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Abstract– This paper describes a procedure that uses particle swarm optimization (PSO) combined with the 
simulated annealing (SA) to analyze the bidding strategy of Generating Companies (Gencos) in an electricity 
market where they have incomplete information about their opponents. 

In the proposed methodology, Gencos prepare their strategic bids according to the Supply Function 
Equilibrium (SFE) model and they change their bidding strategies until Nash equilibrium points are obtained. 
Nash equilibrium points constitute a central solution concept in the game theory and are computed with 
solving a global optimization problem. In this paper a new computational intelligence technique is introduced 
that can be used to solve the Nash optimization problem. This new procedure, namely PSO-SA is based on 
the PSO algorithm and SA method. SA method is used to avoid becoming trapped in local minima or maxima 
and improve the velocity’s function of particles. The performance of the PSO-SA procedure is compared with 
the results of other computational intelligence techniques such as PSO, Genetic Algorithm (GA), and a 
mathematical method (GAMS/DICOPT).           

 
Keywords– Energy market, deregulation, Nash equilibrium point, optimal bidding strategy, particle swarm, 
simulated annealing  
 

1. INTRODUCTION 
 

Recent changes in the electricity industry in several countries have led to a less regulated and more 
competitive energy market. In this condition, cost is replaced with the price and each Genco will try to 
maximize its own profit. For a Genco, it is critical to devise a good bidding strategy according to its 
opponents’ bidding behavior, the model of demand and power system operating conditions. So Gencos 
should solve a game theory problem. Game theory is the study of multi-person or multi-firm decision-
making problems. The most commonly encountered solution concept in the game theory is that of the 
Nash equilibrium [1]. Therefore the rational Gencos should bid at their Nash equilibrium strategies to 
obtain their optimum profit. 

In [2], [3], and [4], a cooperative game was used to analyze the possible coalitions and collusions of 
participants in electricity markets. A non-cooperative incomplete game was employed in [2], [5] and [6] to 
choose a Genco’s optimal bidding strategy among the sets of discrete bids. The bidding problem was 
modeled as a bi-level problem in [7] by assuming the complete information on a Genco’s opponents. The 
Independent System Operator (ISO)’s market clearing problem was modeled as a non linear optimal 
power flow (OPF) problem and the Newton approach was employed to solve it. [8] describes a procedure 
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that uses PSO combined with Lagrangian Relaxation framework to solve a power-generator scheduling 
problem known as the unit commitment problem. 

This paper extends the proposed method in [7] for developing a more general approach to Genco’s 
optimal bidding strategies with incomplete information in electricity markets. The problem of computing 
Nash equilibrium points can be formulated as a global optimization problem. This formulation allows us 
to consider computational intelligent techniques to detect Nash equilibria. 

PSO is a stochastic optimization method capable of handling non differentiable, nonlinear, and multi 
module objective functions. The PSO approach is motivated from the social behavior of bird flocking and 
fish schooling. PSO has a population of individuals that move through the D-dimensional search space and 
each individual has a velocity that acts as an operator to obtain a new set of individuals. Individuals, called 
particles, adjust their movements depending on both their own experience and the population’s 
experience. At each iteration, a particle moves towards a direction computed from the best visited position 
and the best visited position of all particles in its neighborhood. In this approach, except the particle that is 
the best experience of particles, the effect of other particles is ignored. So the probability of becoming 
trapped in the local points is increased. In this paper, to avoid this problem, the PSO algorithm is 
combined with the SA approach. SA employs a search which not only accept changes that decrease the 
objective function (assuming a minimization problem), but also some changes that increase it are accepted 
with a probability. The remaining sections of this paper are organized as follows: 

The problem formulation is given in section 2. Sections 3, 4, 5, include a brief review of the PSO, SA 
algorithm, and game theory concepts. Section 6 describes a new algorithm named PSO-SA, and section 7 
shows the solution method. Section 8 gives an illustrative example. Section 9 provides the conclusions. 
 

2. PROBLEM FORMULATION 
 
a) Estimating opponent’s unknown information 
 
It is necessary for a Genco to model its opponents’ unknown information. It is supposed that all Gencos 
own only the thermal units, so the most important parameters for Gencos are a, b and c coefficients of 
second order generating cost function as cPbPa ++2 , where P is the active power output of a generating 
unit. All Gencos try to hide this information from the others, so the opponents should estimate them based 
on the available information.  

