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Abstract– Stress distribution in short and long fibers and their surrounding matrix bays of a finite 
width hybrid composite lamina is examined. The lamina is subjected to a tensile load of magnitude 
"P" at infinity, while its matrix is assumed to take only shear (shear-lag theory). The bay adjacent 
to the first intact filament is allowed to experience a plastic zone of size 2α, due to excessive shear 
load owned by cracks formed by double cuts along each filament. The plastic zone is assumed to 
behave as elastic–perfectly plastic. The short fibers are simulated by assuming two successive 
breaks along each filament. The effect of the plastic zone on short fiber load bearing capability, as 
well as stress concentration in the first intact filament is fully investigated. The effect of 
hybridization, in the presence of the plastic zone, is also examined on short fiber load bearing 
behavior.          
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1. INTRODUCTION 
 

Due to the low cost and high strength of composite materials, specific attention has been paid to their 
usage. In order to reach the required mechanical property, one may use composites in a variety of ways, 
namely in the form of hybrids. By definition, a hybrid composite is one which is composed of more than 
one filament. This is due to a need for any improvement in a deficiency present in a single type fiber 
composite. According to the geometric arrangement of fibers, one can categorize the unidirectional hybrid 
composites into two groups, that is, the interplay and intraply (intermingled) hybrids. In the former case, 
the composite is composed of discrete layers of one fiber only (i.e. a composite tube with graphite inner 
layers and a glass–epoxy outer layer). The latter group corresponds to the case wherein the fibers are 
combined in a regular fashion in each ply of the composite. The stress distribution in intraply hybrid 
composites is the focus of this research. In general, the use of the second type fiber could be to improve 
the weight of the overall structure, its mechanical property, a reduction in the cost of production and so on.  
Since the presence of the second type fiber complicates the stress distribution within the material, 
knowledge of this behavior will enable one to use these materials efficiently. To understand this behavior, 
the material has to be modeled properly. One of the models available is based on the shear lag theory, 
where in all fibers are assumed to take the axial load and the matrix sustains only shear. The load transfer 
mechanism from any broken fiber to the adjacent filament is through shear stress in the matrix. It is shown 
that [1-3] the shear-lag model gives relatively accurate results on normal stresses developed in composites 
with a low extensional stiffness in the matrix. Some authors have applied numerical methods to compare 
the results of the shear-lag theory with those of the finite element method [4-5]. The effect of inter-fiber 
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spacing and matrix crack on the stress concentration factor has also been examined by Sirivedin et al. [6]. 
The effect of fiber cross sectional shape on mechanical behavior was further discussed by Bond et al. [7].  

Oval openings and the way to design for stress reduction due to their presence is discussed [8-9]. 
Several authors have also studied the stress distribution and fracture behavior of hybrid composites [10-
13]. Stress-strain behavior in the initial stage of short fiber reinforced metal matrix composites was studied 
by Ding and his co-authors [14]. In [15], tensile properties of short glass fiber and short carbon fiber 
reinforced composites were studied to determine the effect of fiber volume fraction and its length on 
tensile properties of the overall material. 

Most of the research on composites with matrix plasticity has focused on materials with single-type 
filament [16-18]. Due to the complexity of stress distribution in short fiber composites, and even more, 
hybrid composites, and stress distribution in this field have many unresolved questions which have yet to 
be answered. In this paper, an effort is made to understand this behavior in more detail. 
 

2. DERIVATION OF FORMULAS 
 
To obtain the necessary relations, a finite width composite lamina with N=2q+1 fibers is considered (Fig. 
1). It is assumed that all the fibers are aligned in parallel, and the spacing between them, namely "h", is 
equal to the fiber's diameter "d". Furthermore, it is assumed that all fibers will only take extensional load, 
and the matrix sustains only shear. This is a good assumption for most composites with a phenolic resin or 
weakness in tension. 

The high modulus fibers (HM), as well as the low modulus fibers (LM), are assumed to have the same 
diameter and act as linear elastic materials up to the point of fracture. Two successive breaks are 
considered along each filament to simulate a short fiber. A perfect bond is assumed to exist between the 
fibers and the matrix, while each bay bonding the crack tip (formed by the breaks) is experiencing a 
plastic zone of size 2α, due to the presence of excessive shear stress. The stress in this zone is assumed to 
behave as elastic-perfectly plastic. The lamina is subjected to a tensile load of magnitude P, applied at 
infinity. Due to symmetry, only the right portion of the lamina is considered (Fig. 2). 
 

