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Abstract– The wake flow and the onset of Karman-vortex shedding corresponding to periodic forces of a 
heated circular cylinder are investigated numerically with a SIMPLEC finite volume code. This study is 
performed for Reynolds numbers ranging from 20 to 200 and a Prandtl number of 0.7. 

The first bifurcation of flow over bluff bodies, which is strictly a Hopf type, is modelled using the Stuart-
Landau equation. In this study, it is shown that the flow behind a circular cylinder is steady up to Re=49 and 
beyond this critical value, the flow develops to a periodic state, corresponding to the vortex shedding and 
force oscillation on the body.  The wake structure is studied close to the oscillation threshold and also at the 
higher Reynolds numbers using streamlines, pressure, temperature, Nusselt numbers and wall vorticity 
profiles and iso-lines.  Some useful physical quantities, such as time mean separation angle, Nusselt number, 
the dominating wake frequency (Strouhal and Roshko numbers), mean drag and the RMS value of lift are 
computed and compared with numerical and experimental results.  Based on the results of this study, the 
empirical relations for the Reynolds dependence of the mean Nusselt number, mean separation angle, 
Strouhal and Roshko numbers are obtained.           

 
Keywords– Vortex shedding, Hopf bifurcation, heated cylinder, stuart-landau equation, strouhal number, Roshko 
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1. INTRODUCTION 
 

Convective heat transfer between fluid and bluff bodies such as circular cylinders arise in numerous 
industrial applications like tubular heat exchangers, nuclear reactor fuel rods, boilers, cooling of electronic 
equipment, chimneys,  hot wire anemometry, etc. In spite of the relatively simple geometry of bluff 
bodies, the flow around these bodies is a complicated flow phenomenon, which has proved a challenging 
area for researchers in recent years. However, it was not until 1878, when Strouhal published his pioneer 
paper on singing wires caused by vortex shedding, that this type of flow became a subject of quantitative 
research. In general, the flow around bluff bodies contains many complex phenomena. The near wake of a 
bluff body is involved in the interactions between an attached shear layer on the frontal part of the body, 
the separating free shear layers springing from the sides of the body, and a massive wake flow 
downstream of the body, each with different and perhaps even coupled processes of developing 
instabilities as the Reynolds number is increased. Flow structures over these bodies change as the 
Reynolds number increases (Re). At Reynolds numbers below unity, the flow is fully attached with no 
separation. As Re is increased, the flow separates and a pair of steady symmetric vortices forms behind the 
body (Re ≈ 3.2-5 [1]). At higher Reynolds numbers, the vortex length of the re-circulation region behind 
the body grows as the Reynolds number increases. At a critical onset Reynolds number, 1Recr , the twin-
vortex arrangement becomes unstable, and a periodic oscillation wake and a staggered vortex street are 
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formed. The separated vortices are “shed” alternately from the upper and lower side of the body. The 
periodic phenomenon is referred to as vortex shedding, whereas the anti-symmetric wake flow pattern is 
referred to as the Von Karman vortex street. This is the first 2D wake transition called Benard-von 
Karman instability. This transition contains a 2D instability from a steady wake to a periodic wake. The 
physically relevant processes, which are associated with the vortex shedding, are the convection and 
dissipation of vorticity. If the dissipative mechanism dominates, vorticity dissipates before a wake 
instability can be excited, and thus a steady flow results. Conversely, when the convective forces 
dominate, the unsteady vortex shedding forms. The Reynolds number, which represents the ratio of 
convective to dissipative forces, is therefore physically relevant and serves as the bifurcation parameter. 
The earliest recorded observation of the phenomenon of the vortex shedding was reported by Leonnardo 
da Vinci in the sixteenth century when he sketched a double row of vortices in the wake of a bluff body. 
The near-wake flow unsteadiness gives rise to fluctuating drag and lift forces, which can stress the body 
by making it vibrate. By increasing the Reynolds number, a 3D transition is developed at around Reynolds 
number 200 ( 2Recr ), and the three-dimensional flow effects appear [2, 3]. Within the laminar regime, 
which is between these two instabilities, ( 21 ReReRe crcr << ), the vortex shedding is characterized by a 
very well-defined frequency, which, when scaled with the viscous time scale, ν/2d ,  exhibits an 
approximate linear increase with the Reynolds number [4]. As Re increases higher still, the effects of flow 
three dimensionality and turbulence become more and more pronounced.  

The study of flow around a circular cylinder has been the subject of intensive investigations in recent 
years. The most recent works have investigated high Reynolds numbers, but there are comparatively few 
investigations, especially for heated bodies at low Reynolds numbers. Recently, a number of numerical 
investigations have been carried out to study the characteristics of heat transfer and fluid flow over 
cylinders at low Reynolds numbers [5-8].    

The main objective of the present study is to provide reliable results from simulations of the flow 
around a heated circular cylinder for different Reynolds numbers ranging from 20 to 200 and to make 
comparisons with other available numerical and experimental results. Also, particular emphasis is put on 
the study of the first wake bifurcation (onset of vortex shedding), heat transfer and fluid flow near the 
wake. 
 

