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Abstract— An engineering method has been developed for the prediction of aerodynamic heating
of hypersonic bodies. This method is capable of rapidly predicting.the heat flux in the leeward
region. This is achieved through the determination of the streamlines.in the leeward region. The
modified form of Maslen’s second order relation is employed, which calculates the pressure in the
shock layer explicitly. The inviscid outer flow within the shock:-layer.is solved first. The calculated
solution is then used to determine the flow propertiesiat the boundary layer edge and the
orientation of the surface streamlines. Boundary layer equations, written in the streamline
coordinates, are integrated along the surface to obtain the rate of heat transferred to the body
surface. The present method is an inverse method in which the body shape is obtained according to
the shape of the shock. In general, inviscid-boundary layer engineering methods accurately
calculate the orientation of streamlines in the windward region only, and therefore they are not
usualy applicable in the leeward region. In the present study, a new method is proposed to
determine the orientation of the surface streamlines in the leeward region. Using the present
technique, three-dimensional hypersonic flow is solved fast and easy all around a cone. The
obtained results show that the corrections presented in this study excellently extend the application
of the method to the leeward region.
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1. INTRODUCTION

An accurate prediction of convective heat transfer is necessary for efficient thermal design of a hypersonic
vehicle. To achieve this, various numerical methods can be used to solve the flowfield around the vehicle.
These methods are mainly based'on CFD techniques which solve Navier-Stokes (NS) equations [1] or one
of their simplified versions[2, 3]. However, they are not applicable for rapid estimation and design [4], as
they are rather time consuming and require special computing facilities. Methods based on approximate
thin layer assumptions are widely used for calculations of aerodynamic heating in hypersonic flow fields
[5]. In these methods, the flowfield is divided into two regions: the boundary layer region, and the inviscid
outer region. First, the inviscid flow is solved and the flow properties obtained on the body surface are
then taken as properties at the edge of the boundary layer. The viscous flow inside the boundary layer can
now be solved to determine the convective heat flux at the body surface. To determine the properties of
the inviscid flowfield within the shock layer, the Maslen method can be used. Although Maslen's original
method [6] was developed for axisymmetric hypersonic flow, Maslen improved his method to cover three-
dimensional flows as well [7]. The outcome of the Maslen method is a second order relation from which
pressure can be calculated explicitly in a direction normal to the shock. Using other conservation
equations, the flowfield within the shock layer is calculated. Depending on the shock shape, the body
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geometry is determined from the solution, therefore the method is an inverse one and an iteration
procedure would be necessary. However, difficulties have been encountered in many cases where this
method has been used [5]. Recently, Riley and Delarnette [8-10] developed a three-dimensiona
approximate method which is applicable to a wider range than that applied by Maslen's axisymmetric
method. Their method is similar to that proposed by Jackson [11] for smooth symmetric bodies. They have
used a modified form of Maslen's second order relation for pressure. Since this method predicts the
pressure on the body surface with good accuracy, the surface streamlines are calculated using pressure
distribution. Obvioudly, Riley and DeJarnette's method is also an inverse one. Using axisymmetric analog
[12], three-dimensiona boundary layer equations along the streamlines are reduced to an axisymmetric
form. The obtained equations are integrated along the streamlines to determine the rate of heat flux on the
body surface [13]. However, the latter method is not yet capable of predicting streamlines along the body
in the leeward region. Therefore, the boundary layer equations cannot be solved in this region.

The goal of the present work is to modify this method in order to be applicable to the leeward region
of blunt-nosed bodies. For this purpose, alinear approximation between the streamlines of ¢, = 90degree
and ¢, =180degree is employed to estimate the orientation of surface streamlines in the leeward region.
In the following sections the principles of the method and the proposed corrections are presented.

2. INVISCID ANALYSIS

The present method is an inverse one, meaning given aninitial shock shape, flow equations in the shock
coordinate system are solved to determine the corresponding body geometry. Therefore, we introduce the
shock coordinate system first.

