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Abstract– Several approaches have been employed for grid adaptation. The most widely used 
ones utilize adaptive-grid redistribution and adaptive-grid embedding. However, the combination 
of these two main methods (r-h) is also possible. This work compares redistribution and 
embedding with a combination of these two methods for steady transonic airfoil flows. The Euler 
equations are integrated into a steady state by an explicit, finite volume, Ni’s Lax-Wendroff 
scheme. Comparison with other numerical solutions is employed in order to evaluate the accuracy 
and efficiency of the techniques. The combination of adaptive-grid redistribution and embedding is 
somewhat more complex than the adaptive embedding method, but the results indicate that for 
two-dimensional invisid flows, when high accuracy is required, their combination is more 
efficient.           
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1. INTRODUCTION 
 

One of the difficult problems facing the computational fluid dynamics is the lack of priori information 
concerning the gradients in the dependent variables to be calculated. Without this information the grid 
used in many numerical solutions is usually wasteful, and does not satisfactorily resolve those important 
regions where gradients exist. Adaptation is the process by which the computational mesh changes in 
response to an evolving solution. Certain regions of a computational domain will always have complex 
flow features such as shocks, expansions and boundary layers, while other regions will have smooth and 
relatively uniform flow. The complex flow regions are often regions with high gradients and larger 
numerical errors. The basic idea behind grid adaptation is to increase the number of grid points in regions 
of high gradients, and reduce the number of grid points where the flow is smooth, thus increasing the 
accuracy and speed of convergence. 

Therefore, the algorithms of grid generation and the solution must be linked. For this reason, adaptive 
methods are much more complicated than fixed-grid methods. Nevertheless, the saving of memory and 
time for many flows are so large that this complexity is permissible. Adaptive methods are suitable for 
flows with different scales, and as the scale differences are higher, the saving is larger. 

Adaptive schemes may be placed into one of three basic divisions. The divisions are r-methods, in 
which a fixed number of nodes are redistributed, h-methods, in which mesh is automatically refined, and 
p-methods, in which the local polynomial degree is increased. Among the adaptive-grid methods, 
redistribution and embedding techniques have been the center of attention of researchers, hence the most 
essential works have been done on them.  
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The numbers of grid points are fixed in the redistribution schemes but the nodes move from regions of 
small error or gradient to regions of large error or gradient. The main idea is that as the physical solution 
develops, the grid points are moved towards regions of large variations and therefore are concentrated in 
these regions. The redistribution method has two main advantages. First, the computational grid can often 
be aligned with interesting flow features, and second, it is relatively easy to implement the method into an 
existing code. The main disadvantages are that the cells tend to become too skewed or too irregular, and it 
is difficult to know, in advance, how many nodes are needed.  

In the grid-embedding methods, the cells are locally divided in the regions of large errors or gradients. 
Indeed, the nodes are added in these regions. Hence, the equations are solved in a composite grid, a fixed 
global grid and adaptively embedded patches in the special regions. Embedded adaptive-grid method 
reduces, remarkably, the number of necessary nodes, memory and computational time. The main 
disadvantages are that computer time and memory increase with refinement, and that the coding and data 
structure are relatively difficult. In addition, some generated nodes do not connect to all neighbor nodes, 
and thus special works are needed to solve the flowfield. Adaptive-grid embedding reduces nodes and 
computational time, but maximum attainable accuracy will be equal to globally fine grid corresponding to 
the finest level of embedded grid. 

Dannenhoffer [1] compared these two methods by solving steady inviscid transonic flows. The results 
have shown that redistribution schemes are easier to implement than the embedding schemes, but 
increasing accuracy in redistribution depends on initial nodes and, if high accuracy is desired, the 
embedding method is probably the better approach. If modest increase in the accuracy is adequate then 
redistribution is probably a better approach, however if high accuracy is desired, then embedding is the 
recommended approach. 

Researchers have also used simultaneous or a combination of adaptive techniques. These 
combinations are often adaptive h-p finite element methods which exploit both h- and p- refinement 
according to the situation that is faced [2-4]. Kallinderis and Baron [5] have used grid-embedding 
associated with equation adaptation in order to solve two-dimensional laminar flows. 

The combination of adaptive-grid redistribution and embedding (r-h) has been described in [6]. It was 
used to solve transonic and supersonic inviscid flows in channels. The resulting flowfield has shown an 
increased shock and expansion waves resolution in comparison with the uniform fine grid and embedding 
method alone. However, the evaluation of the advantages of this combination has apparently been 
insufficient. The accuracy of this method has only been evaluated qualitatively, not precisely with the two 
main adaptive-grid methods of redistribution and embedding. 