2. ONSET OF VORTEX SHEDDING (HOPF BIFURCATION) 
 
The development of a periodic flow emanating from a steady flow, causing periodic vortex shedding, is a 
Hopf bifurcation that can be modelled by the Stuart-Landau equation [9-11]. The onset of Karman vortex 
shedding is studied in the wake of different two-dimensional bluff bodies, experimentally [9-13] and 
numerically [4, 14, 15].  Provansal et al. [9] found that the periodic vortex street near the wake is the 
saturated end product of temporal global wake instability, and not a spatial response to continuously 
supplied upstream disturbances. It was also found that, for Reynolds numbers not too far above the critical 
one, the shedding frequency in the final saturation is not significantly different from the linear global 
response frequency, suggesting that an approach to vortex shedding from the linear stability theory has 
validity. They also showed that the wake dynamics could be described by a single Stuart-Landau (SL) 
equation by measuring all coefficients of the SL-equation for a range of Reynolds numbers near the onset 
of Karman shedding. It is important to mention that a non-stationary perturbation ),,,(1 tzyxu  of the 
steady solution ),,(0 zyxu  of the Navier-Stokes equations is expanded in order to perform the stability 
analysis of a steady flow as a sum: ∑

=
+=

1

*
1 )},,()(),,()({),,,(

i
iiii zyxgtAzyxgtAtzyxu , where ),,( zyxgi  

satisfies the boundary conditions [9-11,14]. It is shown that the amplitude )(tAi  satisfies the evolution 
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equation  )(/ jiiii AGAsdtdA += , where iG  contains the nonlinear interaction of all the modes resulting 
from the nonlinear partial differential equation [9]. A truncated form of this equation is named the landau 
equation (Eq. (1)), and can be employed to model the onset from steady to periodic flow (a Hopf 
bifurcation). 
 

)()( 52 MOAMAp
dt
dA

+λ−σ= , AM = , )exp( tiMA Φ=                                 (1) 
 
Where A(t) is a characteristic complex amplitude associated with the fundamental frequency component, 
and ir iσσσ +=  and ir iλλλ += are both complex constants. In this equation, p represents a bifurcation 
parameter such as the Reynolds number. The physical meaning of ir σσ ,  is that of the amplification rate 
and the angular frequency, respectively, of oscillations having infinitesimal amplitudes. These constants 
are global characteristics, which means that they are the same at all points of flow [16].  

An amplitude equation and a phase equation (the real and the imaginary parts of Eq. (1)) are as: 
 

3MM
dt

dM
rr λ−σ=                                                           (2.1) 

 
2M

dt
d

ii λ−σ=
Φ                                                             (2.2) 

 
This model has applicability if the onset of vortex shedding at the critical Reynolds number behaves 

as a Hopf bifurcation. In a linear regime, the second term on the right-hand side of Eq. (2.1) is negligible, 
and the disturbances will grow in the usual exponential manner at a rate that depends on the magnitude 
of rσ . As the amplitude increases, nonlinear effects become more important, and the amplitude saturates 
to a certain level. The saturation state (denoted by suffix “sat”) is given by the condition 0=dt

dM  in Eq. 
(2.1), or  
 

5.0)/( rrsatM λσ=                                                                  (3) 
 

Following Landau and Stuart [17, 18], rσ and iσ  are expanded in terms of the bifurcation parameter 
(Reynolds number) in a certain nontrivial neighbourhood of critical Reynolds number as: 
 

                                      )ReRe()Re(Re
Re

(Re) 2
crcr

r
r O

d
d

−+−
σ

=σ                                   (4.1) 
 

)ReRe()Re(Re
Re

)(Re(Re) 2
crcr

i
crii O

d
d

−+−
σ

+σ=σ                          (4.2) 
 
where crRe  is defined by 0)(Re =crrσ . Equation (4) shows that growth (or decay) rates are a linear 
function of Reynolds number in the vicinity of critical Reynolds number. An expression for saturation or 
limit-cycle amplitude is obtained using Eq. (3) and 4 as: 
 

 5.0)]Re(Re
Re

1[ cr
r

r
sat d

d
M −

σ
λ

=                                                    (5) 

 
Combining Eqs. (2) and (4) and noting that fdt

d π= 2Φ   where f is the frequency of oscillations in the 
disturbed state, it may be written as: 
 

 ),1(1 22 RM
dt

dM
M

S rrr −σ=λ−σ==            satMMR /=                          (6.1) 
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       22 )/(2 RMf
dt

d
ririii λλσ−σ=λ−σ=π=

Φ                                       (6.2) 
 

The above relations show that the instantaneous growth rate, S, and instantaneous frequency, 
dt

dΦ
, 

are linear functions of the instantaneous amplitude (M(t)) squared. Equation (4) also can be used to obtain 
the coefficients of σ and λ. 

