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Abstract– Ground Vibration Test (GVT) is one of the standard tests used for designing new 
aircraft. In this paper, GVT was carried out on an aircraft structure model by the phase separation 
method. In order to obtain more accurate results, the structure was excited by hammer, random and 
sine excitations. The results were then used to extract the modal parameters, i.e. natural 
frequencies, modal damping factors and mode shapes. Extraction algorithms were based on multi-
degree of freedom (MDoF) methods where several FRFs are analyzed simultaneously. Correlation 
between different test techniques was also investigated. Next, a finite element model of the 
structure was constructed and the theoretical modal analysis results have been compared with 
experimental ones. The test results obtained from the phase separation technique were also 
compared with a similar test carried out on the same structure by the phase resonance method. 
Finally, a cylindrical mass was added to the right tail wing of the model. A new set of modal tests 
was carried out to investigate the effect of unsymmetry on the modal properties of the structure.           
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1. INTRODUCTION 
 

Ground Vibration Test (GVT) plays an important role in the certification process of any new or 
extensively modified aircraft. GVT results provide experimental data which are essential in flutter 
prediction as well as to validate and update analytical aircraft models. The GVT of an aircraft structure 
determines its natural frequencies, normal mode shapes and generalized parameters (mass, stiffness and 
damping) over a specified frequency bandwidth. 

There are several methods for carrying out the GVT. These can be mainly classified into two groups, 
namely phase resonance and phase separation. The phase resonance method requires an appropriate 
exciter configuration to be applied for each normal mode in order to compensate for internal damping 
forces. In this case, the structure vibrates solely in the respective normal mode. 

On the other hand, the phase separation method uses single or multiple broadband excitation signals 
to excite the structure so that all desired modes are excited simultaneously. Resulting Frequency Response 
Function (FRF) measurements contain the required information. Curve fitting algorithms are then applied 
to extract the modal data from the measured FRFs. In contrast to phase resonance that separates the modes 
physically, the phase separation method separates the modes of the structure mathematically by use of 
some curve fitting algorithms. 

Following a series of previous Round Robin surveys on GVT held in the early 60s [1] and late 70s 
[2], a structures action group called GARTEUR was initiated in April 1995, with the major objective to 
compare a number of current measurement and identification techniques applied to a common structure 
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[3]. A testbed (see Fig. 1) was designed and manufactured by ONERA (France) and investigated by 
various companies, research centers and universities [4]. The results obtained from the testing of the 12 
laboratories on this structure are presented in the paper by Balmes and Wright [5]. 

 
Fig. 1. Schematic of the aircraft structure model 

 
As a next step, different FE models of the test structure were updated based on the measured FRFs by 

different groups. Goge and Link [6] applied the classical inverse sensitivity approach to minimize the 
deviations between analytical and measured modal data. Mares et al. [7] updated their FE model using 
sensitivity analysis. They claimed that the updating process could accurately reproduce test data by 
selecting the updating parameters based on physical understanding, scrutiny of the mode shapes and 
sensitivity calculations. Bohle and Fritzen [8] updated a plate model of the structure by minimizing the 
residuals between theoretical and experimental natural frequencies and mode shapes. Thonon and 
Golinval [9] generated a low-order finite element model of the structure and updated it based on the 
computation of the residual strain energy due to errors in the constitutive equations. D'Ambrogio and 
Redolent [10] used an extension of the antiresonance-based model updating method to reduce the 
difference between measured and analytical FRFs. Ziaei-Rad [11] used different optimization techniques 
for model updating of rotating and non-rotating structures. The use of both deterministic and stochastic 
optimization methods was investigated in order to minimize the difference between analytical and 
measured data. In a separate paper, Ziaei-Rad [12] applied the deterministic FRF based updating technique 
to an industrial radial flow impeller. The experimental results obtained from impact testing and the laser 
Doppler vibrometer was compared with the results from the FE model.   

This paper describes test procedure, parameter extraction, finite element modeling and correlation 
analysis between different test methods and FE results. Our results, mainly based on phase separation, 
were also compared with those obtained by DLR Germany using phase resonance on the GARTUER 
structure [4, 13]. The effect of modification on the structure was also investigated using both experimental 
and analytical techniques. 
 

