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Abstract– Communication system recognition can be used in some civilian and military 
applications. The recognition of the system is done by inspecting the received signal properties 
like modulation type, carrier frequency, baud rate and so on. Therefore we need Automatic 
Modulation Recognition (AMR) in addition to carrier and baud rate estimation methods. In this 
paper we introduce a new AMR method based on time and spectral domain features of the 
received signal. A neural network is used as the classifier. A broad class of analog and digital 
modulations is considered. Baud rate and carrier frequency estimation is performed by existing 
methods referred to in this paper. Using this information the protocol used for signal transmission 
is detected.            
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1. INTRODUCTION 
 

Communication systems recognition can be used in some civilian and military applications. In order to 
accomplish the task, one should be able to extract some information from the detected signal. Recognizing 
the modulating scheme is an important step forward in this task.  

Different methods of Automatic Modulation Recognition (AMR) can be categorized into two broad 
fields: Pattern Recognition and Decision Theoretic Approaches. In the past, decision making was the main 
method used by researchers like [1-6]; but in recent researches, pattern recognition methods are dominant, 
especially using neural networks. Some of the papers dealing with this subject include [7-11]. The aim of 
this paper is to introduce a proper method in order to automatically recognize the modulating scheme and 
data communication protocol.  

Consider the case where decoding the data content of a previously unknown received signal is tried. 
In order to decode the data correctly we need some information from the received signal to be able to 
extract the data. In [12] a three step method for data decoding from an unknown received signal is 
introduced (Fig. 1). Actually the gap between the AMR step and the decoding step is too large, making the 
final step extremely difficult to achieve. 

We propose an additional step named protocol recognition as in Fig. 2. In this paper we will introduce 
a new modulation classifier using features of the received signal in both time and spectral domain. Then 
using the modulation type in addition to the estimated baud rate and carrier frequency, the communication 
system type can be recognized using a database of system protocol features. There are a number of 
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different methods for AMR introduced in the literature. Table 1 presents a brief review on the different 
approaches to the AMR problem. 

 
 

 

 

 
 

 

 

 
  Fig. 1. The input/output information relationship              Fig. 2. The proposed input/output information relationship 
 

Most of these methods have been proposed for a limited number of modulations. For example, 
extensive works are done to classify MPSK signals [1, 2, 5 and 16]. On the other hand each method uses 
its own assumptions about the known parameters of the received signal such as carrier frequency, SNR, 
baud rate and so on. So, combining different   methods to recognize a broader class of modulation types is 
not a simple task. Consider, for example, a method designed to classify MPSK signals and another method 
for classification of MFSK signals. Besides any other different known and unknown parameter 
assumptions, the former method assumes that input signals are solely PSK modulated, but with different 
M. Therefore the response of the method to other signals, for example FSK signals, is not known. The 
problem is more severe if the methods assume different previously known parameters like SNR or carrier 
frequency.  

The modulation set chosen in this paper includes AM, LSSB, USSB, FM, MASK, MPSK, MFSK all 
for M=2, 4, 8 and MSK (minimum shift keying). According to Table 1 there are a number of different 
methods to classify subsets of the above mentioned modulation schemes, but there is no method to 
recognize all of these 14 modulation schemes. We use some of the features introduced previously in the 
literature in our classification problem.  

 The above modulation schemes are selected from nine communication systems that we try to 
recognize. We have chosen the systems with different modulation schemes in order to increase the 
generality of our method. These systems are ACARS, ALE, ATIS, FMS-BOS, PACTOR-II, PSK31, 
DGPS, GOLAY and ERMES. Successful recognition of these sample systems makes it easier to expand 
our method to other communication systems. Table 2 gives a brief description of the chosen 
communication systems. 

