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Abstract– An engineering method has been developed for the prediction of aerodynamic heating 
of hypersonic bodies. This method is capable of rapidly predicting the heat flux in the leeward 
region. This is achieved through the determination of the streamlines in the leeward region. The 
modified form of Maslen’s second order relation is employed, which calculates the pressure in the 
shock layer explicitly. The inviscid outer flow within the shock layer is solved first. The calculated 
solution is then used to determine the flow properties at the boundary layer edge and the 
orientation of the surface streamlines. Boundary layer equations, written in the streamline 
coordinates, are integrated along the surface to obtain the rate of heat transferred to the body 
surface. The present method is an inverse method in which the body shape is obtained according to 
the shape of the shock. In general, inviscid-boundary layer engineering methods accurately 
calculate the orientation of streamlines in the windward region only, and therefore they are not 
usually applicable in the leeward region. In the present study, a new method is proposed to 
determine the orientation of the surface streamlines in the leeward region. Using the present 
technique, three-dimensional hypersonic flow is solved fast and easy all around a cone. The 
obtained results show that the corrections presented in this study excellently extend the application 
of the method to the leeward region.          
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1. INTRODUCTION 
 

An accurate prediction of convective heat transfer is necessary for efficient thermal design of a hypersonic 
vehicle. To achieve this, various numerical methods can be used to solve the flowfield around the vehicle. 
These methods are mainly based on CFD techniques which solve Navier-Stokes (NS) equations [1] or one 
of their simplified versions [2, 3]. However, they are not applicable for rapid estimation and design [4], as 
they are rather time consuming and require special computing facilities. Methods based on approximate 
thin layer assumptions are widely used for calculations of aerodynamic heating in hypersonic flow fields 
[5]. In these methods, the flowfield is divided into two regions: the boundary layer region, and the inviscid 
outer region. First, the inviscid flow is solved and the flow properties obtained on the body surface are 
then taken as properties at the edge of the boundary layer. The viscous flow inside the boundary layer can 
now be solved to determine the convective heat flux at the body surface. To determine the properties of 
the inviscid flowfield within the shock layer, the Maslen method can be used. Although Maslen's original 
method [6] was developed for axisymmetric hypersonic flow, Maslen improved his method to cover three-
dimensional flows as well [7]. The outcome of the Maslen method is a second order relation from which 
pressure can be calculated explicitly in a direction normal to the shock. Using other conservation 
equations, the flowfield within the shock layer is calculated. Depending on the shock shape, the body 
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geometry is determined from the solution, therefore the method is an inverse one and an iteration 
procedure would be necessary. However, difficulties have been encountered in many cases where this 
method has been used [5]. Recently, Riley and DeJarnette [8-10] developed a three-dimensional 
approximate method which is applicable to a wider range than that applied by  Maslen's axisymmetric 
method. Their method is similar to that proposed by Jackson [11] for smooth symmetric bodies. They have 
used a modified form of Maslen’s second order relation for pressure. Since this method predicts the 
pressure on the body surface with good accuracy, the surface streamlines are calculated using pressure 
distribution. Obviously, Riley and DeJarnette's method is also an inverse one. Using axisymmetric analog 
[12], three-dimensional boundary layer equations along the streamlines are reduced to an axisymmetric 
form. The obtained equations are integrated along the streamlines to determine the rate of heat flux on the 
body surface [13]. However, the latter method is not yet capable of predicting streamlines along the body 
in the leeward region. Therefore, the boundary layer equations cannot be solved in this region.  

The goal of the present work is to modify this method in order to be applicable to the leeward region 
of blunt-nosed bodies. For this purpose, a linear approximation between the streamlines of 90=bφ degree 
and 180=bφ degree is employed to estimate the orientation of surface streamlines in the leeward region. 
In the following sections the principles of the method and the proposed corrections are presented. 
 