2. THE TEST STRUCTURE 
 
The testbed has been designed and manufactured to be representative of typical aircraft structures (Fig. 1). 
For this purpose, the following design requirements were proposed: 

• General shape: beam assembly representing a fuselage with wings and tail 
• Damping treatment by means of constrained viscoelastic layers in order to get damping 

coefficients as high as those encountered on a real aircraft 
• No specific non-linear elements 
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• Very low frequency suspension as part of the testbed in order to eliminate the surroundings 
effect 

• The testbed presents three very close modes  in order to simulate the difficulty encountered on 
an aircraft 

 
3. THEORY 

 
a) Phase separation 
 
There are two major methods in modal data extraction from measurement data namely, Single Degree of 
Freedom (SDoF) and MDoF methods. Many algorithms have been developed in these two categories both 
in time and frequency domain [14]. SDoF methods are not well suited for dealing with close modes. Since 
there are three close modes in the test results, Rational Fraction Polynomials (RFP), which is an MDoF 
method, has been adopted through the study to extract the modal parameters. 

In the rational fraction formulation, an error function is established in a way that the resulting system 
of equations is linear. Because the resulting linear system of equations involves ill-conditioned matrices, 
the gradient method is used to minimize the error function. 
The receptance FRF for a linear system with N degrees of freedom and structural damping can be modeled 
with the following partial fraction equation [14]: 
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Where rA  and rB  are constants and rη  is the damping ratio. Equation (1) can also be expressed in 
rational fraction form as follows: 
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The difference between the analytical FRF, ( )ωH , and the experimental one, ( )ωeH , is the error function 
and is given by: 
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The error function is linearized by working with the following modified error function: 
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An error vector is defined for all the L measured frequencies 
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Equation (5) can then be written in the matrix form as: 
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The equation that will be minimized with the gradient method is the squared error function J, i.e.: 
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Where * indicates the complex conjugate. Substituting Eq. (8) in (9) leads to: 
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This is an equation with ill-conditioned matrices and should be solved by the gradient method in order 

to minimize the error function. To obtain the initial estimate needed for the gradient method, one can use 
the least square technique. 

Taking the derivatives of Eq. (10) with respect to { }a  and { }b , equating them to zero gives the 
following system of equations: 
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where 
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These equations are first solved to find the initial values { }a  and { }b  which are later used to evaluate the 
gradient. The gradients are 
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Where { }M  and { }N  are gradient vectors with respect to { }a  and{ }b . The total gradient vector is 
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The gradient vector direction is calculated to move in the direction where the function is minimized. The 
gradient vector direction is 
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After obtaining the coefficients of rational fraction Eq. (2), modal parameters can be calculated. The poles 
of the denominator polynomial contain the values of the natural frequencies and damping ratios. In order 
to calculate residues, the rational fraction is expanded in a partial fraction equation and the numerator 
becomes a pair of complex conjugate constants called residues. 
 
b) Phase resonance 
 

Generally, the equation of motion of an N degrees of freedom system can be written as follows: 
 

[ ]{ } [ ]{ } [ ]{ } { }FxKxCxM =++ &&&              (18) 
 
where [M], [C] and [K] matrices represent mass, damping and stiffness respectively. For most practical 
analysis, however, a proportional damping behavior can be assumed resulting in a diagonal damping 
matrix. In general, these matrices have nonzero off-diagonal elements so that the N equations are coupled. 
The purpose of a phase resonance test is to uncouple these equations. This is accomplished by identifying 
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the mode shapes. Phase resonance testing assumes the mode shapes, { }nφ , are real valued. Any arbitrary 
pattern of motion, x is a linear combination of N mode shapes { }nφ , where the weighting coefficients of 
this summation are provided by the modal participation vector, { }q  
 

{ } { } { } { }[ ]{ } [ ]{ }qqx Nn φφφφ == ......1                               (19) 
 
The normal mode solution vectors have an important mathematical property termed "generalized 
orthogonality" with respect to mass, stiffness and damping matrices. This property can be used to 
diagonalize all three matrices when applied as a similarity transformation. Once the transformation is 
performed upon mass matrix, we have 
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Substituting  Eq. (20) into Eq. (18) yields: 
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If mass normalization of mode shapes is done, the above equation can be rewritten as follows: 
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Hence the only coupling between the resulting N equations is in the right hand side. That is, the 

manner in which the structure is forced determines the coupling between the normal modes in Eq. (22). 
The excitation of these uncoupled equations is not the physical force F directly; it is the generalized force 
vector }{][}{ FQ Tφ= . 

If the structure is excited with an array of sinusoidal forces all at the same frequency with amplitude 
distributions proportional to one of the mode shapes weighted by the mass matrix 
 

{ } [ ]{ }nMF φα=         (23) 
 
This results in a generalized force vector Q with zero values for all elements but the one corresponding to 
the selected mode shape as shown in Eq. (24). 
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Hence the purpose of phase separation testing is to iteratively tune the distribution of applied forces until 
the generalized force is null for all but the mode sought.  
 

