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Abstract– Employing an admittance representation in the form of a black box model 
approximated by rational functions for linear power system components or network equivalents to 
be included in electromagnetic transient studies is a well-known method which improves 
calculation efficiency. All of the methods that have been proposed to solve the rational 
approximation problem have made efforts to overcome the problem of preserving the passivity of 
the final model. Passivity is a vital property, since a non-passive model may lead to an unstable 
transient simulation in the time domain. In this paper a post-processing technique for passivity 
enforcement through an iterative process for the detection and compensation of passivity 
violations is presented. The passivity violation regions are detected via a purely algebraic approach 
based on the existence of purely imaginary eigenvalues in the Hamiltonian matrix. Then a 
compensation technique via the perturbation of residues of the rational function is applied. Some 
examples are used to illustrate the characteristics of the proposed technique in terms of accuracy 
and efficiency by comparison with the Quadratic Programming (QP) method.           

 
Keywords– Residues perturbation, Hamiltonian matrix, passivity enforcement  
 

1. INTRODUCTION 
 

The application of network equivalents for external systems in the well-known time domain programs 
such as EMTPs (Electro_Magnetic Transient Programs) has valuable merits in saving the CPU memory 
and the run time. Several approaches have been developed for the construction of network equivalent 
which can be categorized into two main groups, the time domain equivalent and the frequency domain 
equivalent. The solution in the frequency domain is essentially aimed at the identification of rational 
functions that approximate the admittance matrix of the external system seen from boundary bus(es). 
Among the various methods of fitting, the Vector Fitting (VF) has proved its efficiency and accuracy in 
different applications [1-6]. Although VF can lead to a stable and precise approximation, the model may 
not be passive. A stable, however nonpassive network in addition to some passive networks or loads may 
lead to an unstable general system. Therefore passivity is an important property for a model, although its 
enforcement is a difficult task. In [7], a post-processing algorithm based on Quadratic Programming (QP) 
is employed to ensure the local passivity. The regions of passivity violation are searched by a frequency 
scan. The drawbacks of this detection method are: 1) The passivity violation regions may be outside of the 
considered frequency spectrum when examined by a frequency sweep. On the other hand, the method 
needs a frequency sweep from 0 to ∞ to detect the nonpassive regions. 2) The accurate detection of 
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regions of passivity violation depends on the fineness of the frequency sweep, where undoubtedly a higher 
fineness is more time-consuming. In this paper a purely algebraic method for the detection of nonpassive 
regions is presented that can overcome the above drawbacks. For the cases where the passivity violation is 
very large, (in comparison with having very small eigenvalues), the QP algorithm used, [7], ensures the 
passivity by perturbation of residues in the other diagonal bands besides the main diagonal elements. In 
these cases the computation time may be significant. In the proposed method, the perturbation is applied 
only on the main diagonal elements of the admittance matrix; meanwhile the method is shown to be 
efficient and accurate. 
 

2. PROBLEM FORMULATION 
 
In this section, the definition and criterion of the passivity of multiport systems represented by the 
admittance matrix is set. In the following section, the techniques needed to detect passivity violation 
regions and to compensate the violations are presented.  
 
a) State-space representation of system 
 

The admittance matrix of a multiport system can be approximated in terms of pole-residue form as 
follows: 
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where the direct coupling constant (d) is real, the poles (am) and the residues (cm) can be real or complex 
conjugate pairs and N is the total number of poles. The linear time-invariant multiport system can be 
converted into state-space form as follows: 
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where the dot denotes time differentiation. The number of ports and the dynamic order of the function in 
the approximation are p and n respectively. Then the state vector ntx ℜ∈)( , the input and out-put vectors 

pyx ℜ∈, , nn×ℜ∈A , pn×ℜ∈B , np×ℜ∈C and pp×ℜ∈D . The poles and residues of the system are 
included in the matrices A and C respectively. The input-output transfer function matrix of the system can 
be obtained from (2) as follows: 
 

                                   DBAICY +−= −1)()( ss                                                                 (3) 
 
where s is the Laplace operator. Methods such as Vector Fitting can provide the accurate approximation of 
matrix (3) in a pole/residue form, however the passivity of the model is not guaranteed.  
 