2. INVISCID ANALYSIS 
 
The present method is an inverse one, meaning given an initial shock shape, flow equations in the shock 
coordinate system are solved to determine the corresponding body geometry. Therefore, we introduce the 
shock coordinate system first. 
 
a) Coordinate system 
 

Before introducing the shock coordinate system, it is mentioned that the surface of a three-
dimensional shock [14] can be described in a cylindrical coordinate by 
 
                                                                          ( )φ,xfr =                                                                   (1) 
 
where ( )φ,r,x  are wind-oriented cylindrical coordinates, and the corresponding unit vectors are 

),,( φeee rx . The x-axis is aligned with the freestream velocity vector, and it is normal to the shock 
surface in the origin of the coordinate system. The shock shape is described by two angles; ),( φxΓ and 

),( φδφ x , which are defined as follows:  

φ
δφ ∂

∂
=

f
f
1 tan                φδcostan 

x
f

∂
∂

=Γ                                                      (2) 

 
The other angle σ is simply defined as φδφσ −= . The angles and coordinate system are shown in Figs. 1 
and 2. The shock-oriented curvilinear coordinate system ( n,, βξ ) is defined [14], with ξ  and β  as 
coordinates of a point on the shock surface, and n  as the inward distance normal to the shock.  
The unit vector ne  is in the inward direction normal to the shock. The unit vectors ξe  and βe  are tangent 
to the surface of the shock, so that ξe  is in the direction of velocity tangent to shock, and βe  is normal to 
the vectors ξe  and ne (Figs. 3 and 4).  

The unit vectors in a curvilinear shock-oriented system [15] are related to the unit vectors in 
cylindrical coordinates as follows: 
 

φφφξ δδ eeee rx sinsincossincos Γ−Γ+Γ=  

φφφβ δδ eee r cossin +=                                                                            (3) 
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                                               φφφ δδ eeee rxn sincoscoscossin Γ+Γ−Γ=  
 
For the sake of clarity, β  constant lines are shown in Figs. 3 and 4. The velocity vector in the shock layer 
is given by 

          βξ eweveuV n ++=
r

                                                          (4) 
 
Considering definitions of βe  and ξe , the cross flow velocity at the shock )( sw  is found to be equal to 
zero. 

                       
        Fig. 1. Shock wave geometry: rear view                                Fig. 2. Shock wave geometry: side view 

 
 

                                                        
Fig. 3. Shock oriented curvilinear coordinate  

system: side view 
Fig. 4. Shock oriented curvilinear coordinate 

 system: rear view 
 
b) Governing equations 
 

For a blunt-nosed body in hypersonic flows, most of the mass flow passes through the vicinity of the 
shock where velocity component w  is negligible [6, 7]. Therefore, the governing equations for inviscid 
three-dimensional flow in a shock layer can be simplified by taking 0=w . With this assumption and 
using the continuity equation, the stream function is defined as 
 

   ABhhv βξρ
ξ
ψ

=
∂
∂

                      Bhu
n βρψ

−=
∂
∂

                               (5) 

 
where ρ  is density, ξh  and βh  are scale factors, and A and B are geometric factors. Now, the continuity 
and normal momentum equations are transformed to the stream function coordinate system ( ηβξ ,~,~

), in 
which 
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ξξ =~

                ββ =~
                 sψψη =  

 
To obtain approximate expressions for the pressure and the normal velocity component, the following thin 
shock layer assumptions [6, 7] are used  
 

sρρ ≈                                 1A ≈  

suu ≈                                 1B ≈  

  0~s ≈
∂
∂
ξ
ρ

                             0~
vs ≈

∂
∂
ξ

 

( )1nn
s

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

≈ η
η

 

 
Integrating the obtained equations gives the following expressions [9]: 
 

                                                 ( ) ( ) ( ) ( )1p1p~,~p,~,~p 2
21s −+−+= ηηβξηβξ                                        (6) 

 
                                                            ( ) ( ) ( )1v~,~v,~,~v 1s −+= ηβξηβξ                                                          
where 

β

ξψ
h

ku
p ss=1  

)(
2

tan
2 βξ

β

ψ
kk

h
v

p ss +
Γ

=                                                          (7) 

)(
cos1 βξ

β

ψ kk
h

vv ss +
Γ

=  

 
and ξk  and βk  are the curvatures of the shock surface in ηξ −  and ηβ −  planes, respectively. For a 
prescribed shock shape, the quantities 1p , 2p  and 1v  in Eqs. (6) and (7) are known, and therefore they 
can be used to explicitly determine the pressure and the normal component of velocity in the shock layer. 
Having known the pressure, other quantities such as density and enthalpy can be found using isentropic 
relations and ideal gas equations of state. The tangent velocity component, u, is found from the 
conservation of total enthalpy. Another important relation which is obtained by integrating Eq. (5) is 
 