a) Coordinate system

Before introducing the shock coordinate system, it is mentioned that the surface of a three-
dimensional shock [14] can be describedin.a cylindrical coordinate by

r=1~f(x¢) L)

where (X,r ,¢) are wind-oriented cylindrical coordinates, and the corresponding unit vectors are
(ey,€,,€,) . The x-axis is aligned with the freestream velocity vector, and it is normal to the shock
surface in the origin of the coordinate system. The shock shape is described by two angles; I'(X,¢) and
5¢ (X,¢) , which are defined as follows:
tand, :lﬂ tanl“:ﬂcoség, 2
f o¢ 0 X
The other angle o is simply defined as o= ¢—4,. The angles and coordinate system are shown in Figs. 1
and 2. The shock-oriented curvilinear coordinate system (&, f,n) is defined [14], with & and [ as
coordinates of apoint on the shock surface, and n asthe inward distance normal to the shock.
The unit vector e, isin theinward direction normal to the shock. The unit vectors €. and e, are tangent
to the surface of the shock, so that e, isin the direction of velocity tangent to shock, and e, is normal to
the vectors e, and e, (Figs. 3 and 4).
The unit vectors in a curvilinear shock-oriented system [15] are related to the unit vectors in
cylindrical coordinates as follows:

e, =cosl'e, +sinl'coso, e, —sinl'sing; e,

e, =sino, e, +coso, e, 3)
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e, =sinl'e, —cosl cosd, e, +cosl'sing e,

For the sake of clarity, £ constant lines are shown in Figs. 3 and 4. The velocity vector in the shock layer
isgiven by

V =ue; +ve, +We, 4

s

Considering definitions of €, and e, the cross flow velocity a the shock (w;) is found to be equal to
zero.

r
€n
o= - X
Ve,
y y
Fig. 1. Shock wave geometry: rear view Fig. 2. Shock wave geometry: side view
Fig. 3. Shock oriented.curvilinear coordinate Fig. 4. Shock oriented curvilinear coordinate
system: side view system: rear view

b) Governing equations

For a blunt-nosed body in hypersonic flows, most of the mass flow passes through the vicinity of the
shock where velocity component w is negligible [6, 7]. Therefore, the governing equations for inviscid
three-dimensional flow in a shock layer can be simplified by taking w=0. With this assumption and
using the continuity equation, the stream function is defined as

oy oy
——=pvh.h, AB —=—-puh,B 5
PR PVN:Ng an pPUN, ®)

where p isdensity, h‘f and h 5 ae scale factors, and A and B are geometric factors. Now, thg chtinuiw
and normal momentum egquations are transformed to the stream function coordinate system (&, /4,77), in

which
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E=¢ =5 n=yly,

To obtain approximate expressions for the pressure and the normal velocity component, the following thin
shock layer assumptions [6, 7] are used

P = Py A=1

u~u, Bx1

ae.sz ﬂl.izo
0¢ 0¢

Integrating the obtained equations gives the following expressions [9]:

o, B .n)= p,(E.B)+ p(n-D)Fp, (7 1) (6)
Vi Bm)=v,(E,B)+v(n=1)
where
_ y/suskﬁ
P, —T
v tanl’
p, = —Zhﬂ (k. +k,) @)
o !//SVS
“ s h, cosT’ (ke ky)

and k. and k, are the curvatures of the shock surface in £ -7 and S —n planes, respectively. For a
prescribed shock shape, the quantities p,, p, and v, in Egs. (6) and (7) are known, and therefore they
can be used to explicitly determine the pressure and the normal component of velocity in the shock layer.
Having known the pressure, other quantities such as density and enthalpy can be found using isentropic
relations and ideal gas equations of state. The tangent velocity component, u, is found from the

conservation of total enthalpy. Another important relation which is obtained by integrating Eq. (5) is
nbzkﬁ _ Vs 1d77
T ®

B

From this relation the normal distance between the shock and the body can be obtained.
¢) The inviscid flow solution

The inviscid solution is obtained for a given shock shape. Therefore, the shock shape should be
changed so that the calculated inviscid solution corresponds to the body shape. This iterative process is
performed differently in the two regions of subsonic and supersonic. In the stagnation region around the
blunt nose of hypersonic bodies, the flow is subsonic, and due to the eliptical behavior of the flow, the
shock shape should be known completely in this region. In this region, a three-dimensional shock shapeis
estimated from the three longitudinal conic sections blended in the circumferential direction with an
dlipse[9]. Thelongitudinal conic sections are given by [16].
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f.2+b, x*—2c, x+2d,xf, =0 k=123

where f, is the radia coordinate of the equation, and k denotes the situations corresponding to
£ =0,90,180. The elliptic surface generated from these three equationsis
£2[B(x)cos® g +sin® ¢|+  C(x) cosg = D(x) ©)

where
f?
1'3
C(x)=B)(f;-f,)