b) Passivity 
 

The concept of "passivity" was first used in the circuit theory [8], where a network consisting of only 
resistors, capacitors and inductors is said to be passive, as this network will not deliver energy. In general, 
one can say that a linear or non-linear system is “strictly passive” if it consumes energy, and is just 
“passive” if it does not deliver energy [8]. In this paper only time-invariant linear systems are considered. 
In these systems, the passivity of the system is equivalent to the positive realness of the systems transfer 
function. Passivity is the key to ensure stable transient simulation responses. A stable but nonpassive 
subsystem may lead to an unstable system when it is terminated with some passive loads. However if a 
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subsystem is passive and terminated with any arbitrary passive load, the stability of the overall resulting 
network will be always guaranteed. 
 

3. IDENTIFICATION OF PASSIVITY VIOLATION REGIONS  
 
A pure algebraic method for the detection of the passivity violation regions can be introduced.  
The system (2), assuming the initial condition as follows:                                                                                                          

0)0( =x   
would be passive, i.e., it satisfies the following constraint [9]: 
 

∫ ≥
T

T dttytu
0

0)()(  
 
for: all the solutions, all values of u, and for 0≥T .  

The passivity constraint in terms of the transfer matrix (3) is equivalent to being Positive-Real (PR) 
which means that [9]:  

0)()( ≥+ ∗ss YY      (for all values of s if 0>ℜ se )                          (4)                 
 
where ∗  denotes complex conjugate. This constraint can be verified by ensuring that all the eigenvalues of 
the real section of the admittance matrix are nonnegative in the whole region of frequency. 
 

ωωλωλωλ ∀∧∈∀≥ )))(()(0)( jjj ii G                                    (5)                         
 
where: ))(()( ωω jealj YG ℜ=  
However, satisfying this constraint is a difficult task. On the other hand, if the passivity condition is 
satisfied, the following Linear Matrix Inequality (LMI) is feasible if P>0 and vice versa [9]. 
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where: nnT ×∈= RPP                           .  
This means that satisfying the passivity is equivalent to satisfying the LMI (6).  
If 0>+ TDD , the LMI (6) is equivalent to the following Algebraic Riccati Equation (ARE).  

0)())(( 1 =−+−++ − TTTTT CPBDDCPBPAPA                                      (7) 
 
To solve the ARE (7), first the associated Hamiltonian matrix should be built:  
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The system (8) is passive, or equivalently, the LMI (7) is satisfied, if and only if M has no pure 

imaginary eigenvalues. On the other hand, pure imaginary eigenvalues of matrix M correspond to the 
exact locations where the real part of the symmetric admittance matrix becomes singular [9]. The powerful 
merit of the above technique (based on Hamiltonian Matrix) is independent of the frequency. This pure 
algebraic method overcomes the above mentioned drawbacks of the frequency sweep method. Although 
due to numerical noise the detection of imaginary eigenvalues of matrix M is difficult, by employing the 
special properties of the eigenvalues of Hamiltonian matrix M, this problem can be solved.  

The eigenvalues of M are symmetrical with respect to the real and imaginary axes. On the other hand, 
ifλ  is an eigenvalue of M, then λ− , ∗λ and ∗− λ would be the other eigenvalues of M. Hence, for an 
imaginary eigenvalue ofλ  there is only just one other eigenvalue, ∗λ . Although based on the properties of 
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the eigenvalues, the precise locations of the singular values of )( ωjG  are known, this does not contain 
any information about passivity violation regions. For this purpose a method based on the slope of the 
eigenvalues of )( ωjG  at its singular locations is employed. If λ  is an eigenvalue of )( ωjG  and tv is the 
corresponding left eigenvector, then:  

0))(( =− Ijvt λωG                                                               (9)  
 
Differentiating this equation with respect to the angular frequencyω results in: 
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Multiplying (10) by the corresponding right eigenvector u results in:  
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The right-hand side of (11) is zero by the definition of the right eigenvector. Therefore (11) can be 
rewritten as: 
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In (13), the derivative of )( ωjG  with respect to ω  can be obtained from:  
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Substituting (14) into (13) results in:  

uv

uv
d
d

t
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ω
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Using (15), the slope of eigenvalues of )( ωjG at singular locations can be determined. The singular 
frequencies in a vector ],,,[ 21 hW ωωω K=  where hωωω <<< K21  are found. Starting from the highest 
frequency, hω , and counting the positive and the negative slopes in the specified frequencies, then in any 
frequency where the number of positive and negative slopes equate there is an indication of  a local 
nonpassive region. The slope of hω  is always positive since 0>+ TDD . In the next section a new 
algorithm for the compensation of residues of )( ωjY  is employed to enforce the passivity in those 
violation regions.  
 