                                                                  ∫=−
1

0

2

2 u
d

h
kn

n sb
b ρ

ηψ

β

β                                                           (8) 

 
From this relation the normal distance between the shock and the body can be obtained. 
 
c) The inviscid flow solution 
 

The inviscid solution is obtained for a given shock shape. Therefore, the shock shape should be 
changed so that the calculated inviscid solution corresponds to the body shape. This iterative process is 
performed differently in the two regions of subsonic and supersonic. In the stagnation region around the 
blunt nose of hypersonic bodies, the flow is subsonic, and due to the elliptical behavior of the flow, the 
shock shape should be known completely in this region. In this region, a three-dimensional shock shape is 
estimated from the three longitudinal conic sections blended in the circumferential direction with an 
ellipse [9]. The longitudinal conic sections are given by [16]. 
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3,2,102222 ==+−+ kfxdxcxbf kkkkk  
 
where kf  is the radial coordinate of the equation, and k denotes the situations corresponding to 

180,90,0=β . The elliptic surface generated from these three equations is 
 

                                                 [ ] )(~cos)(~sincos)(~ 222 xDxCfxBf =++ φφφ                                  (9) 
where 

31

2
2)(~
ff

fxB =  

))((~)(~
13 ffxBxC −=  

2
2)(~ fxD =  

 
Equation (9) includes nine constants ),,( kkk dcb . The shock curvature at the origin is continuous in the 
planes of symmetry. Therefore, 31 cc = . Applying the symmetry condition with respect to the x-y plane 
for the shock shape (Fig. 1), we will find that 02 =d  and 31 dd −= . Thus the nine unknown constants 
are reduced to six unknowns. Therefore, it is these six constants that should be changed so that the body 
shape obtained from the inviscid solution conforms to the actual body shape at six locations. Details of the 
method are given in [16]. At the end of the subsonic region the flow becomes entirely supersonic, and a 
marching technique may be used. The relations concerning the shock variables are given [9] as follows: 
 

Γ=
∂
∂ cos

s
x

                                                φδcossinΓ=
∂
∂

s
r

 

   
rs

φδφ cossinΓ
−=

∂
∂

                                Γ−=
∂

Γ∂ cossin
ξk

s
                          (10) 

Γ=
∂
∂

sinβ
ψ

h
s

s                Γ=
∂

∂
tanββ

β kh
s

h
  

 
By integrating the above equations along the shock lines, shock variables including ),,sin,,,( shrx φφ βΓ  
will be found. For this purpose, solutions at the end of subsonic flow are used to start the supersonic 
solution. The shock variables are extrapolated in ξ  along β  lines. By using Eqs. (6) and (7), on each line, 
the pressure and the normal velocity component are found. The quantities of enthalpy and density of the 
flow are also found from isentropic relations, together with the ideal gas equation of state. The tangent 
velocity component, u, is obtained from the fact that the total enthalpy is constant 
 

        )vu(
2
1hH 22 ++=                                                              (11) 

 
At the present stage, all flow properties are already determined in the region from the shock ( 1=η ) to the 
body ( 0=η ). Therefore, the distance between the shock and body could be found from Eq. (8). If the 
calculated body does not correspond to the actual body shape, the shock curvature ξk  is corrected by the 
second method, and the solution procedure is repeated. Usually two or three iterations are sufficient. In the 
subsonic region the same geometric relations are used, however since the shock shape is already known, 
there is no need to estimate ξk . In the subsonic region geometric relations are integrated along the shock 
lines of 180,90,0=β . The shock geometric relations, Eq. (10), became singular at the stagnation point, 
therefore a limiting form of these relations should be used in this region. Details of the solution for the 
stagnation point are given in [16]. 
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3. VISCOUS FLOW SOLUTION 
 
Boundary layer equations should be solved for the calculation of aerodynamic heating, however to save 
computation time, axisymmetric analog is used. 
 