This paper focuses on the use of the combination of adaptive-grid redistribution and embedding (r-h) 
in solving the steady transonic flows around NACA0012 airfoil. These relatively simple, two-dimensional 
examples of transonic flow past an airfoil illustrate the need for a solution-adaptive grid procedure. Even 
if only an inviscid Euler solution is required, the computational grid must resolve the high flow 
acceleration region around the leading edge, as well as the high streamwise gradients through the shocks. 
Results are obtained and compared qualitatively and quantitatively with globally fine grid, adaptive-grid 
redistribution and adaptive-grid embedding. Comparisons with other numerical simulations are employed 
in order to evaluate the efficiency and accuracy of this method. 
 

2. GOVERNING EQUATIONS AND NUMERICAL METHOD 
 
The invisid compressible fluid flow is governed by the Euler equations. They represent conservation of 
mass, momentum and energy. These equations for unsteady two-dimensional flows can be written as 
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The state and flux vectors are 
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and for a perfect gas 
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where ρ , u and v, e, p, 0h  and γ  are density, velocity component in the x and y direction, total energy per 
unit volume, static pressure, total enthalpy and specific heat ratio respectively.    

The unsteady Euler equations are integrated into a steady state by an explicit, finite volume, Lax-
Wendroff type time-marching that was developed by Ni [7]. Local time steps are used to accelerate 
convergence to a steady state solution. In addition, Ni’s multiple-grid acceleration technique is also used 
to couple the solution on various embedded grids and to accelerate the overall convergence rate. 
 

3. ADAPTIVE-GRID METHODS 
 
Since most of the adaptive-grid algorithms in this paper are the same as those used in [6], only a summary 
will be given here. There are various techniques for redistribution and embedding, but there is a little 
difference in results. 
 
a) Adaptive-grid redistribution method 
 

The aim of adapting the grid is to decrease the solution error due to the finite interval grid (truncation 
error) and obtain uniform error throughout the flow field. Ideally, we should like to express error explicitly 
and adjust the grid intervals in order to minimize the maximum error. Unfortunately, it is rarely possible to 
obtain the error. Thus, to decrease it indirectly, we will minimize the maximum value of the product of 
grid intervals and a quantity. We will call this quantity the weight function W, and it is assumed that in a 
uniform grid, the truncation error will be high where W is high and vice-versa.  

By reducing the grid interval in one place, the grid size will be increased somewhere else. So the 
minimization will be accomplished by setting this product to a constant value. This procedure is known as 
equidistribution. 

If iW  is the weight function in the interval (i, i+1), the equidistribution equation is: 
 

( ) CSSW iii =−+1                                                                 (4) 
 
where S is the distance between nodes i and a special point along the grid line. Since W is a function of S, 
Eq. (4) is non-linear and must be solved iteratively. This one-dimensional equation can be applied in each 
direction. 

One of the main disadvantages of a one-dimensional adaptation method is that the cells tend to 
become too skewed and therefore, the accuracy of the results is reduced. To avoid excessive skewness, 
grid-points distribution must somehow be affected by their near neighbors. To do this, the direct method 
has been employed. This method is based on a tension and torsion spring analogy suggested by Nakahashi 
and Diewert [8]. In this scheme, the grid-points are imagined to be suspended by tension and torsion 
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springs and optimally redistributed by minimizing the energy of the springs system. Tension springs 
connect the neighboring nodes along grid lines. Satisfying the equidistribution Eq. (4) is analogous to 
obtaining equilibrium in a system of tension springs. In a stretched spring, tension is equal to a spring 
constant multiplied by a spring extension that is analogous to the weight function W multiplied by node 
spacing. In addition, torsion springs connect nodes to their corresponding nodes on the previously adapted 
grid lines which are now fixed. Further, torsion springs control inclinations of grid lines and prevent 
excessive grid skewness. 
 
b) Adaptive grid-embedding method 
 

As mentioned earlier, in grid-embedding methods, cells are locally divided in the regions of large 
error or gradient. To do this, the algorithm must sense large gradient or error regions and automatically 
divide cells in these regions. The process is repeated several times and therefore local embedded grids 
become finer and finer in order to resolve special regions adequately. 

Although subdividing a quadrilateral by quadsection is natural and the simplest way, for some 
flowfield features with a strong one-dimensional nature such as shock wave or boundary layers, bisection 
(directional subdividing) is more efficient to save computational time and storage [5, 9, 10]. In this work, 
directional subdividing from the beginning of the adaptation procedure and throughout the flow field is 
used without any restriction. 

One of the basic steps in the embedding adaptive technique is to set the adaptation parameter and 
threshold to detect the existence and track the evolution of special features of the flowfields such as shock 
waves. The first difference of density is the criterion used in this paper to calculate the adaptation 
parameter. The procedure is as follows: 

1) The absolute values of the density differences of the two opposite walls will be used as the 
adaptation parameter  

41321 ρρρρ −−+=R  and 12432 ρρρρ −−+=R                      (5) 
 
where 1–4 indicate the nodes surrounding each cell. 