4. PASSIVITY ENFORCEMENT  
 
The flowchart shown in Fig.1 describes the proposed passivity enforcement algorithm. This algorithm first 
identifies the passivity violation regions and then compensates the violations. To detect the magnitude of 
the maximum violation in any nonpassive region, a frequency sweep method can be used. However by 
using the frequency sweep, there would be no guarantee of detecting the maximum violation. This 
difficulty is overcome by employing an efficient method based on the H∞-norm approximation.  

Let first consider the minimum dissipation, diss(H), of a transfer matrix defined by: 
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Start 

Stop 

Identification of passivity violation regions

Consider the region where the magnitude of its 
maximum violation is the most negative.  

Find the magnitude of the maximum violation in 
any nonpassive region  

Enforce passivity 

Is there any 
nonpassive region? 

)2/))()(((inf)(
0Re

min
>

∗+=
s

sHsHHdiss λ                                              (16) 
 
Then consider the following theorem [10].  
 
Theorem: Let A be stable and )2/)((min

TDD +< λδ . Then δ≤)(Hdiss if and only if δN has imaginary 
eigenvalues. 

The above theorem suggests a bisection algorithm for the computation of diss(H).  Let lbγ and ubγ be 
the lower and upper bounds of diss(H), respectively. In a nonpasssive region the upper bound will be zero. 
For the lower bound, one can use a modification of Enns and Glover bounds [11, 12] used for H∞-norm 
approximation:    

)}2/)((),2/)((min{ minmin
T

lb DDLL ++= ∗ λλγ                                (17) 
 
Where, co LLL =  

oL and cL can be computed by solving the observability and controllability Grammian Lyapunov equations 
as follows: 
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Then a bisection algorithm [10] can be used to detect the maximum violation in any nonpassive region. 

The nonpassive region where the magnitude of its maximum passivity is the most negative, among 
the other passivity violation regions is selected to enforce the passivity. In other words the region with the 
worst passivity violation is selected to enforce the passivity. Then, based on the compensation of residues 
of )( ωjY the passivity is ensured.    
 
 
 
 
 
 
                                                                                                             
 
                                                                                                    
                                                                                                            No 
                                                                            
                                                                                      Yes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Flowchart of passivity enforcement 
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To address this issue, let 1λ  be a simple eigenvalue of G and the corresponding characteristic 
equation is as follows: 

0)det( 0
2

2
1

1 =++++=− −
−

−
− cccI n

n
n

n
n Lλλλλ G                              (19) 

 
Let us consider for a sufficiently smallε , FG ε=∆  which is the perturbation of matrix G where F is an 
arbitrary matrix. Then the characteristic equation for the matrix of FG ε+ is given by: 
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where )(εrc  is a polynomial of degree (n-r) of ε , as:  
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rnrrrrr ccccc −
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2

21)( L  

and rr cc =)0( , 
Let 1λ be a simple root of Eq. (19), then based on the theory of algebraic functions [13], for sufficiently 
small ε  there is a simple root )(1 ελ for (20) as follows:  
 

L+++= 2
2111 )( εελελ kk                                                    (21) 

Clearly 11 )( λελ →  as 0→ε , if )()( 11 ελελ Ο=− . 
Also for the corresponding eigenvector it may be written as: 
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where the expressions in brackets are the convergent power series of sufficiently small ε . Also it can be 
written: 

)()()()( 111 εελεε xx =+ FG                                                           (23) 
 
Substituting from (21) and (22) in (23) and keeping only first-order terms of ε  in the result (first-order 
perturbation of eigenvalues) gives: 
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Pre-multiplying this by ty1  and considering that 01 =i

t xy , )1( ≠i results in [13-15]: 
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The higher-order perturbation of eigenvalues may be applied by equating the coefficients of the 

higher powers of ε  related terms in Eq. (23). Equating the coefficients of 2ε results in: 
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or 
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Pre-multiplication by ty1  gives 
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Per-multiplying (25) by t

iy  results in: 
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Then from (29) and (30), the following can be derived:   
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In the same way, the higher order terms in the perturbation process can be obtained.  