The available information of Gencos about their opponents is incomplete and it is supposed that they 
are only aware of the minimum and maximum generation levels of their opponents as well as their fuels 
type. 

Reference [8] has presented a method to obtain the fuel cost of a generator as a quadratic function of 
active power generation. This function is expressed as: 
 

γβα ++= PPPF 2)(         (1) 
 

In this function )(PF  is measured in MJ/h or MBtu/h. By considering the High Heat Value (HHV) of 
fuels and the fuels price(in $/m3 or $/lit), )(PF is obtained in $. So the fuel price should be forecasted for a 
future time to obtain the fuel cost. We can define several scenarios with definite probability for the fuel 
price, so the different types for α , β and γ coefficients will result.  

The total cost of operation includes the fuel cost, the cost of labor, supplies and maintenance. These 
costs, except for the fuel cost, are expressed as a fixed percentage of the fuel cost. So the total generation 
cost can be expressed by cPbPa ++2  where a, b, and c include α , β , and γ plus some percentage due 
to the cost of labor, maintenance and supplies. 
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b) Genco’s bids in energy market 
 

In a power market, Gencos may prepare their strategic bids according to the 4 economic models in 
imperfect competition. These models are Bertrand, Cournot, Stackelberg and SFE where the Stackelberg 
model is similar to the Cournot model [1]. Fig.1 illustrates where the intensity of the competition predicted 
by the basic formulation of each of the models places them along the competitive spectrum.  

In the Bertrand model, Gencos compete against each other using prices as strategy choices and 
Gencos bid at their marginal cost at the Nash equilibrium point. 

 In the classic model of Cournot, Gencos compete against each other using quantities as strategy 
choices. Genco’s products are assumed to be homogenous, Demand is price-responsive, and Market 
Clearing Price (MCP) is the intersection of aggregated supply and market demand curves. The Stackelberg 
model is similar to the cournot model. However, the competitors do not offer their output quantities 
simultaneously. The so-called “ leader” will make the first move, which is followed by that of the 
followers who take into account the leader’s action [1]. 

In the SFE model, Gencos compete with each other through the simultaneous choice of supply 
functions. Klemperer and Meyer developed SFE in order to model competition in the presence of demand 
uncertainty. The SFE model was used by Green and Newbery for analyzing the competitive strategic 
bidding in electricity markets [1]. 

Among these models, only SFE enables a Genco to link its bidding price with the bidding quantity of 
its product and only this model is the closest to the actual behavior of players in the actual power market. 
So in this paper, we suppose that Gencos use the SFE model to prepare the strategic bids of their units and 
the unit’s bid function is expressed as follows: 
 

jjjj MCp += .µρ                       (2) 

where: 
 jρ  : The offered price of unit j 
 

jp  : The quantity corresponding to jρ  
 jµ  : Mark-up coefficient of unit j 
 jMC  : Marginal cost of unit j 

The generating cost function is a function of active power generation and is expressed as: 
 

),...,2,1(..)( 2
ijjjjjjj njcpbpapCC =++==              (3) 

 
where ja , jb , and jc  are the coefficients of the generating cost function. 

So the marginal cost of each unit is expressed as: 
 

jjjj bpaMC += 2       (4) 

 
Fig. 1.  Equilibrium models and predicted degree of competition [1] 
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The real power markets in the world are not characterized by perfect competition, but are rather an 

oligopoly market, i.e. a market in which there is not only one player (a monopoly) and not an infinite 
amount of players (perfect competition). In an oligopoly market, if all Gencos bid equal to their marginal 
cost, the market power will not produce. So the exercise of market power by each price maker player is 
used as an opportunity to add a mark-up to the player’s own resultant supply function. A player will 
behave as a price taker in the market if the mark-up coefficient is 0. 
 
c) Market clearing model 
 

We suppose the ISO uses a security-constrained economic dispatch to clear the market after collecting 
bids. The ISO minimizes consumer payments subject to the bids and line flow constraints. Accordingly, 
locational marginal prices (LMPs) are calculated as follows [6]: 
 

maxmin

maxmin

1 1

),,2,1(

:

)(min

ijijij

lll

DG

ijij

Gn

i

in

j
ijij

ppp

LlFFF
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≤≤

=≤≤

−=
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= =

K
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              (5) 

where:  

Gn  : Number of Gencos 

in  : Number of units of each Genco 
B  : Network susceptance matrix 
θ  : Vector of bus voltage angles 

GP  : Vector of bus generation 

DP  : Constant vector of bus loads 

lF  : Power flow on line l 
max

lF , min
lF : Upper and lower flow limits on line l 

L  : Number of lines in the system 
min
ijp , max

ijp : Upper and lower bounds of unit j of Genco i 
In (5), the first equality constraint is the DC power flow equation, the second constraint is the 

transmission line constraint, and the third is the generation capacity constraint for each unit. The LMP at 
each bus is the lagrangian multiplier of the corresponding power flow constraint. 