a) Axisymmetric analog 
 

With axisymmetric analog, three-dimensional boundary layer equations are simplified so that they can 
be used in the streamlines direction [12]. In this analysis the three-dimensional boundary layer equations 
are written in the streamline coordinate system defined on the surface, and then the velocity component 
tangent to the surface and normal to the streamlines is set equal to zero. This simplifies the three-
dimensional boundary layer equations to their axisymmetric form in the streamline direction, provided that 
the distance along the streamline is substituted for the surface distance and the scale factor describing the 
divergence of the streamlines is interpreted as the axsiymmetric body radius. 
Thus 

ξξ dhds =           ,         βhr =  

b) Inviscid streamlines 
 

The inviscid flow streamlines on the body surface should be determined before applying the 
axisymmetric analog. For this purpose the pressure distribution on the body surface [15] or the velocity 
components on the surface [17] may be used. Since the present method is more accurate in predicting 
surface pressure, streamlines will be calculated from surface pressure distribution. To perform this, the 
coordinate system ( n,,βξ ) along the streamlines is introduced [15]. Coordinates ξ , and β  are 
coordinates of a point on the body surface, and n  is normal distance from the surface. In this coordinate 
system, ξe  is along the streamlines and tangent to the body surface, βe  is normal to the streamlines and 
tangent to the body, and ne  is normal to both ξe  and βe . The bars indicate that the coordinates are related 
to the body, not to the shock. If the body surface is defined as ),x(frb φ=  in the cylindrical coordinate, 
the unit vector normal to the surface (outward) will be given by 
  

φφφ δδ eeee rxn sincoscoscossin Γ−Γ+Γ−=  
 
 where the body angles are defined as 
 

φ
δφ ∂

∂
=

f
f
1 tan                   φδcostan 

x
f

∂
∂

=Γ  

 
The vectors tangent to the surface i.e. ξe  and βe , which are similar to ξe  and βe , are defined [15] by 
 
                                                                 ts eee θθξ sincos +=                                                           (12) 

 
    ts eee θθβ cossin +−=                                                         (13)                       

where 

φφφ δδ eeee rxs sinsincossincos Γ−Γ+Γ=  

φφφ δδ eee rt cossin +=  
 
and θ  denotes the angle between streamlines and se . Therefore, if θ is determined all around the body 
surface, the streamlines would be determined on the surface, because the s  and t directions depend  on 
the body direction and ξe  is in the streamline direction (Fig. 5). The streamlines direction on the body 
surface, or θ , are determined by applying momentum equations along the body surface using pressure 
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distribution obtained from the inviscid solution [10]. Writing the momentum equations in the streamline 
coordinates, taking their scalar product with βe , and substituting the unit vectors from Eqs.(12) and (13), 
results in the equation  
 

  
βρξ

σ
ξ
θ

βξξ ∂
∂

−
∂
∂Γ

−=
∂
∂ b

bb

p
huhh
11sin1

2                                                  (14) 

 
where φδφσ −= . The other equation that should be solved together with the above equation to find 
scale factor βh , is obtained using the following relation, which is valid for an orthogonal coordinate 
system 
 

)()( ξξββ βξ
eheh

∂
∂

=
∂
∂

 

 
Fig. 5. Schematic streamline direction 

 
Taking the scalar product of this equation with βe  and replacing the unit vectors in it [10], would result in 
 

    
β
σ

β
θ

ξ ββ

β

ξ ∂
∂Γ

+
∂
∂

=
∂

∂

hh

h

h
sin1)ln(1

                                                 (15) 

 
Therefore, to determine the quantities of θ and βh , Eqs. (14) and (15) should be integrated along the 
streamlines. This can be done after solving the inviscid flow, however this makes the solution process 
slow and complicated. Therefore, it is preferred to transform these equations from the streamline 
coordinates to the shock coordinates system [10]. The transformation relations are  
 

                             
βξξ β

βξξξ
ξ

βξξξ
ξ ∂

∂
+−+

∂
∂

−=
∂
∂

h
eeAeeD

h
eeDeeB

h
J 1)..(1)..(                 (16) 

 

   
βξβ β

ββξβ
ξ

ββξβ
β ∂

∂
+−+

∂
∂

−=
∂
∂

h
eeAeeD

h
eeDeeB

h
J 1)..(1)..(               (17) 

 
where 

2

11

DBAJ
h
nD

knBknA

b

bb

−=
∂
Γ∂

=

−=−=

ββ

βξ

 

 
Unfortunately, the pressure relation (Eq.(6)) is not accurate in the leeward region, since this relation is 
obtained using thin shock layer assumption and the shock thickness is not thin in this region. Thus, it is 
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not possible to calculate the orientation of the surface streamlines from the surface pressure distribution. In 
other words, Riley and DeJarnette's method is not applicable in the leeward region [10].  