4. EXPERIMENTAL SET-UP 
 
Figure 2 shows a typical standard layout for the measurement system. The structure is excited under a 
controlled force by a shaker and the responses measured by several accelerometers in desired points. Force 
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and acceleration signals transmitted to analyzer and FRFs are constructed by dividing output to input in 
each frequency step.  

 

 
Fig. 2. A typical experimental setup 

 
The structure has been suspended by a set of bungees to simulate the free-free boundary condition of 

an aircraft (Fig. 3). As shown in Fig. 4, there are 16 measurement points for accelerometer attachment. 
Regarding measurement directions as shown in Table 1, total measurement degrees of freedom of the 
testbed is 24.  

 

 
Fig. 3. Measurement setup of aircraft model structure 

 
Table 1.  Measurement points and directions 

 
Measurement 

Point 
Measurement 

Direction 
1 Z 
5 X, Z 
8 Z 

11 Z 
12 X,Z 

101 Z 
105 X,Z 
108 Z 
111 Z 
112 X,Z 
201 X,Y,Z 
205 Y 
206 Z 
301 X,Z 
302 Y 
303 X,Z 

 
Tests have been carried out by both hammer and shaker. Random and sine signals have been used to 

excite the structure. All tests except the sine one were performed in a frequency range of 0-100Hz. The 
frequency range of the sine test was 30-60Hz. The main reason for doing the sine test was better 
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identification of close modes in the frequency range of 30-60HZ. Point FRFs, zzH 12,12 , for sine, hammer 
and random excitations are shown in Fig. 5. 

 
Fig. 4. Measurement points of aircraft model structure 

 
Fig. 5. Measured point FRFs of structure for different excitation techniques 

 
5. TEST RESULTS 

 
Modal parameters extraction was carried out by the RFP method explained in section 3a. Modal 
frequencies and damping coefficients obtained from hammer, random and sine tests were tabulated in 
Table 2. Since the sine test was carried out in the frequency range of 30-60Hz, only modes 3 to 8 could be 
extracted from the experimental data.  Some of the mode shapes of the structure excited by different force 
patterns are shown in Fig. 6. 

 
Table 2. Resonance frequencies and damping factors of the structure 

 
Hammer  Random Sine 

Freq No. Freq [Hz] Damp [%]  Freq  No. Freq [Hz] Damp [%] Freq No. Freq [Hz] Damp [%]
1 6.54 2.94  1 6.55 2.18    
2 16.56 2.70  2 16.57 2.23    
3 34.94 1.98  3 34.70 2.24 3 34.81 1.47 
4 35.28 2.42  4 35.06 1.67 4 34.92 2.22 
5 36.62 2.24  5 36.58 1.54 5 36.73 1.64 
6 50.19 3.92  6 50.23 3.94 6 49.87 3.59 
7 50.63 0.89  7 50.77 0.91 7 50.36 1.15 
8 56.39 0.21  8 56.41 0.37 8 56.43 0.23 
9 65.05 3.70  9 65.22 3.64    

10 69.68 0.65  10 69.92 0.64    
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Not measured 

a- 1st mode, hammer excitation b-1st mode, random excitation c-1st mode, sine excitation 

  

Not measured 

d- 2nd mode, hammer excitation e-2nd  mode, random excitation f-2nd mode, sine excitation 

   
g- 3rd mode, hammer excitation h-3rd  mode, random excitation i-3rd  mode, sine excitation 

   
j- 4th  mode, hammer excitation k-4th mode, random excitation l-4th mode, sine excitation 

   
m- 5th mode, hammer excitation n-5th  mode, random excitation p-5th mode, sine excitation 

   
q- 7th mode, hammer excitation r-7th  mode, random excitation s-7th  mode, sine excitation 

  

Not measured 

t- 9th mode, hammer excitation u-9th  mode, random excitation v-9th  mode, sine excitation 
 

Fig. 6. Mode shapes of the structure (hammer, random and sine excitation) 
 

There are some statistical parameters to quantify the comparison between two mode shapes. The most 
popular parameter is referred to as the Modal Assurance Criterion (MAC) defined as [15]: 
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{ } { }
{ } { }

{ } { }( ) { } { }( )2211

2

21
21 ),(

φφφφ

φφ
φφ TT

T

MAC =                                             (25) 

 
MAC values range between 0 to 1 indicating uncorrelated and full correlated mode pairs respectively. 
Figures 7-9 show the percentage of MAC values between mode shapes obtained from various tests, as 
well as a comparison of natural frequencies. 
 