Since the first-order perturbation of eigenvalues is employed, ελ
11 k=∆ , and (26) may be rewritten 

as:  
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t

t G∆
=∆λ                                                               (32) 

For an n-port system, applying the perturbation only on the diagonal elements results in:  
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Using the eigenvalue perturbation theory, it may be written as:  
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where y and x are left and right eigenvectors of G. Then based on (33), it can be written as: 
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Considering that GGGG nn ∆=∆==∆=∆ )()()( 2211 ωωω L , Eq. (35) can be written in the form of 

G∆=∆λ . Based on (31) and considering that 0,0 11 == xyxy tt
ii , )1( ≠i , the second and higher 

perturbation expressions are deleted. Therefore only the first-order perturbation of eigenvalues will exist 
and this term is almost exact. The perturbation is enforced only on the diagonal elements of matrix C at 
the maximum passivity violation location of the nonpassive region. As a result of perturbation, there will 
be some error introduced in the time and frequency domain responses. The goal of the perturbation theory 
is the minimization of this error. The criterion for the selection of appropriate residues for perturbation is 
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the minimum Root Means Square (RMS) error. On the other hand, a residue corresponding to the pole is 
chosen which satisfies the passivity violation at the maximum passivity violation location and minimizes 
the RMS error. Our experience shows that the selection of complex pole pairs compared to the real pole 
can be more efficient in ensuring the above conditions. To clarify the method, let the complex pole pairs 
of pjp ′′±′  with the corresponding residues of rjr ′′±′  are to perturb the diagonal element of Y(s) in the 
following form: 

pjps
rjr

pjps
rjr

sy
′′+′+

′′−′
+
′′−′+

′′+′
=)(                                                    (36)  

 
The real and imaginary parts of y(s) can be found in the following forms. 
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As seen from (37), the real part of the frequency response of a pole is a linear function of the real part 

of its residue. As mentioned before, it is considered here that the diagonal elements of G are to be 
perturbed equally as shown. 
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5. A FAST TEST METHOD TO CHECK PASSIVITY  

 
In some cases the network equivalent is inherently passive and enforcement for passivity is not necessary. 
In these cases it is sufficient just to check the passivity. Hence a fast test method to check the existence of 
the purely imaginary eigenvalues of associated Hamiltonian matrices (without direct calculation of 
eigenvalues) enhances the efficiency of calculation.  

Since M is Hamiltonian, the characteristic polynomial of M, in )det()( Mssa −= I , is a polynomial of 
2s ; )()( 2spsa −= . Therefore M has imaginary eigenvalues if and only if p has real nonnegative roots. 

The coefficients of polynomial p could be computed from M by the Leverrier-Feddeva algorithm [8]. Also 
a Sturm method can be used to test whether p has real nonnegative roots [16]. Consider two polynomials 
with real coefficients as shown below [17]: 
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The Strum sequence associated with )(xα and )(xβ is a set of polynomials )}({ xfk ii where ik are 
arbitrary positive constants, and:   
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Equations (42) represent Euclid’s algorithm applied to )(xα  and )(xβ , while the signs of the reminders 
are reversed. A second fundamental tool in the qualitative study of polynomials is the Cauchy index 

)(xI b
aγ , where )()()( xxx αβγ = , and it is known that:  

 
)()()( bVaVxI b

a −=γ                                                               (43) 
 
where V(x0) denotes the number of variations in the sign of the sequence of  f0(x), f1(x), f2(x),…. 

The algorithm of Routh, presented first by British mathematician, E. J. Routh, enables the Strum 
sequence to be constructed without explicitly carrying out the polynomial divisions in (42).  
Specifically, the Routh array (rij) is a set of rows as follows: 
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It is assumed that the array is in a regular form, i.e., all 01 ≠ir . 