Furthermore, in the above-mentioned operators the derivatives with respect to n have been neglected. 
This is acceptable when the normal to the shock unit vector ne  is in the same direction of the normal to 
the body unit vector ne , i.e. nn ee −= . Otherwise the following two terms should be added to the 
operators of 16 and 17 respectively. 

n
ee n ∂

∂).( ξ      and     
n

ee n ∂
∂).( β  

 
In some cases the shock is approximately parallel to the body, and we can assume nn ee −≅ . In this case  
 

0).().(

0).().(

=−=

=−=

nn

nn

eeee

eeee

ββ

ξξ
 

 
In other cases the above relations are not correct. For example, when the body has an angle of attack, 

although the unit vectors normal to the body and normal to the shock are parallel in the windward region, 
they are not parallel in the leeward region (Figs. 6 and 7). Therefore, these incomplete operators may 
affect the accuracy of the streamline directions in the leeward region. 

    

                                                      
Fig. 6. Shock wave and body geometry: side view             Fig. 7. Shock wave and body geometry: rear view 

    
In the present study, a linear interpolation for determining the streamline direction in the leeward 

region is proposed. The proposed approximation is obtained by studying the actual physical situation of 
the flow. All streamlines passing from windward to the leeward are approximately parallel at 

180=bφ degrees. Since the direction of streamline which passes through (or near) 180=bφ degrees is 
known ( 0180 ==bφ

θ ), in the leeward region, a linear interpolation between 90=bφ
θ  and 180=bφ

θ  may be used 
in order to estimate the streamline direction. i.e. 

    

⎟
⎠
⎞

⎜
⎝
⎛ +
−

= 112 b
2

φ
π

θθ π                         πφπ
pp b2

 

 
This approximation is compatible with the actual physical situation. Note that, the streamlines direction in 
the windward region (

2
0 b

πφ pp ) is determined from Eqs. (14) and (15). In the results section it will be 
verified that the present correction enables the method to be applied to the leeward region. 
 
c) Convective heat transfer equations 
 

The heat transfer rate on the surface is found using the Stanton (St) number defined as 
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)(
St

wawee

w

hhu
q

−
=
ρ

 

 
where  awh  is the adiabatic wall enthalpy. Using Reynolds analogy, a correlation between Stanton number 
St, skin friction coefficient fC , and Prandtl number Pr is obtained as 
 

m
w

fC −= )(Pr
2

St  

 
For laminar or turbulent flow, fC  could be calculated from the following relation [16]: 
 

mf c
C −= )(Re
2 1 θ  

 
where θRe  is the Reynolds number based on the momentum thickness, and 1c  and m are constants for 
laminar flow. This relation is applicable to incompressible flows, and for compressible flows, the 
reference enthalpy method explained in [18] may be used. According to this method, if all physical 
quantities of the flow are determined at a reference enthalpy or temperature, then relations of the 
incompressible flow can be used for compressible flow calculations.  The reference enthalpy is defined as 
 

)(22.0)(
2
1

eawwe hhhhh −++=∗  

 
Zoby [13] used the axisymmetric analog together with the Reynolds analogy and reference enthalpy 
method, to develop the following relations for the calculation of the heat transfer rate. These relations are 
obtained from an approximate integral solution of boundary layer equations in the streamline direction. 
For laminar flow 
 

  6.01 ))(Pr())(()(Re22.0 −
∗∗

− −= wwawee
ee

LWL hhuq ρ
µ
µ

ρ
ρ

θ                                     (18) 

 

                                                    
β

β

ρ

ξµρ
θ

ξ

hu

)dhu(664.0

ee

0
2
1

e

L
∫ ∗∗

=                                                     (19) 

For turbulent flow 
 

        `4.0
1 ))(Pr())(()(Re −

∗∗
− −= wwawee

m

ee

m
TWT hhucq ρ

µ
µ

ρ
ρ

θ                                  (20) 

 