 

 

 

 

 

 

 

 

Fig. 1. Fiber arrangement in a hybrid lamina with double cuts 
          

To obtain the field equations, the right portion is divided into two regions. Each region deals with two 
subregions. Subregions 1.1 and 2.1 deal with zones where the matrix bays bonding the crack tip have 
experienced yielding. Equilibrium equations in each region are then written by considering a volume 
element containing two successive fibers (one HM and one LM fiber), and their surrounded matrix bay as 
shown in Fig. 3. Application of the force equilibrium equation along x on the mth volume element in the 
elastic zone of region 2 reveals that 
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Where for the elastic zone of region one we may write 
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Fig. 2. Fiber arrangement for the right hand portion of the lamina 

 

 

 

 

 

 

 
       Fig. 3. Force equilibrium on the mth volume element 

 
In the above equations, superscripts (1) and (2) are used for regions one and two respectively, while 

the asterisk is used to distinguish those properties associated with LM fibers. Assuming the lamina ends in 
HM fibers on the edge, the equilibrium equations for the edge fibers in region two reduce into: 
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For simplicity, equilibrium Eqs. (1) through (8) are written in a non-dimensional form as follows.  
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Similar expressions to those of (13) through (16) may be written if the edges end in an LM fiber. 

Allow "T" to be the non-dimensional yield stress in the matrix and U  to correspond to the non-
dimensional displacement associated with the portion of those fibers adjacent to the yield zones (sub 
regions 1.1 and 2.1), then for those fibers in sub regions 1.1 and bonding the plastic zone, the equilibrium 
equations become: 
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where it has been assumed that an LM fiber bonds the crack tip and the breaks are symmetric with respect 
to n = 0  fiber.  

In addition, for sub-regions 2.1, the equilibrium equations for those fibers bonding the plastic zone 
reduce into: 
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Similar expressions may be written if an HM fiber bonds the crack tip. 
 

3. DISPLACEMENT AND LOAD DISTRIBUTION FIELDS 
 

a) Elastic regions 
 

For elastic regions one and two, Eqs. (2.9) through (2.16) may be written in a matrix notation as: 
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Where I1 and I2 are coefficient matrices and U" corresponds to the second derivative of U with respect to 
ξ. Hence, the solution to the differential-difference Eqs. (25) and (26), in elastic zones of the two regions 
may be written as follows. 

 
1. Region one: In this region, the solution to Eq. (25) may be written in terms of eigen values λι and eigen 
vectors R (i) as; 
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This excludes the solution to the portion of those two fibers in contact with the plastic zone and bonding 
each crack tip in subregions 1.1. In the equations above, )(

)1(
i

nqR +−  is a value associated with the (q-n+1)th 
row of the ith eigen vector. 

 
2. Region two: In this region, solving Eq. (2), similar expressions to those of (27)-(29) may be written as: 
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This excludes the solution to the portion of those two fibers in contact with the plastic zone and bonding 
each crack tip in subregions 2.1. In Eqs. (30)-(32), positive values of iλ  are discarded due to the bond 
ness conditions below: 

 

∞→ξ
⎪⎩

⎪
⎨
⎧

=

=
   as      

                         1
* RP

P

n

n
                                         (33) 

 
in the above equations. Ai, Bi, and Di, are constants yet to be defined from boundary conditions. 

 
 b) Plastic regions 

 
1. Subregions 1.1: For those fibers in the vicinity of the yielded zone, the homogeneous solution of the 

displacement fields (Eqs. (18)-(21)) may be written as: 
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Where P1, P2, Q1, Q2,…….., R1, and R2  are constants yet to be defined. The complete displacement field 
for a typical LM fiber in this region is then: 
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where Di are the same unknown constants given previously in Eq. (30). A similar procedure may be 
adapted to obtain an expression for an HM fiber, when bonding the crack tip. 

 
2. Subregions 2.1: It may be shown that the displacement fields for those fibers bonding the yielded 

zone of sub-region 2.1 may be written as: 
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Where Ai are those constants expressed in Eq. (27). 
Knowing the displacement fields above, the load in each fiber is obtained using the following relation: 
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4. BOUNDARY CONDITIONS AND CONTINUITY EQUATIONS 

 
To solve for the constants introduced in displacement fields, defining ξ1 + α  = ξο , the following boundary 
conditions and continuity equations may be introduced. 
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The non-dimensional yield stress may also be expressed using one of the following relations: 
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One can use the above boundary conditions and continuity equations to solve the 3n-20 unknowns 

present in equilibrium equations. 
 

5. MECHANICAL PROPERTIES OF THE SELECTED ELEMENTS 
 

In order to investigate the effect of plastic zone size on stress variation within the lamina, using [19], the 
following values were selected for fiber and matrix properties. 