Strictly speaking, Eq. (6) is valid only at Re very close to the onset. Based on experimental 
observation [10], they seem to be applicable for )Re(Re cr−  ranging from –10 to 25, approximately. From 
transient real measurements or numerical simulations at Reynolds numbers close to the onset, giving out 
different values of rσ , the onset value of Re is determined by interpolation with equation 4. In the present 
study, the function M is, as  in[14], chosen to be the lift coefficient. In this respect, as mentioned [4], the 
analysis relies on the fact that the linear growth rate is independent of location, i.e. vortex shedding results 
from a time-amplified global instability [9]. As also mentioned in [10], the vortex shedding during a start-
up is always two dimensional. Thus, a two dimensional method for the prediction of the onset of vortex 
shedding is suitable. 
 

3. NUMERICAL DETAILS AND PROBLEM DESCRIPTION 
 
A fixed two-dimensional heated circular cylinder with diameter d is exposed to a constant free stream 
velocity U. All geometrical lengths are scaled with d. The scaling with d also applies to the Strouhal 
number, St=f d/U (f is the shedding frequency), forces and Nusselt number. Velocities are scaled with a 
constant free stream velocity, U, and physical times with d/U. The origin of force coordinates is placed at 
geometrical centre with drag force D positive in the x-direction and lift L positive in the y-direction. The 
non-dimensional temperature, *T , is defined as )/()(* OWO TTTTT −−= , where WT  is the constant 
temperature on the cylinder wall and OT  is the constant inflow temperature. The Nusselt number on the 
cylinder wall is computed as: 

n
T

k
hdNu

∂
∂

−==
* , where h is a convection coefficient. The time-dependent 

calculation is started with the fluid at rest and a constant time step t∆ =0.02 is used for all simulations. A 
non-uniform O-type grid is used. Some studies on the effect of grid distribution, grid size and the number 
of grid points are performed using resolutions up to 90000 grid points. Based on these results  and also 
refinement studies of previous works of the present author [4, 19], it seems that a resolution of  40000 grid 
points with a solid blockage of about 3% is sufficient to obtain accurate results where discrepancy 
between the global results of the finest grid and this resolution is less than 5 percent. A uniform flow 
( ,1 Uu =  0*2 == Tu ) is prescribed at the inlet as boundary condition. At the outlet, the convective 
boundary condition [4] is used for all velocity components and temperature. A No-slip condition is 
prescribed on the body. *T  is set to one on the cylinder wall, where WTT = . 

The flow is assumed to be two-dimensional and unsteady. An incompressible SIMPLEC finite 
volume code is used employing a non-staggered grid arrangement. The scheme is implicit in time, and a 
Crank-Nicolson scheme, which is of second order, has been used for convective and diffusive terms and 
the pressure is treated fully implicitly. The convective terms are discretized using the QUICK differencing 
scheme, whereas the diffusive terms are discretized using central differences. More details of the code, 
equations etc. are described in [19]. The governing equations of this work in dimensionless form are as 
follow: 

              0=
∂
∂

i

i

x
u                                                                        (7) 

 

             
jj

i

ij

jii
xx

u
x
p

x
uuu

∂∂
∂

+
∂
∂

−=
∂

∂
+

τ∂
∂ 2

Re
1)(

                                                 (8) 
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iii

i

xx
T

x
TuT

∂∂
∂

=
∂

∂
+

τ∂
∂ *

PrRe
1*)(* 2

                                                       (9) 

 
In deriving these equations, the following assumptions are made. The flow is assumed incompressible 
with constant fluid properties Also the natural convection and viscous dissipation effects are neglected. 
Lange et al. [5] presented some results and showed the validity of these assumptions for Re<200.  
 

4.  RESULTS AND DISCUSSION 
 
Simulations of 2D-unsteady flow around a heated circular cylinder for low Reynolds numbers 
( 20020Re −= ) are performed. The onset of vortex shedding is studied using the Stuart-Landau Equation. 
The structure of the flow is studied close to the oscillation threshold and also at the higher Reynolds 
numbers using streamlines, pressure, vorticity and the second invariant of velocity gradient tensor 
contours. Some useful physical quantities such as Nusselt numbers, the dominating wake frequency 
(Strouhal and Roshko numbers), mean drag and the RMS value of lift are computed and compared with 
numerical and experimental results.  
 
a) Onset of vortex shedding 
 

A study on the onset of vortex shedding is carried out using the Stuart-Landau Equation as outlined in 
section 2. Based on this study, the Reynolds number and frequency of the actual onset are predicted. It is 
important to mention that the shedding frequency is normalized with both the convective time scale, 
( ud / ), and the viscous time scale, ( ν/2d ). The shedding frequencies scaled in this way are usually 
referred to as Strouhal number ( ufdSt /= ) and Roshko number ( StfdRo ×=υ= Re/2 ), respectively.  