Once the energy market is cleared, each unit will be paid according to its LMP times its awarded 
generation. So the payoff for Genco i is calculated as follows: 
 

)().(
1

2

1
jjj

in

j
jj

in

j
jji cpbpapLMPR ++−= ∑∑

==

           (6) 

 
3. PARTICLE SWARM OPTIMIZATION (PSO) METHOD 

 
PSO is a computation technique introduced by Kennedy and Eberhart in 1995, which was inspired by the 
social behavior of bird flocking or fish schooling (Reynolds, 1987). They theorize that the process of 
cultural adaptation can be summarized in terms of three principles: evaluate, compare, and imitate. An 
organism, a bird in PSO, evaluates its neighbors, compares itself to others in the population and then 
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imitates only those neighbors who are superior. So they behave with two kinds of information: their own 
experience and the knowledge of how the other individuals around them have performed. [9] 

The PSO approach has some similarities to GA and evolutionary algorithms. PSO has a population of 
individuals that move through the D- dimensional search space and each individual has a velocity that acts 
as an operator to obtain a new set of individuals. Individuals, called particles, adjust their movements 
depending on both their own experience and the population’s experience. At each iteration, a particle 
moves towards a direction computed from the best visited position and the best visited position of all 
particles in its neighborhood. [8,10,11,12] 

In PSO, the p-th particle is represented as },,,{ 21 pDppp xxxX K= , where pjx is the value of the j-
th coordinate in the D dimensional space. The best experience of all particles is represented by the symbol 

},,,{ 21 DgggG K= and the best visited position of the p-th particle is represented as 
},,,{ 21 pDppp pppP K= . The rate of the position change, which is the velocity for particle p, is 

represented as },,,{ 21 pDppp vvvV K= . 
The position of a particle changes according to its velocity, which is adjusted at each iteration. 

Particle p is repositioned according to the d- coordinate of its velocity, which is calculated as follows: 
 

))(1,0())(1,0( 21
1

pddpdpd
itr
pd

itr
pd xgrandcxprandcvv −+−+=+ ω                       (7) 

 
The factor ω  is the inertia weight and is similar to the effect of temperature in simulated annealing. If 

the inertia weight is large, the search becomes more general. The coefficients of 1c and 2c are learning 
factors, which help particles to accelerate towards better areas of the solution space. The function 

)1,0(rand generate a random number uniformly between 0 and 1. 
The velocity of each dimension has upper and lower limits, maxV  and minV , which are defined by the 

user. The new position of a particle is updated as follows: 
 

11 ++ += itr
pd

itr
pd

itr
pd vxx      (8) 

 
The PSO algorithm can start with a population of particles with random positions or with a population of 
particles created heuristically and can stop when its iteration reaches maxitr , which is the maximum 
number of iterations defined by the user.  
 

4. FRAMEWORK OF SIMULATED ANNEALING (SA) 
 
Simulated annealing is motivated by an analogy to annealing in solids. The idea of SA comes from a paper 
published by Metropolis et al. in 1953. If we heat a solid past the melting point and then cool it, the 
structural properties of the solid depend on the rate of cooling. If the liquid is cooled slowly enough, large 
crystals will be formed. However, if the liquid is cooled quickly (quenched) the crystals will contain 
imperfections. Metropolis’s algorithm simulated the material as a system of particles. The algorithm 
simulates the cooling process by gradually lowering the temperature of the system until it converges to a 
steady, frozen state [13].  