The problem, resolved by Routh [18], is to determine when a given polynomial with real coefficients 
as: 

0,)( 0
1

10 >+++= − αααα n
nn xxxf L                                        (47) 

 
is the characteristic polynomial of an asymptotically stable linear system. This requires that all the zeros of 
(47) have negative real parts. In this case, the required and sufficient condition is: 
 

0),,,( 211101 =Krrrv                                                         (48)  
 

In other words, all the first column elements in the Routh array generated by (46) should be positive. 
The Routh algorithm can readily be modified to determine the number of real zeroes of a real polynomial 
f(x). The modified Routh array )~( ijr is formed starting with the first two rows as: 
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      The rows are formed by the coefficients of the polynomials )( xf − and dxxdfxf /)()( −=−′ .  
Computing the modified Routh array )~( ijr , (46), the parameter kp, the number of positive real zeros can be 
computed as follows: 

),~,~,~( 211101 Krrrvnk p −=                                                           (50) 
 

6. COMPUTED RESULTS  
 
In this section three examples will be presented to demonstrate the accuracy and efficiency of the passivity 
check and compensation algorithm. 
 
Example 1: This is a 3 port example [19] which has been fitted with 28 poles in a frequency range of 10 
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Hz to 10 kHz. In Fig. 2a three eigenvalues of )( ωjG are shown. Fig. 2b shows an expanded view of two 
nonpassive regions; [11.810 12.780] and [14.440 19.784] kHz, obtained by Hamiltonian matrix theory.  
 

  
Fig. 2. a) Frequency spectrum of eigenvalues. 

 
The magnitude of maximum passivity violation in these two regions is -3.5167e-4 at a frequency of 
14.801 kHz. After the 1st iteration of perturbation, there is only one nonpassive region, [14.801 19.161] 
kHz, and the passivity violation is mitigated. For passivity enforcement only four iterations is sufficient. It 
is considered that the residue corresponds to the poles with minimum RMS error to be perturbed. Since the 
detection and the compensation processes of the proposed method are not time-consuming, the iterations 
can be done quickly. To increase the calculation efficiency, the residue of the appropriate pole in the first 
iteration is considered for the other iterations. Table 1 shows the details of the calculation in each stage of 
iterations. An expanded view of violations mitigation, in each stage of iteration, is shown in Fig. 2c. 
 

  
Fig. 2. b) Expanded view 
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Table 1. The details of calculation of proposed method 
 
 
 

 
 
 
 
 

 
In a similar example, this time enforcement is done through the QP method. In this example, if only 

the diagonal elements of residue matrix C, and the constant term matrix, D, are perturbed, the RMS error 
would be 5.6234e-007 and if the perturbation is applied on all of the matrix elements of C and D matrices, 
the computing efficiency decreases significantly, and the RMS error would be 1.7682e-007 as shown in 
Fig. 3. The RMS error of the proposed method is 1.0959e-007 which is less than that obtained by the QP 
method in addition to its higher calculation efficiency. 300 frequency samples were considered to 
calculate RMS errors in this and the following examples. 

  
Fig. 2. c) Mitigation of violations during iterations 

 

  
Fig. 3.   Passivity enforcement by QP method 
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16.500  -8.3963e-6  [16.000, 17.484]  3rd iteration  
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10 kHz. The resulting model has large passivity violations at frequencies above 10 kHz. The nonpassive 
region, [11.498, 14.188] kHz, obtained by imaginary eigenvalues of the Hamiltonian matrix and the 
proposed method of related slopes is shown in Fig. 4a. Fig. 4b shows the resulted mitigations due to the 
proposed compensation algorithm during three iterations to guarantee the passivity. Table 2 illustrates the 
details of the passivity violation mitigation during each stage of iterations. The results of the application of 
the QP method on a similar example considering only the diagonal elements of C and D matrices will still 
have some passivity violations.  
 

  
Fig. 4. a) Expanded view of Frequency spectrum of eigenvalues 

 
Table 2. The details of calculation of proposed method 

 
The frequency of max. 

violation passivity [kHz]  
The magnitude of max. 

violation passivity [P.U.]  
Passivity violation 

regions [kHz]  
Number of 
iterations  

11.991  -0.0053  [11.498, 14.188]  Original   
12.081  -0.0013  [11.991, 14.186]  1st iter.  
13. 901    -1.8061e-4  [13.691, 14.057]  2nd iter.  