The time-dependent simulations are started with the fluid at rest. The transient periods, before the 
fully saturation state is achieved are different, ranging from about a 25000 time step for a low Reynolds 
number, close to the onset of vortex shedding, to about 2000 time step at Re=200 (Fig. 1). At low 
Reynolds numbers, the flow oscillations take a rather long time to develop if one is in very close positive 
vicinity of critical Reynolds number. From Fig. 1, the typical oscillation of lift fluctuations are seen for 
two cases; first, at subcritical state (e.g. Re=45) where the amplitude of the signal decays to a zero level, in 
which the wake flow becomes steady and there is no vortex shedding in the wake. The second 
supercritical state (case Re=80 in Fig. 1), where signal amplitude grows to a certain constant level, the 
fully saturation state and the vortex shedding process occur in the wake flow. Similar signals are also 
observed when the Reynolds number is less than a critical value (subcritical state) or greater than a critical 
value (supercritical state).  

The following procedure is adopted for determining the critical Reynolds number and frequency, 
when the vortex shedding commences. As mentioned in Section 2, the lift coefficient is selected as the 
signal in this analysis (Eq. (1) and Fig. 1). For each Reynolds number close to the onset of vortex 
shedding, the value of growth, or decay rate ( rσ ), is found from Eq. (6.1) by fitting a straight line in a plot 
of the non-dimensional instantaneous growth rate S versus 2R , instantaneous non-dimensional amplitude 
squared, as suggested by the SL-model (Eq. 6.1). The value of rσ  is equal to S value at a location where 
this fitting line to data crosses the S axis (where R=0), (Eq. (6.1) and Fig. 2 (left)). By this method, the 
values of rσ are obtained for different Reynolds numbers ranging from 45 to 200. The same procedure is 
also used to find the critical frequency and the other constant in the SL-equation, (Eq. (1)). To determine 
the constants of Eq. 6b, the instantaneous Roshko numbers are plotted versus instantaneous amplitudes 
squared as suggested by the SL-model. By fitting a line in the data and extrapolating the line to zero 
amplitude, the starting frequency or starting Roshko number ( πνσ= 2/2

0 dRo i ) was found at each 
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Reynolds number. The saturation Roshko number was also determined at the location where the amplitude 
reaches to constant level, (Figs. 1 and 2).  

 
Fig. 1. Time evolution of lift and drag coefficients (M=CL), with (Re=80) 

 and without (Re=45) vortex shedding  

Fig.2. Instantaneous growth rate (left) and  instantaneous Roshko number(right) versus 
normalized-amplitude squared during amplification at Re=65 

 
By using data similar to Figs. 1 and 2, the values of rσ , Ro  and 0Ro  (or iσ ) at various Reynolds 

numbers are obtained. The results for rσ  and Ro  are collected for different Reynolds numbers in Fig. 3. 
In Figs. 2 and 3, the rσ  and iσ  are normalized with the viscous time scale. Based on Eq. 4, the value of 

crRe  is determined by condition 0)(Re =σ crr . Thus, by fitting a line to data in Fig. 3 (left) and finding 
the corresponding value of Re, where rσ is equal to zero, the critical Reynolds number is determined to be 

crRe =49. The critical frequency of flow (in non-dimensional form is crSt or crRo ) is determined from 
Fig. 3 (right) at crRe , which is crSt = 0.12 and crRo =5.85. By using the results displayed on Figs. 2 and 
3, and using the relations in section 2, the following results are obtained:  
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                   )Re(Re207.085.5 crRo −+=           or        Re/3.4207.0 −=St  
                 )Re(Re156.0 crr −=σ                        where    156.0Re/ =σ dd r  
                )Re(Re68.038.32 cri −+=σ             where    68.0Re/ =σ dd i , 38.32)(Re =σ cri                              
 
Table 1 compares the critical Reynolds number, Strouhal number and Roshko number of this study with 
experimental [9, 10, 12, 13] and numerical [15] ones. The critical values of this study for the onset of 
periodicity are in good agreement with experimental and numerical ones, although the discrepancy with a 
numerical one is larger.  It seems that this discrepancy is mostly due to using a relatively coarse grid and 
high blockage (about 10%) [15]. It is important to mention that the SL-model is valid at Re close to the 
onset, where the difference between Re and critical Re at the onset is not larger than about 25 [10]. As 
seen from Fig. 3 (left), when only the data between Re=45 and Re=75 is used, the critical Reynolds 
number is crRe =49, while this value is crRe =46.7 when data is chosen between Re=45 and Re=150 (this 
figure is not shown here). This result is also in good agreement with the experimental ones. The 
corresponding values for the critical Strouhal number for these two cases are 0.120 and 0.115, 
respectively. It is believed that the crRe =49 and the corresponding values for crSt  and crRo  are more 
realistic than 46.7, because the conceptual basis of the SL-model is built on a Hope bifurcation which is 
purely temporal in nature. At Re far from the onset of vortex shedding (Re>150), the wake flow become 
3D [2, 3] and spanwise effects can change the structure of the wake flow, thus using a temporal model is 
questionable. The wake flow at higher Reynolds number (Re>200) is well modelled with the Ginzburg-
Landau model [20] where Re and aspect ratio are wake parameters. 