 
Table 1. Mechanical properties of selected materials forming the hybrid lamina 

 
Element Modulus of elasticity 

Epoxy matrix 2.8-4.2 Gpa 
Graphite fiber 248 Gpa 

Glass fiber 
S-Glass 
E-Glass 

 
85.5 Gpa 
72.4 Gpa 

 
6. RESULTS AND DISCUSSION  

In Figs. 4-9, it is assumed that the breaks grow symmetric with respect to lamina width. The effect of 
hybridization on stress concentration in LM fibers and in the presence of a plastic zone is shown in Fig. 4 
for r=5 and ξο=2. In a hybridized composite with no plastic zone, the stress concentration factor in an LM 
fiber is always higher than that associated with a single type fibrous composite subjected to a similar 
loading condition. This behavior is also observed for small plastic zone sizes bonding the crack tip. As α 
is increased, the effect of hybridization on Kr appears to be decreased. This effect seems to be considerable 
for all values of R ranging from 10 ≤Rp . For example, at α = 0, once the lamina is hybridized to R=0.2, 
the stress concentration in the first intact filament has increased by 69.4%, while in the presence of a 
plastic zone of size α=0.4, the increase is only 13.4%. For R=0.33, a typical value of glass-boron-epoxy 
composite, hybridization causes a 40% increase in Kr at α=0, and a 6.1% decrease at α = 0.4.  Both of 
these changes are for r=5 (2a/w ≈ 0.27). 

As shown in Fig. 5, opposite results are obtained when an HM fiber bonds the crack tip. This is due to 
the nature of complex stress distribution and displacement fields in hybrid composites subjected to an 
internal discontinuity in the form of a crack [12, 20, 21]. In the presence of a no plastic zone, an HM fiber 
always takes fewer loads compared to that of a non-hybrid composite, provided the loading condition 
remains intact. The same behavior is also observed in the presence of a very small plastic zone at the crack 
tip. As the size of the plastic zone is increased, the values of the stress concentration factor in HM fibers 
reach and go beyond those associated with R=1. This effect seems to be present for all values of R ranging 
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from 10 ≤Rp . The percentage decrease in Kr between the two cases of R=1 and 0.2 appears to be 18.5% 
at α = 0 and 12.8 % at α=0.4. For R=0.33, hybridization causes a 15% decrease in Kr at α=0, while the 
reduction is only 7.7% at α=0.4. For α = 0.4, the percentage increase in Kr becomes 12% as R is 
decreased from 1 to 0.8. 
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Figure 4. The effect of plastic zone growth on stress concentration within the lamina for a specific crack 

size.

St
re

ss
 c

on
ce

nt
ra

tio
n 

fa
ct

or
 K

r

R=1
R=0.8
R=0.6
R=0.33
R=0.2

N=21   r = 5    ξο = 2 
LM fiber at the crack tip

 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

α

St
re

ss
 C

on
ce

nt
ra

tio
n 

Fa
ct

or
 K

r

R=1
R=0.8
R=0.6
R=0.33
R=0.2

N=21   r = 5    ξο = 2 
HM fiber at the crack tip

 

In both Figs. 6 and 7, the percentage decrease (or increase) in (Ps)max corresponds to a change in  R 
from 1 (single type or non-hybrid fibrous lamina) to 0.33 (hybrid  glass-graphite –epoxy composite).  

According to Fig. 6, smaller HM short fibers are more sensitive to a plastic zone growth. The 
percentage reduction in (Ps)max, for ξο =2, is 3.8% at α/ ξο  = 0 and 16.5% at α= 0.8 (or α/ ξο = 0.4). A 
similar result for ξο = 4 and at α/ ξο =0 is 1%, while for a plastic zone the size of α=0.8 (α/ξο = 0.2), the 
percentage decrease appears to be 2.6%. For ξο=4 and at α/ξο=0.4 the percentage decrease is 4.1%. The 

Fig. 4. The effect of plastic zone growth on stress concentration 
 within the lamina for a specific crack size  

Fig. 5. The effect of plastic zone growth on stress concentration in the first 
 HM filament bonding the crack tip 
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percentage increase in (Ps)max for all values of ξο seems to increase, as the size of the plastic zone is 
increased. 

Figure 7, on the other hand, shows the percentage increase in Kr for an LM short fiber adjacent to the 
crack tip. Here, the same values or R and ξο, are used for further comparison. As it appears, with an 
increase in α, the percentage increase in (Ps)max appears to be nearly a constant for larger values of ξο (3 or 
4). The percentage increase in (Ps)max for smaller short fibers, (ξο = 2), appears to decrease as the size of 
the plastic zone is increased. For ξο = 2, the increase in this load is 13.1% at α/ ξο =0 and 9.8% at α/ ξο = 0. 
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Figure 6. The effect of matrix plastic zone growth on % reduction in peak normal stress in 

HM short fiber adjacent to the crack tip.
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Figure 7.  The effect of matrix plastic zone growth on % increase in peak normal stress in 

LM short fiber adjacent to the crack tip.
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Figure 8 investigates the effect of  ξο on stress concentration factor Kr in LM fiber bonding the crack 
tip. Here it is assumed that R=0.33, r=5, and α ranges from zero to 0.4. Using this figure, one can 
conclude that for various values of α, an increase in ξο greater than 2.5 has almost no effect on a change in 
Kr. This means that the interaction of the two breaks on each other, and finally on Kr becomes negligible 
and the results approach those of a single cut along each fiber. The same behavior is also observed when 
an HM fiber bonds the crack tip, as shown in Fig. 9. 