 The problem definition and introducing the selected features used in the proposed AMR method is 
presented in Section 2. Section 3 is devoted to the proposed classifier which is a neural network. The 
carrier and baud rate estimation and the proposed system recognition method is introduced in Section 4. 
Results of simulation are presented in Section 5 and finally, conclusions are given in Section 6.  
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Table 1. Different approaches to the AMR problem 
 

Comments Modulation Classes Classification MethodFeatures Type Approach 

SNR>18dB ASK2,FSK2,PSK2,PSK4,PS
K8,CW Pattern recognition Time domain features Liedtke Approach [13] 

known fc 
synch. case BPSK,QPSK Decision theory Likelihood ratio Kim-Polydores 

Approach [14] 

 AM,DSB,SSB,FM,CW,QPS
K,QASK 

Pattern recognition 
(Neural Network) Time domain features Whechel, et. al  

Approach [15] 

SNR>15dB MPSK,MFSK Pattern recognition Time domain features Hsue-Soliman 
Approach [1] 

 MPSK Pattern recognition Time domain features Soliman-Hsue 
Approach [16] 

 
AM,LSSB,USSB,FM,ASK,

BPSK,QPSK 
NCFSK,CPFSK,FSK,CW 

Pattern recognition 
(Neural Network) Spectral features Ghani-Lamontagne 

Approach [10] 

 
PSK2,PSK4,PSK8,OQPSK,

MSK,QAM16 
QAM64,FSK2,FSK4,FSK8 

Pattern recognition 
(Neural Network) Time domain features Louis-Sehier 

Approach [9] 

known fc ,bit 
rate,SNR and signal 

power 
MPSK Decision theory Likelihood ratio Hung-Polydores 

Approach [2] 

 
AM,LSSB,USSB,VSB,FM,

ASK2,ASK4 
PSK2,PSK4,FSK2,FSK4 

Pattern recognition Time domain and 
spectral features 

Azzouz-Nandi 
Approach 
 [17-20] 

 LSSB,USSB Pattern recognition Time domain features Al-Jalili Approach 
[21] 

 MPSK,QAM Pattern recognition Time domain features 
(constellation shape) 

Hero-Hadinejad 
Mahram Approach 

[22] 
known fc ,bit 

rate,SNR and synch. 
and coherency 

BPSK,QPSK,8PSK,QAM16
,QAM32 QAM64 Decision theory Likelihood ratio Sills Approach [23] 

 MPSK,QAM,MFSK Pattern recognition Spectral features Lallo Approach [24] 

 QAM Pattern recognition Time domain features 
(constellation shape) 

Mobasseri Approach 
[7] 

 AM,FM,CW,DSB,FSK,PSK Pattern recognition Azzous and Nandi  
Features[24] 

Boudreau -et. al 
Approach [4] 

known fc 
SNR>5dB ASK,4DPSK,16QAM,FSK Pattern recognition Time domain features 

 
Lopatka-Pedzisz 
Approach [25] 

 ASK2,ASK4,BPSK,QPSK,F
SK2,FSK4 QAM16,QAM64 

Pattern recognition 
(Neural Network) 

Time domain and 
spectral features 

Nandi-Wong 
Approach [8] 

 High level QAM Pattern recognition 
(Neural Network) 

Time domain features 
(constellation shape) Taira Approach [11] 

known fc ,symbol 
duration, signal power 

and coherency 
BPSK,QPSK,QAM16 Pattern recognition 

(Neural Network) Time domain features 
Kalinin-Kavalov 

Approach  
[26 and 27] 

SNR>8dB QPSK,SQPSK,MSK Pattern recognition 
(Neural Network) Time domain features Delgosha-Menhaj 

Approach [29] 

 FSK4,FSK8 Pattern recognition Time domain features Ramakonar-et. al 
Approach [31] 

 QAM,PSK Pattern recognition Time domain features Spooner Approach 
[30] 

 QAM,PSK Pattern recognition Time domain features 
(constellation shape) 

Nikoofar-et al. 
Approach [28] 
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Table 2. The selected communication systems description  
 