   
Fig. 7. Comparison of hammer versus random tests – natural frequencies and MAC 

 

   
Fig. 8. Comparison of hammer versus sine tests – natural frequencies and MAC 

 

   
Fig. 9. Comparison of random versus sine tests–natural frequencies and MAC 

 
Correlation between hammer and random sets was quite good (Fig. 7). However, some minor 

deviation can be observed between pair modes (3, 4) and (2, 9). In mode 3, wing ends vibrate anti 
symmetrically, while in mode 4 the motion of wing ends is symmetrical. In mode 3, the left wing end 
exhibits large deflections in the hammer test, but small deflections in the random test. The opposite 
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situation is true with the right wing end. Symmetric or anti-symmetric motions of modes have no 
considerable influence on the MAC values. However, large or small amplitude of deflections can greatly 
influence the MAC values. This is the main reason for lower MAC value (around 50%) for mode 3 from 
the hammer and random tests. Due to the similarity between the overall shape of modes 3 and 4, there is 
some correlation between these two modes (Fig. 7). The correlation between modes 2 and 9 in Fig. 7 is 
probably due to the fact that too few points were measured. These modes look similar, but in mode 9 the 
deflection of the wings is of higher order. This can also be seen from the FE model with a fine mesh (Fig. 
10). 

Comparing test sets hammer versus sine or random versus sine, there is some correlation between 
modes 3 and 4 (Figs. 8 and 9). Again, this can be explained by the similarity between these two modes. 
Low MAC values were calculated for mode 7. Mode 7 extracted from sine test data does not match with 
those extracted from random or hammer tests data. A possible reason is that there could be two very close 
modes on this particular frequency. One of them is excited by hammer or random tests, while the other is 
excited by the sine test. Note that in all three cases, only one of those modes was extracted from the 
measured data. 
 

6. FINITE ELEMENT MODELING 
 
An FE model of the structure was constructed in ANSYS (Fig. 10). The model was constructed by 32 3D 
beam elements. To make the FE model more accurately represent the actual structure, some modifications 
were applied to the initial FE model. The modification target was to increase the MAC values between 
theoretical modes with corresponding experimental ones. The modification was carried out by tuning the 
joints stiffness in both wing to fuselage, and vertical tail to horizontal tail. This was achieved by varying 
the stiffness and length of joint beam elements (elements A and B in Fig. 11). In addition to the above 
modification, two inertial elements with a mass of 0.2 kg and another with 1.6 kg mass were added to 
nodes 12, 112 and 302 respectively. The corrections made to the model resulted in good MAC values 
between analytical and experimental mode shapes. The differences in natural frequencies of both models 
were below 10%, except for the second mode which had an error of 21%.  Analytical natural frequencies, 
together with experimental ones, are shown in Table 3. Some analytical mode shapes are shown in Fig. 11. 
 

  
Fig. 10. The FE model of the structure 
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a- 1st mode b-2nd  mode c-3rd mode 

   
d-4th mode e-5th mode f-6th mode 

   
g- 7th mode h- 8th mode i- 9th mode  

Fig. 11. Analytical mode shapes of the structure 
 

Table 3. Natural frequencies obtained from test and FEM 
 

Mode Number FEM Hammer Random Sine Description  
1 6.0139 6.54 6.55 N/A First symmetric wing bending 
2 12.963 16.56 16.57 N/A Global fuselage rotation 
3 31.623 34.94 34.70 34.81  Anti-symmetrical wing torsion 
4 32.920 35.28 35.06 34.92  Symmetrical wing torsion 

5 34.183 36.62 36.58 36.73 First anti-symmetric wing bending + 
anti-symmetric wing torsion 

6 47.134 50.19 50.23 49.87  Second symmetric wing bending 
7 55.019 50.63 50.77 50.36 Symmetric in plane bending 
8 56.727 56.39 56.41 56.43 Anti-Symmetric in plane bending 
9 61.911 65.05 65.22  Second anti-symmetric wing bending 

10 63.863 69.68 69.92  Vertical tail torsion 
 

MAC values of the hammer test versus FEM, as shown in Fig.12, are satisfactory. There is a mode 
pairing problem between modes 7 and 8. This may be due to the fact that these modes mainly occur in the 
xy plane where fewer transducers (See Table 1) were installed to measure the responses. Visual inspection 
of 7th experimental and 8th analytical modes clearly verifies the similarity between these two modes. For 
the sake of brevity, the correlation between FEM and other test data sets are not reported here. 