 

Fig. 6. The effect of matrix plastic zone growth on % reduction in peak normal  
stress in HM short fiber adjacent to the crack tip  

Fig. 7. The effect of matrix plastic zone growth on % reduction in peak normal  
stress in LM short fiber adjacent to the crack tip  
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 Figure 8. Variation of stress concentration factor with respect to the length of  short fibers
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Figure 9. Variation of stress concentration factor with respect to the length of  short 
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7. CONCLUSIONS 
 

According to the results, one can conclude that in a non-hybrid composite lamina (R=1), the presence of 
the plastic zone on stress reduction in intact filaments becomes more effective as the number of broken 
fibers grows in size (larger cracks). As the lamina is hybridized, for any value of "R", the growth of the 
plastic zone appears to lower the value of Kr in both HM and LM fibers. Although in a hybrid composite 
LM fibers take more load compared to those of R=1, the results indicate that for all values of R, as α 
grows in size, the magnitudes of Kr approach (and even go beyond) those of a non-hybrid composite. A 
similar behavior is also detected for Kr in HM fibers. In other words, in a hybridized model, the growth of 
α forces the values of Kr to approach those of a non hybrid composite lamina. It is also recognized that for 
any value of R and α, the increase in ξo does not appear to have a considerable effect on Kr, provided the 
distance between any two successive cuts along each filament is more than 5 (ξο=2.5). The peak load 
reduction in HM short fibers seems to be more sensitive to α for smaller values of ξο. For LM short fibers, 
the percentage increase in (Ps)max obeys the same behavior, while its value seems to be almost independent 
of α for longer short fibers. 
 

Fig. 8.Variation of stress concentration factor with respect to the length of short fibers 

Fig. 9. Variation of stress concentration factor with respect to the length of short fibers  
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NOMENCLATURE 
 

2a        size of the crack 
Af cross sectional areas of the HM fibers 
Af

*     cross sectional areas of the LM fibers 
d          fiber diameter, fiber spacing 
Ef, Ef

*    elastic Modulus of the HM and LM fibers, respectively 
G         shear modulus of the matrix 
h         thickness of the lamina 
Kr       stress concentration factor in each fiber 
m        volume element containing one HM and one LM fiber 
n          filament number 
N         total number of fibers (N=2q+1) 
p         normal Load  applied at infinity 
P               non-dimensional load in HM Fibers 
P*            non-dimensional load in LM Fibers 
2a        size of the crack 
Af cross sectional areas of the HM fibers 
Af

*       cross sectional areas of the LM fibers 
d          fiber diameter, fiber spacing 
Ef, Ef

*    elastic Modulus of the HM and LM fibers, respectively 
G        shear modulus of the matrix 
h         thickness of the lamina 
Kr       stress concentration factor in each fiber 
m        volume element containing one HM and one LM fiber 
n         filament number 
N         total number of fibers (N=2q+1) 
p         normal Load  applied at infinity 
P               non dimensional load in HM Fibers 
P*              non dimensional load in LM Fibers 

(2)(1)
P ,P   non dimensional loads in a portion of the fibers bonding the yield zone in sub-regions 

1.1 and 2.1 respectively 
Ps                  non-dimensional load in short Fibers 
R                  extensional stiffness ratio of LM fibers to HM fibers 
r                   total number of broken fibers 
T                 non-dimensional yield stress in the matrix 
u(1)               displacement  of fibers in region one 
U(1)                     non dimensional displacement of fibers in region one 
u(2)                displacement  of fibers in region two 
U(2)              non-dimensional displacement of fibers in region two 

)1((1)
, u U     displacement of a portion of the fibers bonding the yield zone (and its non dimensional 

form) in sub regions 1.1 
)2((2)

, u U     displacement of a portion of the fibers bonding the yield zone (and its non-dimensional 
form) in sub regions 2.1 

W                width of the lamina 
x,y                coordinate system centered in the middle of  the lamina 
2α                non-dimensional size of the plastic zone 
λi                  Eigen value 
ξ                  non-dimensional coordinate along each filament 
2ξο               total length of each short fiber 
τy              yield stress in the matrix 
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