Application Frequency band Baud rate Comment Modulation System 
Aircraft 

Communication 
Addressing and 

Reporting System 

VHF 2400 BPS  FSK-AM ACARS 

Automatic Link 
Establishment in HF 

radio systems 
HF 125 BPS  FSK-SSB ALE 

Automatic 
Transmitter 

Identification 
System in VHF-

UHF radio systems

VHF UHF 1200 BPS 
FSK 

F1=1300 HZ 
F2=2100 HZ 

FSK-FM ATIS 

radio signaling 
system for security 

authorities and 
organizations 

VHF 1200 BPS 
FSK 

F1=1200 HZ 
F2=1800 HZ 

FSK-FM 
OR FSK FMS-BOS 

a proprietary paging 
system VHF 300/600 BPS  FSK GOLAY 

European Radio 
Message Standard VHF UHF 3125 BPS  4PAM-FM 

(4-FSK) ERMES 

data transmission 
system for radio 

amateur use 
HF 100 BPS  DBPSK DQPSK 

D8PSK PACTOR-II 

text conversations 
between two or 
more parties for 

radio amateur use 

HF 31.25 BPS  DBPSK DQPSK PSK31 

Differential Global 
Positioning SystemHF 100/200 BPS  MSK DGPS 

 
2. PROBLEM DEFINITION AND THE SELECTED FEATURES  

Each type of modulation technique changes some parameters of the carrier signal according to the 
message to be sent. The main parameters of the carrier signal are frequency, phase and amplitude. So in 
order to recognize different modulation schemes, we should find some features that show the variation of 
these parameters.  

FM and AM analog modulations are described according to the following formula [32] 
 

y(t)=A[1+mx(t)]cos(2π cf t+ dk ∫ dttx )( )                                             (1) 

where m is the AM modulation depth, Kd is FM modulation index, x(t) is the modulating signal and fc is 
the carrier frequency. 

The digital modulations are represented as [33] 
 

MASK:   ])(Re[)( 2 tfj
mm

cetUAtS π=      m=1,2,..,M 

MPSK:  ])(Re[)(
)]1(22[ −+

=
m

M
tf

m
cetAUtS

π
π

     m=1,2, ..., M                             (2) 

MFSK:  ])(Re[)( )(2 tffj
m

mcetAUtS += π           m=1,2,..,M 
 
Minimum shift keying can be described as continuous phase modulation according to 
 

MSK: ]
2

)
4
1(2cos[)( nnnc IntI
T

fAtS θππ +−+=      Tntnt )1( +≤≤                       (3) 
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Where     ∑
−

−∞=

=
1n

k
kn Ihπθ    ,   nI are data amplitudes and h is called modulation index. 

Now we need some features to show the variation in amplitude, phase and frequency of the received 
signal.   

According to Table 1, many different features have been introduced previously to classify subsets of 
the modulation schemes considered in this paper, but there is no method to recognize all of them 
simultaneously. So both time domain features introduced by Azzouz and Nandi [17] and spectral features 
proposed by Ghani and Lamontagne[10] are used for our classification problem. But there are some 
difficulties in combining the selected set of features in a way to make the proposed system efficient and 
reliable. Since we have used the neural networks as our classifier it is possible to use the hierarchical 
method for classification [9]. Therefore we consider AM, LSSB, USSB, FM, ASK2, ASK4, PSK2, PSK4, 
FSK2 and FSK4 as metagroup1 and the remaining ones (ASK8, PSK8, FSK8 and MSK) as metagroup2. 
We use two different neural networks with two different features for the two mentioned metagroups. The 
first neural network classifies the received signal in AM, LSSB, USSB, FM, ASK2, ASK4, PSK2, PSK4, 
FSK2, FSK4 and metagroup2. If the signal is classified as metagroup2 by the first neural network (Fig. 3), 
then the second neural network classifies it in ASK8, PSK8, FSK8 and MSK. 

For metagroup1 we use the nine time domain features proposed by Azzouz and Nandi [17] which are 
described in Table 3 and are evaluated as follows: 
 

1- NsiaDFT cn /))((max 2
max =γ                                                           (4) 

 
Ns : Number of samples per block         

 cna : Normalized-centered instantaneous amplitude 

2- ∑ ∑
> >

φ−φ=σ
tn tnaia aia

NLNLap icic
)( )(

22 ))(/1())((/1                                        (5) 

 
NLφ : Centered-nonlinear component of instantaneous phase, C: Number of samples in NLφ  for which 

na (i) > ta , the threshold value of  
))((

)()(
iamean

iaian =  and a(i) is the instantaneous amplitude. 