    
β

ξ

β

ρ

ξµρ
θ

hu

dhuc

ee

cc
e

m

T

∫ ∗∗

= 02
43 )(

                                                    (21) 

where the constant coefficients are defined [13] by 
 

1
2
+

=
N

m                                                        mc +=13  

                                       
m

N
N

NN
N

c
c ⎥

⎦

⎤
⎢
⎣

⎡
++

= +

)2)(1(
)1( 1

2

5
1                         

3
4

1
c

c =  
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                                       12 )1( cmc +=                                                    Nc 93.02433.25 +=  

                                       [ ]2)log(Re21.1)log(Re5.667.12 TTN θθ +−=  
 
d) Viscous solution method 
 

Equations 14 and 15 are transformed to the shock coordinate system, and then together with the 
geometric relations (Eq. (10)) are integrated along the shock lines in the windward region to determine the 
θ  and βh  quantities. In the leeward region θ is obtained from a linear relation which was previously 
explained, however, βh  is obtained from the solution of Eq. (15). Note that Eqs. (14) and (15) are solved 
after correcting the shock shape in the subsonic region. Having determined βh , the integral Eqs. (19) and 
(21) are solved to obtain the momentum thickness θ . These equations are also transformed to the shock 
coordinate system before being solved. The momentum thickness is used to determine the Reynolds 
number based on this thickness, i.e. θRe . Now Eqs. (18) and (20) are employed to calculate heat transfer 
rate. Further details are given in [16].  
 

4. RESULTS 
 
In this section, surface heating rates are calculated over a blunt cone at angle of attack in perfect gas 
laminar flow. The application of our method is not confined to the ideal gas assumption, and any equation 
of state of the gas may be used. Note that the results are shown in nondimensional quantities. Solutions are 
described in a body-oriented coordinate system ),r,x( φ at the circumferential locations of 0=bφ degree 
and 180 degrees which are along the windward and leeward sides of the plane of symmetry respectively. 
The distance along the surface is nondimensionalized by nose radius.  

In the first case, air flow around a cone of 15 degree half angle and spherical nose radius of 0.0279 m 
is solved. Surface temperature is °= 300wT  K, angle of attack is 10 degrees, and freestream properties 
are 300973.0,3.47,6.10 mkgKTM =°== ∞∞∞ ρ . 

 In Figure 8 the results for heat flux in the windward section ( 0=bφ deg) based on the method used 
in [10], are compared with the results calculated by FLUENT, which is a well known  full Navier-Stockes 
(NS) code. This case is presented to prove the accuracy of the NS results, since Riley and DeJarnette's 
method has good results in the windward region [10]. As shown, the two results are in good agreement. It 
should be noted that this NS code solves three-dimensional compressible Navier-Stokes equations using 
the control volume method.  

In the leeward side, our calculated results, together with the results based on the method used in [10], 
are compared with the results of the mentioned NS code  as shown in Fig. 9. It is noted that Riley and 
DeJarnette's method [10] is not applicable to the leeward region, and its result is given in this figure only 
for the purpose of comparison. As is seen, the presented method has predicted the heat transfer rate with 
excellent accuracy. This shows that our proposed method for specification of streamline directions is 
promising.  

In Figs. 10 and 11, calculated results of circumferential distribution of the heat flux are compared 
with results of the NS code. Figure 10 shows the results for the location of 29x = , and Fig. 11  for 
location of 34x = . As is shown in these figures, the correction proposed in the present work has 
improved the heat flux prediction significantly, while the original method of Riley and DeJarnette gives 
considerable errors in the calculations. Therefore, the present corrections are necessary for the 
development of the method to the leeward region.   
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Fig. 8. Heat transfer comparison for of 15 degree sphere-cone, 
m0279.0Rnose =  

0 10 20 30 40
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Present
Method of Riley et al
NS

 
Fig. 9. Heat transfer comparison for of 15 degree sphere-cone, 

  m0279.0Rnose =  
 

In Fig. 12 orientation of the surface streamlines θ , and the scale factor of streamlines βh , are shown 
for the location of 34x = . The effect of the present corrections on the accuracy of the results is obvious 
in this figure.  
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Fig. 10. Circumferential heat transfer comparison for 15 degree sphere-cone,  

m0279.0Rnose =  
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Fig. 11. Circumferential heat transfer comparison for 15 degree sphere-cone,  

m0279.0Rnose =  
 

Comparisons of the results are now presented for a 15 degree sphere-cone at an angle of attack of 15 
degrees. The freestream conditions are the same as of the previous example. 