 
Fig. 3.  Linear global growth rate (left) and Roshko number 

 (right) versus Reynolds numbers 
 

Table 1. Comparison of the results of this study with experimental and numerical ones 
 

 Exp.[9] Exp.[10] Exp.[12] Exp.[13] Num.[15] This study 

crRe  47 47 48 47.4 46.2 49, 46.7 

crSt  ------- 0.115 0.12 0.116 0.138 0.12, 0.115 

crRo  -------- 5.41 5.76 5.5 6.38 5.85, 5.37 
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b) Wake flow structure 
 

In this section, some aspects of wake flow features are studied using instantaneous vorticity, pressure 
and the second invariant of velocity gradient tensor, )(5.0 ,,,, ijjijjii uuuuQ −= , contours and streamlines 
(Figs. 4 and 5).  To study instantaneous-flow structure, it is necessary to recognize the significant vortical 
regions in the flow field. It is important to mention that a vortex should have a vortex core with a net 
vorticity and the geometrical characteristics of the identified vortex must be Galilean invariant [21]. 
Because an agreement on the definition of a vortex does not yet exist, it is difficult to recognize the 
general vortical structure for all flow cases, especially in 3D flow, with only one method, where these 
requirements for the vortex core may not yield a single scheme. Therefore, several methods such as using 
streamlines, pathlines, vorticity, pressure, the rate of strain tensor, etc are propounded for identification 
and visualization  of vortical structures [21]. In the present work, the instantaneous flow structures were 
studied using vorticity, streamlines, pressure and the second invariant of the velocity gradient tensor. It is 
worth mentioning that a region with a pressure value lower than the ambient one and a positive second 
invariant of velocity gradient tensor ( 0)(5.0 ,,,, >−= ijjijjii uuuuQ ) is also defined as a vortex core [22]. 

 
  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. From top to bottom, streamlines, the positive second invariant of velocity gradient tensor 
( 0)(5.0 ,,,, >−= ijjijjii uuuuQ ), pressure and vorticity contours 

at one time instant, Re=100 
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Fig. 5. Instantaneous vorticity contours for different Reynolds numbers, solid lines  
(clockwise, negative) and dashed lines (anti-clockwise, positive)  

The instantaneous vortex street formation at one instant was provided with the aforementioned 
methods for Re=100 in Fig. 4. As seen, the structure of vortex cores in the wake region behind the body is 
clearly predicted with these four methods, while the vorticity and especially Q contours, clearly identify 
the vortical structure in a better way. From plots in Fig. 5, the vortex street formation is seen for different 
Reynolds numbers. At supercritical state )Re(Re cr> , these vorticity contours are chosen at a time instance 
during the fully saturated state where the maximum amplitude remains constant with time (Fig. 1(right) 
for 50>t at Re=80). At sub-critical state ( crReRe < ), where the amplitude of force signals decays to zero 
level, the flow approaches to steady and there is no vortex shedding. It is observed from Fig. 1 at 100>t  
(Re=45) that the level of lift coefficient is about zero. The corresponding vorticity contour for one time 
instant in this region is depicted in Fig. 5. As seen, the flow is symmetric and two attached vortices are 
observed with no vortex shedding. Similar behaviour is also seen for the other instances and also all other 
cases with crReRe < . This verifies the previous finding in section 4a, where the onset of vortex shedding 
was predicted at .49Re =   

By  increasing the Reynolds number from the onset value ( 49Re =cr ),  the flow around the body 
exhibits an oscillatory behaviour, instantaneous flow becomes asymmetric with respect to the oncoming 
flow, the twin-vortex arrangement becomes unstable and a time-periodic oscillation of the wake develops, 
which is called  vortex shedding. This phenomenon is clearly seen in Fig. 5 for Re=75,150,200. The solid 
and dashed lines in theses plots correspond to vortices, which shed from the upper and lower side of the 
body in a clockwise and anti-clockwise direction, respectively.  

0 2 4 6 8 10 12 14

-2

-1

0

1

2 Re=45

0 2 4 6 8 10 12 14

-2

-1

0

1

2 Re=75

0 2 4 6 8 10 12 14

-2

-1

0

1

2 Re=150

0 2 4 6 8 10 12 14

- 2
- 1
0

1

2
Re= 200 

Re= 150 

Re= 75 

Re= 45 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A. Sohankar 
 

Iranian Journal of Science & Technology, Volume 31, Number B1                                                                          February 2007 

40

The process of vortex shedding is periodic, meaning that the formation and the shedding of vortices 
are repeated during a time period. Thus, the same plots with Fig. 5 were also observed after a time period. 
This time period becomes shorter with the increase of the Reynolds number. A shorter time period causes 
the shedding frequency (or Strouhal number in non-dimensional form) to increase. The higher frequency 
means that the process of vortex shedding is faster. During a time period, two vortices form and shed; one 
from the upper side and another from the lower side. At low Reynolds number, e.g. Re=75, the free shear 
layers from the upper side (or lower side in the other half period) are extended farther downstream in 
comparison to the cases with higher Reynolds numbers, before rolling up to spanwise vortices. Thus, in 
the high Re cases, the first vortex shed in the wake at a position closer to the body (or in a shorter time). 
For example, these positions are located in a wake region with x=9, 6, 4, 3, approximately, for Re=55, 75, 
150, 200, respectively (Fig. 5).       