2) The average, aveR , and standard deviation, sdR , are used to calculate the threshold, thR  [5]. 
 

sdaveth RRR α+=                                                          (6) 
 

3) The threshold is compared with the adaption parameter in each cell and if the adaption parameter is 
bigger then the cell will be divided. 

The value of parameter α is chosen empirically. Too large or too small values of α may cause 
deficient or extra cells to be refined respectively. 

Hierarchical quadtree grid generation offers an efficient method for the spatial discretization of 
arbitrary shaped two-dimensional domains. It consists of recursive algebraic splitting of sub-domains into 
quadrants, leading to an ordered hierarchical data structure with regard to the storage of mesh information. 
With some modifications to the quadtree structure, the approach proves highly flexible and has been 
adopted for the adaptive grid-embedding procedure. 

A consequence of grid embedding is the internal boundaries between cells with different levels. An 
interface is distinguished by an abrupt change in the cell size. The grid lines may continue across the 
interface or be cut off by the interface. In the latter, cells contain extra nodes at the midside called hanging 
nodes. In this paper, the hanging nodes are removed by the transition of local connections to surrounding 
nodes such that triangular and quadrilateral cells are produced. This method is simple and conservative. 
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c) Combination of redistribution and embedding methods 
 

Using an initial structured grid makes it possible to combine these two adaptation approaches. This 
means that before the grid becomes unstructured, we can employ a redistribution technique and then use 
an embedding method. The following steps describe the solution algorithm: 

1) Initially, the solution is obtained on the relative coarse grid to allow rapid convergence and the 
flow details to appear.  

2) Redistribution method is employed. 
3) Solution is marched to steady state on the new grid. 
4) Steps 2 and 3 are repeated several specified times. 
5) Grid-embedding method is used. 
6) Solution is marched to steady state on the new grid. 

Steps 5 and 6 are repeated for the desired number of adaptation.  
 

4. NUMERICAL RESULTS 
 
To evaluate the accuracy and efficiency of the adaptive-grid methods, two examples are presented. The 
test cases consist of steady inviscid transonic flows around the NACA0012 airfoil. The coarse and 
globally fine grid is o-type with the far field boundary placed 12 chord lengths away from the airfoil. 

The final convergence criterion is ∆(ρv)max<10-5. When the convergence criterion reaches to 5×10-5, 
redistribution is performed and it is iterated three times. However, in the adaptation-embedded grid, when 
the convergence criterion reaches 10-5, the adaptation is done and the embedding is iterated twice. In each 
of the following cases, six grid configurations are shown. These are: 

 
1) Relatively coarse initial grid. 
2) Grid in which only redistribution is employed. 
3) Grid in which the combination of redistribution and embedding is used and the embedding process 

is employed only once. 
4) Grid in which the combination of redistribution and embedding is used and the embedding process 

is employed twice. 
5) Grid in which only embedding is employed twice. 
6) Globally fine grid corresponding to the finest level of embedded grid. 

 
The first case consists of a free-stream Mach number M∞=0.8 and 1.25o angle of attack. The initial 

grid is 80×17 and Fig. 1 shows the generated grids and the Mach number contours. The flow solution on 
the initial grid shows much smeared shock waves. The initial grid was intentionally chosen to be rather 
coarse in the leading edge region. This leads to the production of a large amount of spurious entropy in the 
solution. After redistribution, the quality of the grid and the solution are improved. This flowfield is then 
subjected to adaptive grid-embedding twice. After every adaptation, the resulting flowfield shows an 
increased shock and expansion waves resolution, and a comparison of the Mach number contours 
indicates that the accuracy of a combination of these two methods in special regions is better than the 
globally fine grid and embedding method alone. Figure 2 compares the pressure coefficient distribution on 
the airfoil for the final embedded grid, a combination of adaptive-grids, and for the globally fine grid. 
Table 1 shows the number of nodes, the computational time, the obtained lift and drag coefficients, the 
range of values obtained in [11], and the value given in [12]. A comparison of the references values 
indicates that the combination of adaptive-grids shows better lift and drag coefficients.  
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Besides, the combination of adaptive-grids solution took 5.5 times less computational time and 2.75 
times fewer nodes than globally fine grids containing 320×65 nodes. However, the computational time for 
the embedding method alone is naturally 84% of the combination of adaptive-grids. 
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Figure 1 Continued. 
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Fig. 1. Comparison of computational grids and the Mach number contours; 

 NACA0012, M∞=0.8 and α=1.25o 
 
The minor purpose of this test case is the verification of accuracy of the numerical method. The 

obtained CL, CD and shock position (x/c=0.13 in [12]) for combination, embedding and fine grid confirm 
that the flowfield was solved with adequate accuracy. 