SA’s major advantage over other methods is an ability to avoid becoming trapped in local minima 
(assuming a minimization problem). The algorithm employs a random search which not only accepts 
changes that decrease the objective function f, but also some changes that increase it. The latter are 
accepted with a probability )/exp( Tfp δ−=  where fδ  is the increase in f and T is a control parameter, 
by which the analogy with the original application is known as the system " temperature" irrespective of 
the objective function involved. It can be appreciated that as the temperature of the system decreases the 
probability of accepting a worse move is decreased. This is the same as gradually moving to a frozen state 
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in physical annealing. The implementation of the basic SA algorithm is straightforward. Figure 2 shows its 
structure. As shown in this figure, the users should estimate suitable values for the initial temperature, and 
final temperature (Terminate search). Further, they should use appropriate rules for decreasing 
temperature [13]. 

A suitable initial temperature 0T is one that results in an average increase of acceptance probability 

0p of about 0.8. In other words, there is an 80% chance that a change which increases the objective 
function will be accepted. The value of 0T  will clearly depend on the scaling of f and, hence, be problem-
specific. It can be estimated by conducting an initial search in which all increases are accepted and 
calculating the average objective increase of observed +fδ . 0T  is then given by: )ln(/ 00 pfT +−= δ  

The best final temperature for terminating the search is to let the temperature decrease until it reaches 
zero. However, this can make the algorithm run for a lot longer. In practice, it is not necessary to let the 
temperature reach zero because as it approaches zero the chances of accepting a worse move are almost 
the same as the temperature being equal to zero. Therefore, the stopping criteria can either be a suitably 
low temperature or when the system is "frozen" at the current temperature (i.e. no better or worse moves 
are being accepted). 

Once we have our starting and stopping temperature we need to get from one to the other. That is, we 
need to decrement our temperature so that we eventually arrive at the stopping criterion. One way to 
decrement the temperature is a simple linear method. An alternative is a geometric decrement where 

αtt =  (where 1<α ). Experience has shown that α  should be between 0.8 and 0.99, with better results 
being found in the higher end of the range. Of course the higher the value ofα , the longer it will take to 
decrement the temperature to the stopping criterion. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  The structure of the simulated annealing algorithm 
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5. BASIC CONCEPTS OF GAME THEORY AND NASH EQUILIBRIUM DEFINITION 
 
Game theory is the study of multi-person or multi-firm decision-making problems. In the field of 
industrial organization in economics, the game theory is used extensively to study auction behavior, 
bargaining, principal-agent relationships, product differentiation, and strategic behavior by firms. There 
are three main mathematical models or forms used in the study of games, the strategic form, the extensive 
form, and the coalitional form [1]. These approaches differ in the amount of detail on the play of the game 
built into the model. The history of electricity markets shows that their behavior is near to the strategic 
form [1]. Therefore this section explains the basic concept of this form. 

The strategic (or normal) form representation of a game includes three components: 
- The set of players, },...,1{, nNNi =∈ , in the game, which is assumed finite; 
- The pure strategy space, iS , },,{ 1 iimii ssS L= which contains the individual strategies available to 
player i (sij), where sij is an arbitrary strategy; and 
- The payoff function )(: setrealRSui → for each player i is also defined, where nSSSS ×××= L21 is 
the Cartesian set of all sets (Si). 

In the game theory, the most commonly encountered solution concept is the Nash equilibrium. A 
strategy is a Nash equilibrium for a player if that player cannot increase its own payoff by undertaking any 
strategy other than its equilibrium strategy, given the strategy choice of its rivals. In a Nash equilibrium, 
each player will decrease its payoff if it deviates from its Nash equilibrium strategy, assuming all other 
players continue to play their existing strategies. As a result, a Nash equilibrium point is the "best 
response", in the sense that no player has an incentive to deviate from its strategy choice, given all other 
player’s strategy choices. Definition 1 gives a formal definition of the Nash equilibrium. 
 
Definition 1: In the n player strategic form game, the profile strategies ),,( **

1 nss K are a Nash equilibrium 
if, for each player i, ii Ss ∈*  is player i’s best response to the strategies specified for the other (n-1) players, 

),,,,,( **
1

*
1

*
1

*
niii sssss KK +−− = , such that ),(),( ***

iijiiii ssussu −− ≥ , for every feasible strategy 
iij Ss ∈ [1]. 