By increasing the Reynolds number from the onset value, the vortices become stronger. For example, 
the absolute values of the peak vorticity for the first shedding vortices in the vortex street are about 0.71, 
1.02, 1.9, 2.61 for Re=55, 75, 150, 200, respectively. Stronger vortices cause higher (negative) pressure in 
the wake and also base pressure. This causes a higher pressure drag force to be obtained.  

The magnitude of the peak vorticity associated with vortices decreases in the streamwise direction for 
each Reynolds number. As an example, for Re=200, the sequence of absolute peak values in the 
streamwise direction are 2.61, 1.84, 0.95, 0.76, respectively. At the centre of each vortex, there is a 
minimum pressure. These minimum values increase in the streamwise direction. Thus, it was observed 
that an increase in the pressure at the centre of each vortex correspond to a decrease in the magnitude of 
the peak vorticity in the streamwise direction downstream of the body. 

To study the near wake and flow separation and attachment from the sides of the body, a number of 
instantaneous streamlines, isothermal lines, corresponding values of pressure coefficient, Cp, wall 
vorticity ω ,  and local Nusselt number, Nu, around the body at different time instances and Reynolds 
numbers were provided (Figs. 6-8 for Re=130). Attachment and separation points along the body were 
determined at some time instances and were labelled in the plots of Figs. 6 and 8 with a and s, 
respectively. It is important to mention that the θ is measured in a clockwise direction from the stagnation 
point. Thus the upper and the lower parts of the body correspond to θ≤180o and 180o≤θ≤360o, 
respectively. Due to periodicity of the flow in the fully developed state, where the force signal amplitude 
reaches constant levels, only some instants during one shedding period were considered. 

Contrary to flow around rectangular cylinders, where the sharp corners are natural points of 
separation [4, 19], the separation points vary with time and oscillate forward and backward on the cylinder 
wall (Figs. 6, 8 and 11(right)). In Fig. 8, the variation of the wall vorticity is also observed, where the 
separation, stagnation and attachment points correspond to points of zero wall vorticity. In each time 
instance in these figures, the wall vorticity is positive below zero and negative above zero at the separation 
points (labelled with s), while the wall vorticity is negative below zero and positive above zero at the 
attachment points (labelled with a). 

Instantaneous streamlines and the corresponding values of the pressure coefficient, Cp, and wall 
vorticity,ω , around the body in four time instances during approximately a half period of vortex shedding 
for Re=130 were shown in Figs. 6-8 The first plot in these figures was chosen at t=104, where the lift 
coefficient has a negative value ( CL =-0.362) and it is close to a minimum lift ( minCL =-0.378 at t=104.3). 
It is seen that an anti-clockwise vortex is in development due to separation at the lower part of the body.  
As it grows, with increasing strength but being rather fixed in position, the attachment point on the rear 
side is being pushed upward. As the attachment point reaches more or less to a point on the upper side, the 
lift already has passed its minimum level ( CL =-0.378 at t=104.3) and a new clockwise vortex is about to 
be formed at the upper part of the body (second plot at t=104.75 (CL=-0.338)). As this new vortex grows, 
the old clockwise vortex is being pushed away and is eventually shed into the wake, (plots at t=104.75 and 
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t=105.5 in Figs. 6). As seen from these plots, an anti-clockwise vortex forms and is shed during this half 
period. During the next half period, the new clockwise vortex (see plot at t=107 where the lift force is 
close to maximum lift value) grows and sheds with a similar trend as explained for the old vortex (due to 
lack of space these plots were not shown here). In general, the same trend was also observed for the other 
Reynolds numbers of this study above the onset of vortex shedding, but with different variations in the 
locations of separation and attachment points, lift, drag, Nusselt number and so on.  

  

  
Fig. 6. Instantaneous streamlines at four chosen instants during 

 one cycle of vortex shedding process 
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Fig. 8. Instantaneous Nusselt number (Nu), pressure coefficient (Cp) and wall vorticity (ω) around 
the body at four chosen instants during one cycle of vortex shedding process  

The locations of separation on the upper, 1sθ , and the lower, 2sθ , parts of the body and also the 
attachment ( aθ )  move along the body surface with time (Figs. 6, 8 and 11(right)). The variation ranges of 

sθ with time for a low Reynolds number is not much, but it increases as the Reynolds number increases. 
For example, these are about ≅θ 1s 123-124, ≅θ 1s 119-122.7 and ≅θ 1s 111.5-119.8 on the upper part of the 
body for Re=55, 80, 160, respectively.  