D(x) = f22

B(x) =

Equation (9) includes nine constants (b, ,c,,d, ). The shock curvature at the origin is continuous in the
planes of symmetry. Therefore, ¢, = C,. Applying the symmetry condition with respect to the x-y plane
for the shock shape (Fig. 1), we will find that d, =0 and d, = —d,. Thusthe nine unknown constants
are reduced to six unknowns. Therefore, it is these six constants that should be changed so that the body
shape obtained from the inviscid solution conforms to the actual-body shape at six locations. Details of the
method are given in [16]. At the end of the subsonic region the flow becomes entirely supersonic, and a
marching technique may be used. The relations concerning the shock variables are given [9] as follows:

ﬂ =cosIl’ ﬂ =sin1“c055¢
0Ss 0s

sinT" coso i
%:——¢ asml“:_kg cosI’ (10)
0S r 0S

oy . oh,

S=h,sink —+ =h,k,tanT’
os 7 os 77

By integrating the above equations along the shock lines, shock variables including (x,4,r,sinl’,h,,é,)
will be found. For this purpose, solutions at the end of subsonic flow are used to start the supersonic
solution. The shock variablesare extrapolated in & aong £ lines. By using Egs. (6) and (7), on each line,
the pressure and the normal velocity component are found. The quantities of enthalpy and density of the
flow are also found.from isentropic relations, together with the ideal gas equation of state. The tangent
velocity component, u; 1S obtained from the fact that the total enthalpy is constant

H:h+%(u2+v2) (11)

At the present stage, all flow properties are already determined in the region from the shock (77 = 1) to the
body (77 =0). Therefore, the distance between the shock and body could be found from Eqg. (8). If the
calculated body does not correspond to the actual body shape, the shock curvature k ¢ iscorrected by the
second method, and the solution procedure is repeated. Usually two or three iterations are sufficient. In the
subsonic region the same geometric relations are used, however since the shock shape is aready known,
there is no need to estimate k < - Inthe subsonic region geometric relations are integrated along the shock
lines of £ =0,90,180. The shock geometric relations, Eq. (10), became singular at the stagnation point,
therefore a limiting form of these relations should be used in this region. Details of the solution for the
stagnation point are given in [16].
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3. VISCOUS FLOW SOLUTION

Boundary layer equations should be solved for the calculation of aerodynamic heating, however to save
computation time, axisymmetric analog is used.

a) Axisymmetric analog

With axisymmetric analog, three-dimensional boundary layer equations are simplified so that they can
be used in the streamlines direction [12]. In this analysis the three-dimensional boundary layer equations
are written in the streamline coordinate system defined on the surface, and then the velocity component
tangent to the surface and normal to the streamlines is set equal to zero. This simplifies the three-
dimensional boundary layer equations to their axisymmetric form in the streamline direction, provided that
the distance along the streamline is substituted for the surface distance and the scale factor describing the
divergence of the streamlinesisinterpreted as the axsiymmetric body radius.

Thus
ds = hE d& : r= hﬁ

b) Inviscid streamlines

The inviscid flow streamlines on the body surface should be determined before applying the
axisymmetric analog. For this purpose the pressure distribution onthe body surface [15] or the velocity
components on the surface [17] may be used. Since the present method is more accurate in predicting
surface pressure, streamlines will be calculated from surface pressure distribution. To perform this, the
coordinate system (&, 3,) aong the streamlines. is introduced [15]. Coordinates &, and S are
coordinates of a point on the body surface, and-n_ is normal distance from the surface. In this coordinate
system, €. is aong the streamlines and tangent.to the body surface, € is hormal to the streamlines and
tangent to the body, and €, is normal to both e and €. The bars indi cate that the coordinates are related
to the body, not to the shock. If the body surface isdefined as r, = f(X,4) inthe cylindrical coordinate,
the unit vector normal to the surface (outward) will be given by

e, =—sinTe, +cosI coss, e, —cosT'sing, e,

where the body angles are defined.as

tanfzﬁcosg(ﬁ
oX

|
—h|| =

o)}

—h|

0

SN

The vectors tangent to the surfacei.e. e; and €s, which are similar to e, and €, are defined [15] by

e; = cosf e, +sind e (12)

e. =—sinfe, +0osh e; (13)