  

  
Fig.12. MAC values of hammer test versus FEM 
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7. COMPARISON BETWEEN PHASE RESONANCE AND PHASE SEPARATION RESULTS 
 
Vibration tests were carried out on the same structure in DLR Germany by the phase resonance method 
[13, 14]. In order to ensure that these two techniques are of the same accuracy, test data reported by DLR 
were used against those from our test results. A comparison between phase separation and phase 
resonance methods indicates good agreement between these two test methods. A frequency diagram, 
together with the corresponding MAC table, is shown in Fig. 13. 

 

   
Fig. 13. MAC values of hammer test versus DLR results 

 
8. MODIFIED STRUCTURE CASE 

 
To study the effect of structural unsymmetry on extracted modes, a modification was done on the real 
structure. The modification was to add a cylindrical mass of 0.94 kg to node 301 (See Fig. 10). Inertial 
properties of the cylinder are tabulated in Table 4. 

 
Table 4. Inertial properties of added mass 

 
m  

xxI  yyI  zzI  

kg94.0  44 .103683.3 mkg−×  44 .103683.3 mkg−×  44 .1023.4 mkg−×  
 

Tests were carried out again on the structure for this new case. The structure was excited by both 
hammer and random signals. The measured FRFs were almost identical and therefore the results from 
excitation by hammer are reported hereafter. Again, modal analysis was carried out on the data stored in 
the analyzer. A modified FE model was also constructed and solved to obtain the theoretical modal 
parameters. Table 5 shows theoretically and experimentally extracted natural frequencies of the modified 
structure. For better visualization, some experimental and analytical mode shapes of the modified structure 
are depicted in Fig. 14. 

 
Table 5. Natural frequencies of modified structure obtained from test and FEM 

 
Mode 

Number 
FEM 

(Modified) 
Hammer  

(Modified) 
1 6.012 6.55 
2 11.41 13.93 
3 30.21 32.35 
4 32.88 34.95 
5 33.60 35.48 
6 34.25 38.03 
7 47.11 48.62 
8 49.59 50.06 
9 55.07 56.41 

10 57.52 58.04 
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a- 3rd mode - modified b- 5th mode - unmodified 

  
c- 5th  mode - modified d- 4th  mode - unmodified 

  
e- 7th  mode - modified f- 7th  mode - unmodified 

 
Fig. 14. Experimental mode shapes of the modified and unmodified structure 

 
 

Figure 14 indicates that small changes in the symmetry of the structure cause essential changes in 
some of the mode shapes of the structure. Moreover, the unsymmetry changed the mode pairing. In order 
to find the new mode pairing between the modified and unmodified structure, correlation analysis was also 
carried out. The MAC values are calculated and plotted in Fig. 15. The correlated mode pairs are listed in 
Table 6. It can be seen that, for example, the sixth mode shape of the unsymmetric structure is correlated 
with the tenth mode of the symmetric structure. This means that the mode with a natural frequency of 
69.68Hz (Table 3) in the symmetric structure correspond to the mode with a natural frequency of 38.03Hz 
(Table 5) in the unsymmetric structure. In other words, the natural frequency of some modes has shifted. It 
is noteworthy that such a change in vibration characteristics of any structure due to small unsymmetry is 
very important in the design of aircrafts. 

 

   
Fig. 15. MAC values of hammer test for modified and unmodified structures 
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Table 6. Modified and unmodified structure mode shape comparison 
 

Modified structure 
(hammer) 

Unmodified structure 
hammer or random() Notes 

1 1 - 
2 2 Differences in wings end deflection 
3 5 - 
4 3 - 
5 4 Differences in wings deflection 
6 10 - 
7 7 - 
8 6 - 
9 8 - 

10 9 - 
 

9. CONCLUSIONS 
 
The authors performed a ground vibration test, modal parameter extraction, FE analysis and correlation 
analysis on an aircraft structure model. The test was carried out by hammer and shaker in a frequency 
range of 0 to 100Hz in free-free configuration and the first 10 elastic modes were extracted. A high 
correlation between various test excitations was achieved, confirming the accuracy of the experimental 
approach. Correlation between experimental and analytical modes, except for mode pairing, was fairly 
high indicating the FE model represents the dynamic behavior of the structure properly. Good correlation 
between phase resonance and phase separation test results demonstrates a high reliability on the applied 
technique.  

A sine test with shaker was also conducted to recognize the close modes of the structure. Comparison 
between the results obtained from shaker and hammer recommends that the hammer test can accurately 
predict the close modes of the structure.   

Correlation analysis between modified and unmodified structures was also investigated. It was shown 
that small changes in the symmetry of the structure can cause fundamental changes in mode pairing and 
mode shapes. Also, the change in symmetry can cause major shifts in some natural frequencies.  
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