As mentioned, the problem of finding a Nash equilibrium point can be formulated as a problem of 
detecting the global minimum of a real valued function. To this end, three functions, x, z, and g are defined 
as follows [14]: 

)0),(max()(

)()()(

),()(

szsg

susxsz

ssusx

ijij

iijij

iijiij

=

−=

= −                           (10) 

 
Now, we define the real valued function v by: 2

1
])([)( ∑ ∑

∈ ≤≤

=
Ni mj

ij
i

sgsv . Function v is continious, 
differentiable, and satisfies the inequality 0)( ≥sv . Furthermore, *s is a Nash equilibrium, if and only if, it 
is a global minimum of v, i.e. 0)( * =sv , (which means no player changes its strategy) 

This formulation of finding Nash equilibrium points allows us to consider computational intelligence 
methods such as PSO and SA methods. 

 
6. THE PROPOSED PSO-SA ALGORITHM 

 
As previously mentioned, the PSO algorithm is a population of random solutions, in which each individual 
is referred to as a particle and presents a candidate solution to the optimization problem. A particle in 
PSO, like any living object, has a memory in which remains its best experience and the best experience of 
other particles. In this technique, each candidate solution is associated with a velocity vector, which is 
adjusted according to the particle’s memory. This procedure is repeated until almost all particles converge 
to the best solution. So in each particle’s point of view, its own experience and the best experience of 
other particles are considered and the experience of others is not regarded. Therefore the probability of 
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becoming trapped in the local minima or maxima is increased. To overcome this problem, it is good to 
modify the PSO method. Among the computational intelligent techniques, the SA method has an ability to 
avoid this problem. This algorithm employs a random search which even accept the bad experience with 
definite probability. So in the new proposed method, the PSO algorithm is combined with the SA method. 

Because of the similarity between the operation of iteration in the PSO algorithm and temperature (T) 
in the SA method (but in the opposite direct), in the new proposed algorithm, the iteration in the PSO 
algorithm is replaced with temperature. Then in each temperature, for calculating each particle’s velocity 
in the PSO method, the experience effect of all particles is applied considering the corresponding 
probability defined in the SA method. Hence, the modified velocity of each particle is calculated regarding 
the personal initial velocity, distance from the personal best position, the distance from the global best 
position, and the distances from the other particle’s position randomly. In the proposed method, the 
modified velocity function is expressed as follows: 
 

)())1,()/(exp()/exp(

))(1,0())(1,0(

,1

21

pdpjpj

D

djj
pj

pddpdpd
T
pd

T
pd

xxorandTfunitTf

xgrandcxprandcvv prev

−−−

+−+−+=

∑
≠=

δδ

ω
                     (9) 

 
In this equation, unit function randomly accept the bad experience of particles based on the calculated 

probability in the SA method. The function unit returns 1 if )1,0()/exp( randTf pj >−δ , 0 otherwise. 
After calculating the new velocity of particles in each temperature, their new position is updated.  
The proposed PSO-SA algorithm can be described as follows for the minimization problem of 

function f(x) subject to some constraints: 
Step 1) Generation of initial population ),,,,,( 21 ni xxxx KK  
Step 2) The best experience of particle i is initialized (pi) 
Step 3) An initial velocity vector is assigned to each particle 
Step 4) Determine the initial value of temperature T=T0 and the final Temperature T=Tf 
Step 5) Set the temperature decreasing rule 
Step 6) Objective function evaluation 
            for each particle ni L1=  do 
             If any security function is observed 

Add a penalty term to the cost function (f(x)) 
             Else 

Evaluate the cost function for that particle 
             End. 
            End. 
Step 7) Particle’s velocity modification  
            for particle ni L1=  do 
                update its memory (p,g) 
      )).(1,0(.)).(1,0(.. 21 iii

prevT
i

T
i xgrandcxprandcvv −+−+= ω  

                for (particle ijnj ≠= &1L ) do  
                   If ))1,0()/(exp( randTf j >−δ  

                     )(.)/exp( ijj
nextT

i
nextT

i xxTfvv −−+= δ  

                 End. 
                End. 
               End. 
Step 8) Particles movement with using Eq.(8) 
Step 9) If the Stopping temperature is not reached, decrease the temperature and return to Step 6 
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7. THE PROPOSED SOLUTION METHOD 
 
As previously mentioned, Gencos try to choose the best bidding strategies in the energy market to 
maximize their profits. In order to reach this target they should consider their opponent’s activities and the 
power system conditions. Each Genco has the knowledge of its own payoffs and generation costs, but 
could lack such information on the other Gencos. Hence they should model their opponents with 
approximate information. Section 2a shows an approach to reach this information with a good 
approximation. If it is supposed that all Gencos are intelligent, they can apply the proposed approach to be 
aware of their opponent’s payoff function and try to maximize their own revenue (Nash equilibrium) by 
acknowledging the opponent’s bidding strategies. (Gencos maximize their profits at Nash equilibrium 
points.) 