 
3- ∑ ∑

> >
φ−φ=σ

tn tnaia aia
NLNLdp icic

)( )(

22 ))(/1())((/1                                        (6) 
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)(iX c : Fourier transform of RF signal 
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)(if N  : Normalized-centered instantaneous frequency 

7- 2

)()(

2 ))(/1())((/1 ∑∑
>>

−=σ
tntn aia
cn

aia
cna iaciac                                          (10) 

 

           8- 
22

4

42 )}}({{
)}({

iaE
iaE

cn

cna =µ                                                                    (11) 

 
where E{} means Expected value. 
 

9- 
22

4

42 )}}({{
)}({

ifE
ifE

N

Nf =µ                                                                    (12) 

 
Nf  :  Normalized-centered instantaneous frequency 

 
Table 3. Time domain features [17] 

 
Description Feature 

Maximum value of the spectral power density of the normalized-centered instantaneous 
amplitude of the signal maxγ 

Standard deviation of the absolute value of the centered non-linear component of the 
instantaneous phase, evaluated over the non-weak intervals of the signal apσ 

Standard deviation of the centered non-linear component of the instantaneous phase, 
evaluated over the non-weak intervals of the signal dpσ 

 Is used for measuring the spectrum symmetry around the carrier frequency P 
Standard deviation of the absolute value of the normalized- centered  instantaneous 

amplitude of the signal aaσ 

Standard deviation of the absolute value of the normalized-centered  instantaneous 
frequency, evaluated over the non-weak intervals of the signal afσ 

Standard deviation of the normalized-centered  instantaneous amplitude, evaluated over 
the non-weak intervals of the signal aσ 

Kurtosis of the normalized-centered  instantaneous amplitude of the signal a
42µ 

Kurtosis of the normalized-centered  instantaneous frequency of the signal f
42µ 

 
For the second metagroup we use the spectrum of the signal as the feature as proposed in [10]. In this 

neural network, the Welsh periodogram of the signal is used as a feature for classification.  To reduce the 
dimension of the input data, the main lobe of the periodogram containing most of the information is used 
and the remaining parts are discarded. The proper interval of periodogram is chosen after checking all the 
modulation set spectrums. It is trivial that signals with a higher bit rate will take more bandwidth than 
lower bit rates. Therefore, in order to choose the proper interval of the spectrum, the highest bit rate in our 
data base, which belongs to ERMES protocol (3125 bps), is considered. We have used 256 point FFT and 
it seems that a 6 point interval around a carrier frequency which has a 28.125 KHz bandwidth contains the 
proper portion of the main lobe. Hence we are sure that the selected interval will contain the main lobe of 
the spectrum of other systems with lower bit rates.  

The classification procedure is performed frame by frame. For the first neural network each frame 
contains 2048 samples of the received signal. The modulating scheme is deduced after the integration of 
the result of all available signal frames. The modulating scheme with the greatest number of recurrences is 
considered as the modulating scheme.  For the second neural network, the features are extracted from the 
signal frames of 8192 sample lengths for better spectrum estimation. Again each frame is considered 
separately and the final decision is made after integrating the result of each frame classification. 
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3. NEURAL NETWORK STRUCTURE 
 
We have used the concept of hierarchical neural networks described in [9]. In this method classification 
can be done in successive steps. The outputs can be classified in groups called metagroups and the neural 
network classifies these metagroups first.  Then classification can be done within each metagroup in the 
same manner. Our neural network classifies two metagroups mentioned in part 2. The input data is 
classified as one of the first metagroup members or just as metagroup 2. So we do not need an additional 
neural network for classification of the first metagroup subsets, however signals belonging to the second 
metagroup are classified to the final output result using another neural network structure. This method is 
shown in Fig. 3. 