The second case consists of a free-stream Mach number M∞=0.85 and 1.0o angle of attack. The initial 
grid and results are the same as the previous case. Figure 3 shows the generated grids and the Mach 
number contours and Fig. 4 compares the pressure coefficient distribution on the airfoil. Table 2 shows the 
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number of nodes, the computational time, the obtained lift and drag coefficients, the range of values 
obtained in [13], and the value given in [12]. 
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Fig. 2. Comparison of pressure coefficient distribution on the airfoil; NACA0012, M∞=0.8 , α=1.25o 
 

Table 1. Number of nodes, Computational time, CL and CD coefficients; 
NACA0012, M∞=0.8 and α=1.25o 

 
 

Adaptation technique Nodes Time CL CD 
Embedding 7289 15.1% 0.3589 0.0235 

Combination with only once embedding 
process 3062 9% 0.3800 0.0219 

Combination with twice embedding process 7562 18% 0.3623 0.0233 
Fine grid 20800 100% 0.3514 0.0215 
Ref. 11   0.3463-0.3736 0.0221-0.0237 
Ref. 12   0.3654 0.0232 

 
Again, the results show that the accuracy due to the combination of adaptive-grid redistribution and 

embedding is much more than the globally fine grid and embedding method alone. As compared with the 
globally fine grid solution, the combination of adaptive-grids reached 2.5 times less computational time 
and nodes, but the computational time for the embedding method alone is 80% of the combination of 
adaptive-grids solution. 
 

Table 2. Number of nodes, Computational time, CL and CD coefficients; 
NACA0012, M∞=0.85 and α=1.0o 

 
 

Adaptation technique Nodes Time CL CD 
Embedding 7655 32% 0.375 0.0593 

Combination with only once embedding 
process 3071 17% 0.408 0.0560 

Combination with twice embedding process 7579 40% 0.383 0.0586 
Fine grid 20800 100% 0.3713 0.060 
Ref. 13   0.36-0.39 0.056-0.059 
Ref. 12   0.3861 0.0582 
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To evaluate the relation between accuracy and computational work (normalized CPU time) for 
different adaptation methods, the second case was solved for globally fine grid, redistribution, embedding 
and the combination of adaptive-grids on a sequence of successively finer grids. For globally fine grid and 
redistribution, the solutions were obtained on 80×17, 160×33, and 320×65 grids, whereas this case was 
solved for embedding and the combination of adaptive-grid on 80×17 and 160×33 grids. The embedding 
process for an 80×17 grid was employed twice, but for 160×33, the grid was employed only once. Table 3 
and Fig. 5 show the computational work required for each solution as a function of the lift coefficient 
error. The solutions were compared with the result of ref [12]. 
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Figure 3 Continued. 
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Fig. 3. Comparison of computational grids and the Mach number contours; 
 NACA0012, M∞=0.85 and α=1.0o 

 
The results in the table and figure show that at high accuracy, the embedding method requires much less 
computing time in comparison with the redistribution method, and as accuracy increases, this difference 
becomes greater. This result is similar to Dannenhoffer’s results [1] as was expected. However, the table 
and figure also indicate that at high accuracy, the combination of adaptive-grid redistribution and 
embedding is even better than the embedding method alone. In fact, the combination of adaptive-grids 
significantly reduces the computational time and the number of nodes for the same accuracy with 
adaptive-grid embedding. 
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Fig. 4. Comparison of pressure coefficient distribution on the airfoil; NACA0012,  M∞=0.85, α=1.0 
 

Table 3. Comparison of adaptation methods; NACA0012 airfoil, M∞=0.85 and α=1.0o 
 

Adaptation technique Nodes Work 
 (normalized CPU time) CL error 

1360 1.0 0.0773 
5280 5.12 0.0335 None 

20800 23.24 0.0148 
1360 1.25 0.0684 
5280 6.23 0.0308 Redistribution 

20800 27.84 0.0120 
3043 2.87 0.0301 
7655 7.38 0.0111 Embedding 

10796 10.4 0.0070 
3071 3.94 0.0219 
7579 9.3 0.0031 Combination 

10771 13.1 0.0023 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Comparison of adaptation methods; NACA0012 airfoil, M∞=0.85 and α=1.0 
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5. CONCLUSIONS 
 
It can be concluded that for two-dimensional invisid flows when high accuracy is required, the 
combination is more efficient than grid redistribution and grid embedding alone. Although, the 
redistribution method is easier to implement, at high accuracy, the preference of embedding has been 
cleared. The combination method is even better than embedding for the same accuracy. It reduces the 
number of nodes and computational time further. Since the redistribution is relatively easy, we can easily 
add it to the invisid codes which use the adaptive-grid embedding. However, more work is needed for 
comprehensive comparison. This should include unsteady, viscous and three-dimensional flows.  
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