The Genco’s payoff function (Eq. (6)) is obtained after the market clearing procedure, which is 
formulated as a global minimization problem (section 2c). So the proposed solution method in providing 
optimal bidding strategies of Gencos includes two optimization problems. In this paper the PSO-SA 
algorithm is used to solve the Nash optimization problem. In reference [8], the PSO algorithm is used to 
solve the unit commitment problem (UCP). Because of the similarity between the UCP and the market 
clearing (MC) problem, the proposed method in [8] is used to solve the MC problem.  

The proposed algorithm to obtain the optimum bidding strategy of Gencos is shown in Fig. 3. This 
algorithm contains the steps that should be taken into consideration when applying the PSO-SA algorithm 
to the bidding strategy problem. As shown in this algorithm, continuous sets are considered for the mark-
up strategy of Gencos with upper and lower limits ( up

i
low
i µµµ ≤≤ ). 

A game problem may have only one Nash equilibrium, multiple Nash equilibria, or none at all. The 
nonexistence of the Nash equilibrium is contributed to system constraints that cause the discontinuity in a 
Genco’s optimal behavior to other Genco’s bids. Meanwhile, binding constraints in a power system could 
also be responsible for the existence of multiple Nash equilibria. If the problem has no Nash equilibria, the 
algorithm shown in Fig. 3 will not converge. 

The computational requirement for the proposed algorithm will increase with the number of units or 
Gencos. However, a Genco can assign similar mark-up strategies to units located in one region. A Genco 
may speed up the convergence of the algorithm by providing a good estimate of the initial mark-up 
strategy, which could be based on historical bidding quantities. 
 

8. SIMULATION RESULTS 
 
The proposed methodology is implemented over the IEEE 39-bus system. There are ten units in the 
system and each unit is supposed to be a Genco. The information on load service entities (LSE) and the 
network is given in [15]. To have a more competitive market the total capacity of the units are increased to 
1.66 times the total demand. So the modified information of the Gencos has been listed in Table I. It is 
supposed that Gencos can predict the exact fuel price, hence one generation cost structure is defined in 
Table 1, and in this table the units or Gencos are named according to their bus numbers. 

In the following case studies, it is supposed that the mark-up strategy of Gencos varies between zero 
to 1 and unit 30 is considered as a slack bus. So the results of all units except for unit 30 are presented. 
Case 1. In this case all Gencos are price takers and they bid at their marginal cost, making their mark-up 
strategy equal to zero. ISO clears the market using the security-constrained economic dispatch (5). 

The MW dispatched from each Genco, and the ISO’s objective function (the value of (Eq. (5)) in the 
optimum awarded generation of Gencos) are tabulated in Table 2, when applying three evolutionary 
methods (PSO-SA, PSO and GA), and the mathematical method (GAMS/DICOPT) [15]. As shown, the 
optimal solution of PSO-SA is near to the results of the GAMS approach, and better than the results of the 
GA and PSO method. 

The dynamic of the convergence between the PSO-SA and the GA is illustrated in Fig. 4.  
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Case 2. In this case, Gencos use the method introduced in section 7 for calculating their optimal mark-up 
strategies. Tables 3 and 4 contain the optimal mark-up strategy and the MW dispatched when using PSO-
SA (with maxitr =200) and mathematical method (GAMS) to solve the game problem for finding Nash 
equilibrium strategies. Table 5 presents the obtained profit of Gencos. The results of the PSO-SA and the 
GAMS methodologies show that the optimal solution of PSO-SA method is better than GAMS approach 
(The obtained profit of Gencos in the PSO-SA method is greater than GAMS approach). But because of 
combining the SA method with the PSO algorithm, the speed of the PSO-SA algorithm is slower than 
when using just the PSO method.  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

  
Fig. 3. Procedure of optimal bidding strategy calculation using PSO-SA algorithm 
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Table 1. Modified cost coefficients of units 
 

UNITS a b c Pmin 
(MW) 

Pmax 
(MW) 