In Fig. 3, Net1 is a feed forward neural network with two hidden layers. The structure is chosen after 
extensive simulation tests. The number of nodes is 9 in the input layer, 75 in the first hidden layer, 75 in 
the second hidden layer and 11 in the output layer. The number of nodes is chosen to get the best 
performance results. The activation function used is log-sigmoid in the input and two hidden layers and a 
pure linear function in the output layer. The network is trained using a variable rate back propagation 
learning algorithm [36]. This training scheme converges faster and avoids falling in a shallow minimum, 
leading to better results. 

With standard steepest descent, the learning rate is held constant throughout training. The 
performance of the algorithm is very sensitive to the proper setting of the learning rate. If the learning rate 
is set too high, the algorithm can oscillate and become unstable. If the learning rate is too small, the 
algorithm takes too long to converge. It is not practical to determine the optimal setting for the learning 
rate before training, and, in fact, the optimal learning rate changes during the training process as the 
algorithm moves across the performance surface.  

The performance of the steepest descent algorithm can be improved if we allow the learning rate to 
change during the training process. An adaptive learning rate attempts to keep the learning step size as 
large as possible while keeping learning stable. The learning rate is made responsive to the complexity of 
the local error surface.  

In adaptive learning rate, the training procedure is as follows. First, the initial network output and 
error are calculated. At each epoch new weights and biases are calculated using the current learning rate. 
New outputs and errors are then calculated. If the new error exceeds the old error by more than a 
predefined ratio, (1.04 in our simulations), the new weights and biases are discarded. In addition, the 
learning rate is decreased (by multiplying by 0.7 in our simulations). Otherwise, the new weights, etc., are 
kept. If the new error is less than the old error, the learning rate is increased (by multiplying by 1.05 in our 
simulations). This procedure increases the learning rate, but only to the extent that the network can learn 
without large error increases. 

The second neural network named Net2 in Fig. 3 is a one hidden layer feed forward neural network 
that is trained using the same method as Net1. It has only one input node. There are 80 nodes in its hidden 
layer and log-sigmoid function is used in its input and the hidden layer and a pure linear function in the 
output layer. 

For each modulation type we have used 240 blocks of data each containing 2048 samples of the signal 
with SNRs varying from 0 to 55 dB for training the networks and another set of the same size but different 
from those used for training as the test set. The SNR levels are increased in 5dB steps. Therefore 12 levels 
of SNR is used and each 20 frames of data is in one SNR level. The stop margin of training was 300 
epochs or an RMS rate of less than 0.01. The maximum value of output nodes is considered for a 
classification result.  
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Fig. 3. The neural network structure used in our method 
 

4. SYSTEM RECOGNITION 
 
Figure 4a depicts the general block diagram of the proposed signal intercept system. As this figure shows, 
the whole expected radio frequency (RF) spectrum is searched for signal presence using a scanning energy 
detector receiver. As soon as the presence of a signal is detected (S1(t)), its frequency band is down 
converted to intermediate frequency (IF). In this step we have only a rough estimate of the carrier 
frequency(fRF). The IF signal (S2(t)) is processed by an AMR block using the presented algorithms of 
Sections 2 and 3. The precise carrier frequency is also estimated (fc). For carrier frequency estimation we 
have used the zero crossing method of [1] with some modifications. Using the recognized modulation type 
(Mod. Typ.) and the estimated carrier frequency (fc) the demodulated signal can be derived (x[n]). 
The system recognition block in Fig. 4a, uses fc ,  fRF , Mod. Typ. and x[n] and recognizes the 
communication system type. 

The main features of the 9 systems used in the system recognition process (modulation scheme, bit 
rate and carrier frequency) are presented in Table 2. Further details can be found in [35]. Fig. 4.b shows 
the proposed system recognition decision tree. In the proposed scheme we need two main blocks, baud 
rate estimator and carrier frequency estimator.  

For carrier frequency estimation we have used the zero crossing method of [1] with some 
modifications and the baud rate is estimated using the method proposed in [34].  