B
where
e; =cosTe, +sinT'cosd, e, —sinT'sing, e,

e =SiNd, e, +C0SO, e,

and 6 denotes the angle between streamlines and e . Therefore, if 0 is determined all around the body
surface, the streamlines would be determined on the surface, because the 5§ and t directions depend on
the body direction and e; is in the streamline direction (Fig. 5). The streamlines direction on the body
surface, or 0, are determl ned by applying momentum equations along the body surface using pressure
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distribution obtained from the inviscid solution [10]. Writing the momentum equations in the streamline
coordinates, taking their scalar product with € and substituting the unit vectors from Egs.(12) and (13),
resultsin the equation

Z-- c 1 19m (14)

where o = ¢ — 5 . The other equation that should be solved together with the above equation to find
scale factor h , is obtained using the following relation, which is valid for an orthogonal coordinate
system

sz e =25 0e)

Surface Streamline
’

Body Coordinate

Fig. 5. Schematic streamline direction
Taking the scalar product of this equation with € and replacing the unit vectorsin it [10], would result in
1 o(l n_h 2 )
hg o0&

aé sinT 6o

op " h, 0B

Therefore, to determine the quantities of 0 and hﬁ, Egs. (14) and (15) should be integrated along the
streamlines. This can be done after solving the inviscid flow, however this makes the solution process
sow and complicated. Therefore, it is preferred to transform these equations from the streamline
coordinates to the shock coordinates system [10]. The transformation relations are

1
h_ (15)

ii_:(Be e, —Dez.e;) — 0 — +(-De;.e. +Ae;.e;) — 1o (16)
he o0& 585 h, 0
ii_:(Beﬂe —Dej.e;) — 10 —+(-Dej.e. +Aej.e;) — 1o (17)
h, 0/ h. 0¢& h, 08
where
A=1-n,k, B=1-n,k,
D= O J=AB-D?
h, 08

Unfortunately, the pressure relation (Eq.(6)) is not accurate in the leeward region, since this relation is
obtained using thin shock layer assumption and the shock thickness is not thin in this region. Thus, it is
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not possible to calculate the orientation of the surface streamlines from the surface pressure distribution. In
other words, Riley and DeJarnette's method is not applicable in the leeward region [10].

Furthermore, in the above-mentioned operators the derivatives with respect to n have been neglected.
This is acceptable when the normal to the shock unit vector €, isin the same direction of the normal to
the body unit vector e, i.e. e, =—€.. Otherwise the following two terms should be added to the

operators of 16 and 17 respectively.

0 0
e..e.)— and e-..e)—
(6; ) - (65-6) -

In some cases the shock is approximately parallel to the body, and we can assume e, = —€- . In thiscase

(eg.en) =—(e5.eﬁ):0

(eﬁ.en) =—(e5.eﬁ):0

In other cases the above relations are not correct. For example, when the body has an angle of attack,
although the unit vectors normal to the body and normal to the shock are paralel in the windward region,
they are not paralel in the leeward region (Figs. 6 and 7)./ Therefore, these incomplete operators may
affect the accuracy of the streamline directionsin the leeward region.

Fig. 6. Shock wave and body geometry: side view Fig. 7. Shock wave and body geometry: rear view

In the present study, a linear interpolation for determining the streamline direction in the leeward
region is proposed. The proposed approximation is obtained by studying the actual physical situation of
the flow. All streamlines passing from windward to the leeward are approximately parallel at
¢, =180degrees. Since the direction of streamline which passes through (or near) ¢, =180degrees is
known (6, 4, = 0), in the leeward region, alinear interpolation between 6, o, and 6, 5, may be used
in order to estimate the streamline direction. i.e.

5225”(__1¢b+1j L g <n
S\ 7T 2

This approximation is compatibl 7(; with the actual physical situation. Note that, the streamlines direction in
the windward region (0 < ¢, < —) is determined from Egs. (14) and (15). In the results section it will be
verified that the present correctic% enables the method to be applied to the leeward region.

c) Convective heat transfer equations

The heat transfer rate on the surface is found using the Stanton (St) number defined as
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Pe Ug (haw - hw)

where h,, isthe adiabatic wall enthalpy. Using Reynolds analogy, a correlation between Stanton number
St, skin friction coefficient C , and Prandtl number Pr is obtained as

St—cf(Pr)-m
=P,

For laminar or turbulent flow, C; could be calculated from the following relation [16]:

C, .
7 =G (Ree)

where Re, is the Reynolds number based on the momentum thickness, and ¢, and m are constants for
laminar flow. This relation is applicable to incompressible flows, and. for/ compressible flows, the
reference enthalpy method explained in [18] may be used. According to this method, if al physical
guantities of the flow are determined at a reference enthalpy or-temperature, then relations of the
incompressible flow can be used for compressible flow calculations. The reference enthalpy is defined as

h’ =%(he +h,)+022(h,, —h,)

Zoby [13] used the axisymmetric analog together with the Reynolds analogy and reference enthalpy
method, to develop the following relations for the calculation of the heat transfer rate. These relations are
obtained from an approximate integral solution of boundary layer equations in the streamline direction.