Computed heating rate is presented in Fig. 13 for the leeward plane. As is shown in Fig. 13, the 
present method result has good agreement with NS code result. 

(deg)φ

29x =

wq

wq

(deg)φ

34x =
deg10=α

deg10=α

www.SID.ir



Arc
hi

ve
 o

f S
ID

An engineering inviscid-boundary layer method for… 
 

February 2007                                                                          Iranian Journal of Science & Technology, Volume 31, Number B1 

25

Circumferential heating rates are presented in Figs. 14 and 15 at two axial locations of 10x =  and 
15x =  on the blunted cone. Good agreement is seen between the present results and full Navier-Stokes   

code results. 
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Fig. 12. Orientation of the surface streamlines and scale factors of steaminess  

for 15 degree sphere-cone, m0279.0Rnose =  
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Fig. 13. Heat transfer comparison for   of 15 degree sphere-cone, 

  m0279.0Rnose =  
 

Comparisons with experimental data are now presented. The case considered is the flow over a 15 
degree half-angle spherically blunted cone at angles of attack of 10 degree. The freestream conditions are 

6.10M =∞ , 3m/kg00973.0=∞ρ  and K3.47T =∞  and a wall temperature of K300Tw = . The 
nose radius is 0.009525 m. A computed heating rate is presented in Fig. 16 for the leeward plane. The 
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results of the present method are compared with the experimental data of Cleary [19]. As shown in the 
figure, the present method has good agreement with the experimental results. 
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Fig. 14. Circumferential heat transfer comparison for 15 degree sphere-cone,  

m0279.0Rnose =  
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Fig. 15. Circumferential heat transfer comparison for 15 degree sphere-cone,  

m0279.0Rnose =  
 

Circumferential heating rates are depicted in Figs. 17 and 18 at two axial locations on the body for 
angles of attack of 10 degrees. Good agreements between experimental results and our computed results 
are seen in the figures.  
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Finally, note that all results obtained by our method required  a few seconds CPU time, e.g. 2 to 4 
seconds and depending on the problem being solved, while a CPU time of 30 to 40 minutes was required 
for solving the problem using the full Navier-Stokes code. 
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Fig. 16. Heat transfer comparison for of 15 degree sphere-cone, 

  m009525.0Rnose =  
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Fig. 17. Circumferential heat transfer comparison for 15 degree sphere-cone,  

m009525.0Rnose =  
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Fig. 18. Circumferential heat transfer comparison for 15 degree sphere-cone,  

m009525.0Rnose =  

 
5. CONCLUSION 

 
An engineering inviscid-boundary layer method has been modified for calculating the surface heating rate 
in the leeward region of hypersonic bodies. In the present method, surface streamlines in the windward 
region are calculated from an inviscid method, which is inverse. Based on the axisymmetric analog, an 
approximate integral heating method is then used to compute the heating rates along three-dimensional 
inviscid streamlines. In this paper, a new method for the estimation of the streamline direction in the 
leeward region is presented which is quite easy and fast. 

Different test cases have been solved by the present method and their results compared with the full 
Navier-Stockes (NS) results and experimental data. It has been shown that the results of the present 
method have good accuracy and use a very short computing time. 
 

NOMENCLATURE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A,B,D,J  geometric factors 

fC    local skin friction coefficient  

ts e,e    tangential unit vector on body surface 

φe,e,e rx  unit vectors of cylindrical coordinate 
                             system 

ne,e,e βξ    unit vectors of shock curvilinear  
                             coordinate system 

ne,e,e βξ   unit vectors of streamline coordinate  

                             system 
f   shock radius      

f    body radius      

δ   boundary layer thickness 
∗δ   boundary layer displacement thickness    

φδ   shock angle in circumferential direction 

φδ   body angle in circumferential direction         

η   stream function ratio, 
sψ

ψ
 

θ   momentum thickness  
θ   inclination angle of surface streamlines 

βξ k,k   shock curvatures 

βξ ,   shock coordinates 

βξ ,   streamline coordinates 

(deg)φ

wq 2.35x =

deg10=α
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