Using the recognized modulation type, estimated carrier frequency and baud rate, the system can be 
recognized using the decision tree given in Fig. 4.b. It should be noted that according to Table 2, some of 
the systems use two-step modulations. For example ACARS (Aircraft Communication Addressing and 
Reporting System) uses FSK modulation for base band modulation of data and then AM modulates the 
resultant signal in VHF band. FMS-BOS also uses a two-step modulation FSK-FM. In these cases the final 
modulation type is recognized and the system can be recognized by processing the demodulated signal.  

 It can be seen that our proposed AMR algorithm can recognize more modulation classes than are 
used in the 9 communication systems of Table 2. So, although we considered nine classes of 
communication systems in this research, expanding the number of classes is straightforward using the 
principles given here. According to Fig. 4, it can be seen that the main source of error in system 
classification is the AMR error. Due to a large difference in baud rate or carrier frequency, the 
classification based on these two parameters has a negligible error relative to the AMR error( The 
simulations show that for SNR>15dB the classification error between ATIS and FMS-BOS due to the 
carrier frequency estimation error is less than 0.5 percent and the baud rate classification error is almost 
zero). So in the next section we solely present the performance of the AMR algorithm. 
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Fig. 4. a) Block diagram of the signal intercept system 

 
Fig. 4. b) System recognition decision tree 

 
5. SIMULATION RESULTS 

 
For simulation we choose an IF frequency equal to 150 KHz for our simulations. Two parameters which 
affect the selection of IF frequency are baud rate and the modulation type. The highest baud rate has the 
widest spectrum and the modulation type also affects the spectrum width. In our case 150 KHz value for 
IF frequency is chosen according to these parameters. The IF signals are sampled with a 1200 KHz 
sampling frequency which is high enough to avoid aliasing. In order to make our decision more reliable, at 
least a few bits of information should be received. 
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Two separate sets of signals have been used for training and testing the neural network. The results 
are presented in Tables 4 and 5. It should be mentioned that the results have been evaluated considering 20 
frames of signal in each SNR.  In Tables 4 and 5 the performance of the neural network for Class1 and 2 
signals is presented separately. The whole performance has been shown in Table 6. 
 

Table 4. The percent of correct decision probability of the first class 
 

SNR(dB) 0  5 15 25 35 45 55 
AM 87.51 90 90 100 100 100 100 

LSSB 15 55.5 90 100 100 100 100 
USSB 17 85.7 95 100 100 100 100 

FM 90 85 90 100 100 100 100 
ASK2 90 100 100 100 100 100 100 
ASK4 80 100 100 100 100 100 100 
PSK2 10 35 80 100 100 100 100 
PSK4 15 65 95 100 100 100 100 
FSK2 85 75 100 100 100 100 100 
FSK4 75 100 100 100 100 100 100 

 
Table 5. The correct decision probability of the second class 

 
SNR 0 dB 5 dB 15 dB 25 dB 35 dB 45 dB 55 dB 
ASK8 15 60 80 100 100 100 100 
PSK8 45 70 90 95 100 100 100 
FSK8 30 75 87.5 97 100 100 100 
MSK 20 60 95 100 100 100 100 

 
Table 6. Simulation results: Input modulations vs. deduced modulations at 15dB SNR 

 
Input 

Modulation Recognized Modulation scheme 

 AM LSSB USSB FM MASK MPSK MFSK MSK 
AM 90% - - - 10% - - - 

LSSB - 90% - - - 5.5% 3.5% 1% 
USSB - - 95% - - 4% 1% - 

FM - - - 90% - - 10% - 
ASK2 - - - - 100% - - - 
ASK4 - - - - 100% - - - 
ASK8 20% - - - 80% - - - 
PSK2 - - - - - 80%-20%(error) - - 

PSK4 - - - - - 95%-5%(error) - - 

PSK8 - - - - - 90%-10%(error) - - 
FSK2 - - - - - - 100% - 
FSK4 - - - - - - 100% - 
FSK8 - - - 13.5% - - 87.5% - 
MSK - - - 0.5% - - 4.5% 95% 