Instantaneous non-dimensional temperature, *T , and isolines for different Reynolds numbers from 
20 to 200 are provided in this study (Fig. 7 for Re=130). In this figure, the isotherms were plotted with an 
interval of 0.0475 from zero to one. As mentioned above, the flow became unsteady due to the loss of 
stability of the symmetric wake and the vortices shed from the rear part of the body. The results of this 
study show that the upper and lower symmetry of isolines in the wake regions for Re<49 are progressively 
destroyed as the Reynolds number is increased. This asymmetry in pressure and wall vorticity is higher 
than the temperature and Nusselt number (Fig. 8).  

By increasing the Reynolds number, the higher asymmetry and more complicated patterns appear in 
the wake region behind the body, whereas no asymmetry is seen in the frontal part of the body. Much 
sharper temperature gradients (or higher local Nusselt numbers on the wall) occur closer to the body as the 
Reynolds number increases. This effect is higher in the frontal part than in the rear part of the cylinder and 
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causes higher local Nusselt numbers to be produced at the front part of the body. This is clearly observed 
from Fig. 7, where the isothermal lines are shown for four instances during a half cycle of vortex shedding 
at Re=130. The variation of local Nusselt numbers over the body at four time instances for Re=130 are 
shown in Fig. 8. Based on this figure and also the study of local Nusselt numbers for other Reynolds 
numbers of the present study, it is observed that the local Nusselt number distribution around the body is 
affected by the boundary development on the front part of the cylinder and by separation and wake 
instability over the rear part of the body. The maximum local Nusselt number occurs at stagnation point, 
where the boundary layer is thinnest and hence resistance to heat transfer is at a minimum. It is important 
to mention that the position of the stagnation point in unsteady cases has a small variation at around θ=0. 
The minimum local instantaneous Nusselt number on the body depends on the Reynolds number and is 
located at a point between the separation and attachment points, Fig. 8.  The mean time locations of the 
minimum Nusselt number also depend on the Reynolds number. For example, these points occur at angles 
of 142, 138, 136 and 132 approximately, for Reynolds numbers of 80, 130, 160 and 200, respectively. 
 
c) Global quantities 
 

The global results at various Reynolds numbers up to 200 are provided for a blockage of 3% in Figs. 
9-11. These computed global quantities dominate wake frequency (Strouhal number, St), mean Drag 
coefficient (CD), RMS value of lift ( 'CL ), mean separation angles ( Sθ ) and mean Nusselt number ( Nu ). 
For Reynolds number less than 50, the flow is steady and lift and RMS values of lift and drag are zero. At 

49Re ≥ , the effects of instabilities appear, which cause vortex shedding, and the wake flow becomes 
unsteady, (Fig. 1 for Re=80). The global quantities are calculated from unsteady Nusselt number, lift, 
drag, separation and attachment  signals during the fully developed vortex shedding phase, where the 
maximum and minimum of these quantities reach constant levels (Fig. 1(right) for 50>t ). For all cases, 
the fully developed state could be described with a signal well-defined shedding frequency. The transient 
period, before the fully developed state is achieved, depends on Reynolds numbers ranging from about a 
600 time unit for Re=50 to a 50 time unit at Re=200 ( Fig. 1(left)).         

As seen from Fig. 9, with increasing the Reynolds number the Strouhal number increases 
continuously and shows a good agreement with the experimental results [2, 13] up to 150Re = . As 
mentioned in section 1, a 3D transition is developed around a Reynolds number of 200 and the three-
dimensional flow effects appear. As noted by Williamson [2], this transition is associated with an hysteric 
discontinuity in the Strouhal number values. Due to this phenomena, there is a reduction in the Strouhal 
number at around the transition Reynolds number and then increasing up to 300Re ≈ [2]. This can interpret 
the difference between a 2D computed Strouhal number and 3D experimental ones at 200Re = . 

The variation of the averaged drag coefficient with Reynolds number is shown in Fig. 9. The drag 
coefficients obtained in this study are compared with the results of Park et al. [23] (Blockage:1%, Grid: 

241641× ), Franke et al. [24] (Blockage: 2.5%, Grid: 144140× grid), 2D and 3D simulations of Zhang and 
Dalton [25] and Rosenfeld[26] (Grid: 513513× ) (Fig. 9(right)). As seen from this figure, the drag 
coefficient decreases continuously by increasing the Reynolds number up to 150. In this range of the 
Reynolds number, there is a good agreement with other results. Due to the appearance of three-
dimensional flow effects for 150Re > , it is expected that the results from the 2D-simulations deviate from 
the 3D-results. This is clearly seen in Fig. 9 for 200Re = , where a discrepancy is observed between the 3D-
data of Zhang & Dalton [25] and the present study, and also other investigations. 

