an E-step and an M-step. Here we give only 
a simple description of the EM algorithm. The mixture model is 
 

)()()( 21 xbpxapxp +=  
 
where 1=+ ba . The data is nx  for Nn ,...2,1= . From the data we want to estimate the 3 parameters 1,σa  
and 2σ . 
The EM algorithm works by introducing an auxiliary variable that represents, for each data point, how 
likely that the data point was produced by one or the other of the two components )(1 xp  and )(2 xp . This 
auxiliary variable is denoted by )(1 nr  and )(2 nr . )(1 nr  represents how responsible )(1 xp  is for generating 
data point nx , while )(2 nr  represents how responsible )(2 xp  is for generating data point nx . 

The EM algorithm starts by initializing 1,, σba  and 2σ , and then proceeds with a sequence of E-M 
steps until the parameters satisfy some convergence condition. The initial values for a and b should satisfy 

1=+ ba . 
The E-step calculates the responsibility factors 
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Note that the responsibility factors are between 0 and 1 and that 1)()( 21 =+ nrnr . 
The M-step updates the parameters 1,, σba  and 2σ . The mixture parameters a  and b  are computed by 
 

∑∑
==

←←
N

n

N

n
nr

N
bnr

N
a

1
2

1
1 )(1,)(1  

 
It is easy to verify that 1=+ ba  is guaranteed. One way to update 1σ  and 2σ  is to modify the basic 
formula for the sample variance. Instead of estimating the variance as the mean of the squares of the data 
values using the usual formula, ( )∑ =

←
N
n nxN

1
22

1 /1σ̂ , we can estimate 2
1σ  as a weighted sum of the data 

values, where the weight for nx  is the responsibility of )(1 xp for the data point nx . That gives the 
following formulas for the Laplacian case. 
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For many mixture models such as a mixture of LapGauss pdfs, a closed form for computing 1σ  and 

2σ  does not exist. In these cases, the following formula produced from a mixture of Gaussian pdfs can be 
used to approximate 1σ  and 2σ . 
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