For laminar flow

tw = 0.22(Re) *(2)(E9) p.T, (h,, —h,)(Pr,) °° (18)

e He

0, — (19)
pe ehﬁ
For turbulent flow
qWT = Cl(ReHT )_m (p_)(lu_)m peUe (haw - hw)(Prw)_O.[ (20)
e He
g? * M _ C3 JZY\ Ca
(], p" 1" T 0, dE)
T — (21)
pe ue hB
where the constant coefficients are defined [13] by
m = 2 C;=1+m
N+1
2N m
Clz(i)NJrl L CAZi
Ce (N+D(N+2) Cy
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c, =(1+m)c, Cy = 2.2433+ 0.93N
N =12.67 - 6.5log(Re,; ) +1.21[log(Re,; )|’

d) Viscous solution method

Equations 14 and 15 are transformed to the shock coordinate system, and then together with the
geometric relations (Eg. (10)) are integrated along the shock lines in the windward region to determine the
0 and h; quantities. In the leeward region @ is obtained from a linear relation which was previously
explained, however, hﬁ is obtained from the solution of Eq. (15). Note that Egs. (14) and (15) are solved
after correcting the shock shape in the subsonic region. Having determined h 0 the integral Egs. (19) and
(21) are solved to obtain the momentum thickness & . These equations are also transformed to the shock
coordinate system before being solved. The momentum thickness is used to determine the Reynolds
number based on this thickness, i.e. Re,. Now Egs. (18) and (20) are employed to calculate heat transfer
rate. Further details are given in [16].

4. RESULTS

In this section, surface heating rates are calculated over a blunt cone at angle of attack in perfect gas
laminar flow. The application of our method is not confined to the.ideal gas assumption, and any equation
of state of the gas may be used. Note that the results are shown in nondimensional quantities. Solutions are

described in a body-oriented coordinate system ( X,T,¢-)at the circumferentia locations of ¢, = 0 degree
and 180 degrees which are along the windward and leeward sides of the plane of symmetry respectively.
The distance along the surface is nondimensionalized by:nose radius.

In the first case, air flow around a cone of 15 degree half angle and spherical nose radius of 0.0279 m
is solved. Surface temperature is T, = 300° K, angle of attack is 10 degrees, and freestream properties
are M =10.6,T, = 47.3°K, p, =0.00973kg/m? .

In Figure 8 the results for heat flux in the windward section (@, = 0 deg) based on the method used
in [10], are compared with the results calculated by FLUENT, which isawell known full Navier-Stockes
(NS) code. This case is presented to prove the accuracy of the NS results, since Riley and DeJarnette's
method has good results in the windward region [10]. As shown, the two results are in good agreement. It
should be noted that this NS code solves three-dimensional compressible Navier-Stokes equations using
the control volume method.

In the leeward side, our calculated results, together with the results based on the method used in [10],
are compared with the results of the mentioned NS code as shown in Fig. 9. It is noted that Riley and
DelJarnette's method [10] is not applicable to the leeward region, and its result is given in this figure only
for the purpose of comparison. Asis seen, the presented method has predicted the heat transfer rate with
excellent accuracy. This shows that our proposed method for specification of streamline directions is
promising.

In Figs. 10 and 11, calculated results of circumferential distribution of the heat flux are compared
with results of the NS code. Figure 10 shows the results for the location of X =29, and Fig. 11 for
location of X =34. As is shown in these figures, the correction proposed in the present work has
improved the heat flux prediction significantly, while the original method of Riley and DeJarnette gives
considerable errors in the calculations. Therefore, the present corrections are necessary for the
development of the method to the leeward region.
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Fig. 8. Heat transfer comparison for of 15 degree sphere-cone,
R =00279 m
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Fig. 9. Heat transfer comparison for of 15 degree sphere-cone,
R . =0.0279 m

nose

In Fig. 12 orientation of the surface streamlines & , and the scale factor of streamlines hB , are shown
for the location of X =34 . The effect of the present corrections on the accuracy of the results is obvious
in thisfigure.
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Comparisons of the results are now presented for a 15 degree sphere-cone at an angle of attack of 15
degrees. The freestream conditions are the same as of the previous example.