 
The RMS error in this case which is named QP.1 will be 0.4301. In order to improve the accuracy of 

the above perturbation, in another case named QP.2, all the elements of matrices C and D are used as free 
variables to be perturbed. However in QP.2 the passivity has not been ensured yet. 
 

  
Fig. 4. b) Mitigation of violations during iterations 
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Therefore, to further improve the accuracy, a weighting scheme is employed such that all the elements 

of Y are weighted with the inverse of their magnitude, thus placing more weight on small elements, and it 
is named QP.3. This provides a strong improvement in accuracy. Yet passivity violations still exist in the 
system. Applying the iterative scheme on the QP method, a satisfactory result is achieved as shown in Fig. 
5. This is named QP.4. 

The total computation time in QP.4 is extremely significant compared to the proposed method of this 
paper. It should be mentioned that the illustrated method uses only diagonal elements of C matrix to 
perturb, which is more efficient than employing perturbation on all the elements of both C and D matrices. 
This fact is more important in systems with numerous ports or phases such as the network equivalent of 
multiport multiphase power systems. Table 3 compares the RMS error of the different QPs versus this 
paper proposed method. 
 

Table 3. Comparison of RMS error from different methods  
 

Type of method RMS error 
QP method (QP.1) 0.4301 
QP method (QP.2)  0.4300 
QP method (QP.3) 2.9245e-6 
QP method (QP.4) 1.5804e-6 
Proposed method 1.6951e-5 

 

  
Fig. 5.  Passivity enforcement by QP method (QP.4) 

 
Example 3: In this example the proposed method is examined on a sample distribution network where the 
passivity enforcement of the terminal admittance matrix of this system is looked for.  The information of 
this network is provided by [20]. The distribution system has two 3-phase buses as terminals (A, B) shown 
in Fig.6. The 6×6 admittance matrix Y is calculated for this system in a frequency range of 10 Hz–100 
kHz. To increase the calculation efficiency all the elements of Y are fitted with a common pole set. To fit, 
50 complex pair poles are selected as initial poles.     
 

  
Fig. 6. Power system distribution system 
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Figures 7 and 8 show fitting the magnitude and phase angle of 6×6 admittance matrix Y through an 

improved version of VF named vfit2 [20]. Figure 9a shows the frequency spectrum of the six eigenvalues 
of the admittance matrix. As shown in Fig. 9a, the passivity violations occur in frequencies of about 3kHz.   

  
Fig. 7. Fitting of the magnitude by VF 

  
Fig. 8. Fitting of the phase angle by VF 
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Fig. 9. a) Frequency spectrum of eigenvalues 
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Table 4 and Fig. 9b summarize the passivity violations in the process of the proposed method based 
on the number of the iterations. The passivity violation regions are obtained by the Hamiltonian Matrix 
theory and related slopes in singular points. Three iterations are sufficient to ensure the passivity is 
achieved. 

  
Fig. 9. b) Mitigation of violations during iterations 

 
Table 4. The details of calculation of proposed method 

 
The freq. of max. 
violation [kHz] 

The mag. of max. 
violation [P.U.] 

Passivity violation 
regions[kHz] 

Number of 
iter. 

29.583 -8.9111e-5 [29.237, 29.736] Original  
29.503 -1.2555e-5 [29.385, 29.583] 1st iter. 
29.483 -4.6088e-7 [29.464, 29.503] 2nd iter. 

 
7. CONCLUSIONS  

 
In this paper a reliable, efficient, precise and fast method for passivity enforcement of subsystems 
approximated by rational functions is presented. The Hamiltonian matrix theory, which is a purely 
algebraic method, is employed to find the passivity violation regions. This method is not dependent on the 
frequency, and hence overcomes the drawbacks of the frequency sweep method. In the compensation 
stage, an iterative method is proposed which applies the perturbation only on the diagonal elements of the 
residues matrix. Normally 2 to 4 iterations are sufficient for passivity enforcement. This method is 
successfully applied to a distribution network and the results compared with the QP method.    
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