 
 Although the modulation subset considered in this paper is different from that of [17] and [10], we 

compare the performance of our method with the methods of Azzouz[17] and Ghani[10] in Table 7 at 
SNR equal to 15 dB. As it is clear from Table 7, the proposed method presented in this paper has almost 
the same performance compared to [17] and [10], but in a broader class of modulations.  
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Table 7. Comparison of our method with Azouz[17] and Ghani[10] at 15 dB SNR 
 

 AM LSSB USSB FM ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 
 Azzouz [17] 88.5 99.8 98.5 90.1 96.8 86.5 99.5 96.8 99 99.5 
  Ghani [10] 97.1 99.2 99 89.9 96.1 ------ 96.8 99.1 100 ------ 
Our Method 90 90 95 90 100 100 85 95 100 100 

 
We have also investigated the result of the reduction of the frame length. As one might expect, 

reducing the frame length decreases the number of bits of information in the frame and can reduce our 
decision reliability drastically.  The results shown in Fig. 5 indicate that, the number of bits less than 5 
makes the correct decision impossible. Although this figure has been obtained for PSK31 protocol with 
31.25 baud, it can be used as a figure of merit for all other protocols too. In the simulations corresponding 
to Fig. 5, for testing the effect of the number of received bits on the decision, we assumed a noise-less 
channel, so the result does not contain the effect of SNR levels. 

     
Fig. 5.  Effect of number of bits on decision error  

 
Figure 6 shows the effect of the number of frames on decision errors. Because the decision is made on 

a frame basis, it is expected that integrating the decision results on more frames will increase the accuracy. 
In this situation, although each frame is classified independently by the neural network as a modulation 
type, a group of frames are considered together for integration before final decision making. As the 
number of frames in the integration process increases, the error reduces.   

 
Fig. 6. Effect of frame number on average decision error  
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The next step is to estimate carrier frequency and baud rate. Using the methods mentioned in Section 
4, the carrier frequency and baud rate can be estimated effectively in SNRs above 15 dB. Fig. 7 shows 
both carrier frequency and baud rate RMS(root mean square) estimation error in percentage. In Fig. 7a the 
performance of the baud rate estimator is considered against noise where carrier frequency is assumed to 
be known exactly. But in Fig. 7b the effect of carrier frequency estimation error on the performance of the 
baud rate estimator is evaluated. In this figure the noise is not considered. The results are obtained for a 
carrier frequency equal to 150 KHz, and obviously depend on the carrier frequency. But it can be seen that 
the performance of the baud rate estimator decreases as the carrier frequency estimation error increases. 

 
(a)                                                                              (b) 

Fig. 7. Carrier frequency and baud rate estimation error 
 

In our application the baud rate estimation error is not as important as the carrier frequency estimation 
error. A rough estimation of the baud rate can be used in the system database table to match the nearest 
value. However the effect of the estimation error of the carrier frequency is more severe. This is why the 
simple but fast baud rate estimator of [34] can be effectively used in our method.  

Using the recognized modulation scheme and estimated baud rate and carrier frequency and 
comparing this information with the known expected values for the nine systems mentioned earlier, the 
protocol can be recognized.  

 
6. CONCLUSION 

 
We have developed a method for recognition of communication systems based on modulation recognition 
and baud rate and carrier frequency estimation. For automatic modulation recognition we have developed 
a new method based on two different sets of features which have been proposed in the literature for 
different applications, to recognize a wide set of 14 modulation schemes. These modulation schemes have 
not been considered together in a classification problem previously. The proposed AMR method does not 
need a prior knowledge of SNR, carrier phase and symbol rate. The classification procedure is performed 
by the hierarchical neural network. The back propagation training method with a variable learning rate is 
used. Simulation results show that the overall performance of the AMR method used in this paper is above 
75%, even in SNR as low as 5 dB. For SNR above 35 dB, the performance reaches 100%. Although we 
considered nine classes of communication systems in this research, expanding the number of classes is 
straightforward using the principles given here. 
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