30 0.01 0.3 0.2 0 750 
31 0.02 0.5 0.2 0 1245.5 
32 0.03 0.4 0.2 0 1050 
33 0.04 0.7 0.2 0 932 
34 0.03 0.9 0.2 0 915 
35 0.05 0.4 0.2 0 950 
36 0.06 0.6 0.2 0 1060 
37 0.07 0.3 0.2 0 940 
38 0.006 0.8 0.2 0 1130 
39 0.006 0.9 0.2 0 1300 

 
Table 2. The results of GAMS, GA, and PSO for Case 1 

 
MW Dispatched from Gencos 

 31 32 33 34 35 36 37 38 39 
ISO’s 

Objective 
function 

PSO-SA 1176 801.2 701.5 909 553.5 475 375.2 1130 1300 360273 
PSO 1177 800.7 700.4 908 557.1 476.7 374.9 1125 1295 360287 
GA 1170 806.5 700.5 912 551.3 472.5 370 1120 1293 360320 

GAMS 1175 802 701.5 910 553 474.5 376 1130 1300 360275 
 

 
Fig. 4. Comparing the dynamic of convergence between PSO and GA approaches 

 
Table 3. The mark-up strategy of Gencos with using PSO and GAMS 

 
The Nash Mark-up strategy of Gencos 

 31 32 33 34 35 36 37 38 39 
PSO-SA 0.012 0.008 0.0253 0.022 0.021 0.021 0 0 0 
GAMS 0.01 0.006 0.02 0.02 0.02 0.02 0 0 0 

 
Table 4. The MW dispatched from Gencos with using PSO and GAMS 

 
The MW dispatched of Gencos 

 31 32 33 34 35 36 37 38 39 
PSO-SA 1149.6 861.8 654.1 850.4 585.3 466 455 1130 1300 
GAMS 1150 865 650 850 583.5 462 457 1130 1300 

 
Table 5. The obtained profit of Gencos  

 
 31 32 33 34 35 36 37 38 39 

PSO-SA 53392.6 37680 28203.1 37046.6 23617.8 19705.4 17249.9 70651 79824 
GAMS 53385 37672.3 28203 37040 23612.5 17695.1 17243.6 70645 79821 
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9. DISCUSSION ON THE PROPOSED METHOD 
 
The proposed method in calculating the optimal mark up strategies of Gencos can be extended to a real 
large scale system. But there are more difficulties than the small case study like the one shown in the 
previous section. Some of them are explained below: 
1- As previously mentioned, Gencos should estimate the opponents unknown information where one of 
the most important parameters in the accurate forecast of a, b, and c parameters is the fuel price. When the 
number of Gencos is increased, they may predict the fuel price differently. Therefore the accuracy of the 
forecasted parameters of each Genco about its opponents is low. In this condition the obtained Nash 
equilibrium strategies are probabilistic and not deterministic.  
2- As shown in the market clearing model (See section 2c), the problem of finding optimal bidding 
strategies includes many variables such as mark up strategy of each Genco, the angle of each bus, the 
awarded quantity of each Genco, and the power flow of each line. Therefore the number of variables has a 
straight relationship with the number of Gencos and system buses. The larger system has a great number 
of buses and Gencos and this leads to an increase in the number of variables and consequently the required 
time for the convergence of the algorithm.  

The authors of this paper propose that in order to examine the global solution for large systems, the 
bidding space of each Genco should be divided into several segments and search for the optimal response 
in each segment by applying the method introduced in section 7 and choose the best solution. It is 
proposed that for speeding the convergence of the algorithm for large systems, it is better to use the 
proposed method (PSO-SA algorithm) for calculating Nash equilibrium points and a mathematical method 
(such as GAMS) for solving the ISO’s market clearing problem. 

 
10. CONCLUSIONS 

 
The history of electricity markets shows that these markets are not fully competitive. The finite number of 
power suppliers, the lack of enough transmission capacity, etc, are some reasons for the lack of 
achievement. So, each Genco or player in these markets should be able to choose a good bidding strategy 
in order to maximize its benefit. 

In this paper, a new approach is proposed for presenting the bidding strategy of Gencos. The proposed 
method is based on the behavior of the participants, and while considering the ISO’s objective function, 
combined with the PSO-SA approach to obtain the Nash equilibrium strategy of Gencos and market 
equilibrium points, as well as a method for market power monitoring that can be used by market operators. 
This method can be extended to more complicated networks and the simulation results show its high 
precision and capabilities.  
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