Computed heating rate is presented in Fig. 13 for the leeward plane. As is shown in Fig. 13, the
present method result has good agreement with NS code result.
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Circumferential heating rates are presented in Figs. 14 and 15 at two axial locations of X =10 and
X =15 on the blunted cone. Good agreement is seen between the present results and full Navier-Stokes
code results.

10" -
— — — — Method of Riley et al
s — - - — Method of Riley et al
10° = Present
10° |-

¢ (deg)

Fig. 12. Orientation of the surface streamlines and scale factors of steaminess

for 15 degree sphere-cone, R, =0.0279 m
10" 2
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5 — — — — Method of Riley et al
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10° Leeward
Q. 10° _
10’5;_ M_ =10.6 N
F p, =0.00973 Kg / m® . a =15 deg
WE T =473K AN
10.77 TWZ‘BQOK‘ 1 N |
0 5 10 15 20

Fig. 13. Heat transfer comparison forx of 15 degree sphere-cone,
R... =0.0279 m

nose

Comparisons with experimental data are now presented. The case considered is the flow over a 15
degree half-angle spherically blunted cone at angles of attack of 10 degree. The freestream conditions are
M, =10.6,p, =0.00973 kg / m® and T, =47.3 K and a wall temperature of T, =300 K . The
nose radius is 0.009525 m. A computed heating rate is presented in Fig. 16 for the leeward plane. The
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results of the present method are compared with the experimental data of Cleary [19]. As shown in the
figure, the present method has good agreement with the experimental results.
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Circumferential heating rates are depicted in Figs. 17 and 18 at two axial locations on the body for
angles of attack of 10 degrees. Good agreements between experimental results and our computed results

are seen in the figur
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Finally, note that all results obtained by our method required afew seconds CPU time, eg. 2 to 4
seconds and depending on the problem being solved, while a CPU time of 30 to 40 minutes was required
for solving the problem using the full Navier-Stokes code.
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5. CONCLUSION

An engineering inviscid-boundary layer method has been'modified for calculating the surface heating rate
in the leeward region of hypersonic bodies. In the present method, surface streamlines in the windward
region are calculated from an inviscid method, which is inverse. Based on the axisymmetric analog, an
approximate integral heating method is.then used to compute the heating rates along three-dimensional
inviscid streamlines. In this paper, a new method for the estimation of the streamline direction in the
leeward region is presented whichisquite easy and fast.

Different test cases have been solved by the present method and their results compared with the full
Navier-Stockes (NS) results and experimental data. It has been shown that the results of the present
method have good accuracy and use a very short computing time.

NOMENCLATURE
ABD,J geometric factors o boundary layer thickness
C; local skin friction coefficient o boundary layer displacement thickness
€ .6 tangential unit vector on body surface 5¢ shock angle in circumferential direction
€,.8 .8, unit vectors of cylindrical coordinate S 5 body angle in circumferential direction
system %
€:,€5.6, unit vectors of shock curvilinear n stream function ratio, ?
. S
CO_OrdI nate system , _ 0 momentum thickness
€:.6-,6; unit vectors of streamline coordinate — o ]
<k < 0 inclination angle of surface streamlines
system k. k shock curvatures
f shock radius ¢'p urvetr
3 . . shock dinat
- body radius .giﬂ_ ock coordinates
&P streamline coordinates
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h scale factors of shock-oriented

¢ Yo density
coordinate system o shock angle, ¢ 3,
hg , h/7 scale factors of streamline coordinate > body angle, 43,
system 7% stream function
M Mach number y ratio of specific heats
m heating equation parameter Subscripts
n coordinate normal to shock
n coordinate normal to body aw adiabatic wall
Pr Prandtl number b body value
0 static pressure e bou.ndary layer edge
q heat transfer rate L laminar
R radius of curvature N nose value
S shock value
Re Reynolds number T turbulent
St Stanton number W wall value
u,v,w velocity components of shock-oriented 0 freestream condition
coordinate system
\% velocity vector
X, ¢ cylindrical coordinate system
XY, Z Cartesian coordinate system
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