The RMS (root mean square) lift coefficients are calculated and shown in Fig. 10(right). As noted, the 
onset of vortex shedding is also the onset of fluctuating forces. Thus, the RMS values are zero for 50Re < . 
By increasing the Reynolds number from the onset value, the RMS values increase rapidly as the 
Reynolds number is increased. Norberg [27] reviews previous numerical and experimental investigations 
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concerning fluctuating lift acting on a circular cylinder and suggests a number of empirical functions for 
different quantities such as RMS lift, i.e. 5.02 )90/30/(' δ+δ≈CL  , 11 Re/)Re(Re crcr−=δ    for 190Re47 ≤≤ .  

1Recr  is the critical Reynolds number, where the onset of vortex shedding occurs. It is selected as 
47Re 1 ≈cr [27]. The results of this work are compared with Norberg’s empirical function, (Fig. 10(right)) 

for two critical Reynolds numbers of 47 and 49. As seen, the agreement between the results is good, 
especially when a value of 49 is chosen for 1Recr  (denoted with asterisk in Fig. 10). 

 
Fig. 9. Variation of Strouhal number (left) and drag coefficient 

(right) versus Reynolds number 

Fig. 10. Variation of mean separation angle (left) and RMS lift  
coefficient (right) versus Reynolds number 

 
The variation of time mean separation angle on the upper part of the body with the Reynolds number 

is shown in Fig. 10 (left). The value of the mean separation angle decreases continuously (or wake size 
increases) as the Reynolds number increases. In this range of Reynolds numbers, there is a relatively good 
agreement with the results of Park et al. [23]. It is seen that the discrepancy between the present study and 
the results of Braza et. al.[28]  is larger.  It seems that this discrepancy is mostly due to using a relatively 
coarse grid and a high blockage (about 10%) by Braza et. al. [28].  By using the least-squares fitting, the 
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separation angles can be described by a single equation as [ ]0637.0(Re))(265.5exp −=θ Lns . This equation 
represents the data of the present study with a maximum error smaller than one percent in the computed 
range of 200Re20 ≤≤ .   

The averaged Nusselt number around the cylinder wall at each time instance ( Nu , e.g. see Fig. 
11right) and time-averaged Nusselt number ( Nu , see Fig. 11 left) per cycle are calculated as follows: 
 

θ
π

= ∫
π

θdNuNu
2

02
1 ,      ∫

τ
τ

τ
=

0

1 NudNu  

Fig. 11. Left: Variation of mean Nusselt number versus Reynolds number, Right: time history  
of Nusselt number, separation and attachment angles for Re=160 

 
For example, the time variation of the Nusselt number for Re=160 is shown in Fig. 11(right). The 

level of fluctuations of Nu is not much if one compares it with time-averaged value. It increases by 
increasing the Reynolds number. For instance, the range of time variation of the Nusselt number during a 
period is Nu=6.435±0.005 for Re=160 (see Fig. 11(right)). 

The variation of Nu with the Reynolds number is shown in Fig. 11(left) and they are compared with 
the experimental [7] and numerical [5] ones. It is seen from this figure that the Nu continuously increases 
as the Reynolds number is increased and there is excellent agreement between the present results and the 
experimental and numerical ones.  It is important to mention that Lange et al. [5] and Wang and Travnicek 
[7] have included the temperature dependence of the Reynolds number on their results, due to the 
temperature variation between the fluid and the cylinder wall and their effects on the viscosity of fluid, by 
introducing an effective (or reference) temperature as: 000 /)(1/ TTTwCTTeff −+= . The chosen values for 
C-coefficient were 1 (for 5.1/ 0 ≤TTw ) and 0.36 (for 3/ 0 ≤TTw ) by references [7] and  [5], respectively. In 
spite of including this effect by [5,7], the constant property results of the present investigation  have 
negligible discrepancy with those results. By using the least-squares fitting, the time mean Nusselt number 
versus Reynolds numbers can be described by a single equation as 5.0Re495.0165.0 +=Nu . This 
equation represents the data of the present study with a maximum error smaller than one percent in the 
computed range of 200Re20 ≤≤ .     
 

5. CONCLUSIONS 
 
An unsteady solution of the incompressible Navier-Stokes equations is performed using a finite volume 
SIMPLEC code. The physical problem is flow over a heated circular cylinder for a Reynolds number 
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between 20 and 200. It is shown that the flow behind a circular cylinder is steady up to Re=49 and beyond 
this critical value, the flow develops to a periodic state, corresponding to the vortex shedding and force 
oscillation on the body. It is also shown that by increasing the Reynolds number from the onset value, the 
process of vortex shedding becomes stronger, which causes the mean Nusselt number, Strouhal number, 
lift and RMS lift coefficients to increase continuously by increasing the Reynolds numbers, whereas drag 
coefficient and mean separation angle decrease. Based on the results of this work, the empirical functions 
for Rosko, Strouhal and mean Nusselt numbers and also separation angle are suggested.  
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