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Abstract– The application of ant algorithms, as any other evolutionary optimisation method, 
requires a number of controlling parameters to be known a priori. These parameters are often 
determined by sensitivity analysis as their values dramatically affect the performance of the 
methods. In addition to these parameters, a penalty parameter is usually to be defined for 
constrained optimisation problems. An ant algorithm with a minimum number of controlling 
parameters is introduced in this paper for pipe network optimisation problems. This method uses 
the interrelation between pheromone change and initial pheromone strength to initialize the 
pheromone trail strength at the start of the computation. Ant algorithms with an elitist strategy of 
pheromone updating are known for premature convergence leading to suboptimal solutions. Such 
suboptimal solutions are avoided by using the concept of pheromone strength limiter introduced in 
the literature for TSP. The introduction of this concept, however, requires the introduction of a 
new parameter adding to the number of controlling parameters of ant algorithms. A sensitivity 
analysis was carried out to find the proper value of the newly introduced parameter. The results 
suggest that a value in the range of 0.15-0.3 is the best value for the examples considered. The 
efficiency of the proposed ant algorithm is tested against two benchmark examples in the literature 
and the results are presented. This method is shown to be capable of locating the best ever 
solutions obtained for these problems.           
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1. INTRODUCTION 
 

Optimization of pipe networks, when defined in a mathematical form, leads to a non-convex nonlinear 
constrained optimization problem with discrete search space. Conventional search methods are not 
capable of handling the difficulties encountered when attempting the solution of these problems. Any 
successful application of search methods to the optimal sizing of pipe networks requires a method capable 
of handling noisy objective function, discrete decision variables, while enjoying computational efficiency 
if an industrial use of the method is in mind. Evolutionary search methods, in particular genetic 
algorithms, have been successfully used for pipe network optimization in recent years [1-5]. Recently, 
Dorigo et al. [6] proposed a new evolutionary optimization method, namely the ant algorithm, based on 
the collective behaviour of the ants in their search for food. Ant algorithms were first proposed for the 
solution of difficult combinatorial optimization problems like the traveling salesman problem (TSP) and 
the quadratic assignment problem (QAP). This method has been shown to outperform other evolutionary 
optimization methods including Gas [6, 7]. More recently Dorigo and Di Caro [8] introduced a general 
framework for developing Ant Colony Optimization Algorithms (ACOAs), namely ant colony meta-
heuristic. This enables the ACOAs to be applied to other engineering problems provided that the problem 
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can be properly formulated. The application of ant algorithms to water resource problems is of recent 
origin. Abbaspour et al. [9] used the ant algorithm for estimating the unsaturated soil hydraulic 
parameters. More recently Maier et al. [10] compared the performance of the ant algorithm with that of 
Genetic Algorithms (GAs) for the optimization of water distribution networks. The results are in line with 
the early experiences of Dorigo et al. [6] regarding the superiority of ant algorithms to other general 
purpose heuristics including genetic algorithms. This paper describes a variant of the ant colony 
optimization algorithm for the optimal design of pipe networks. The method differs from that of Maier et 
al. [10] in the number of parameters required to be defined a priori before the underlying problem can be 
solved. This is important since the proper values of these controlling parameters is usually determined in a 
trial and error fashion adding to the computational effort required by this method to solve any engineering 
problem. This is achieved using the relation between the reward factor and the initial value of the 
pheromone trail strength. The performance of the method is improved using the concept of trail limiting 
introduced by Stutzle and Hoos [11] as a remedy for premature convergence, which is often encountered 
in ant algorithms. The efficiency of this method is illustrated by its application to two pipe network design 
benchmark problems, with the results compared with the existing results in the literature. 
 

2. ANT COLONY OPTIMIZATION 
 

Ant algorithms were initially inspired by the observation that ants can find the shortest paths between food 
sources and their nest even though they are almost blind. Individual ants choose their paths from the nest 
to the food source in an essentially random fashion [6]. While walking from food sources to the nest and 
vice versa, however, ants deposit a substance called pheromone on the ground, forming, in this way, a 
pheromone trail. Ants can smell pheromone and, when choosing their way, tend to choose, in probability, 
paths marked by strong pheromone concentrations. The pheromone trail acts as a form of indirect 
communication called stigmergy [12], helping the ants to find their way back to the food source or to the 
nest. Also, it can be used by other ants to find the location of the food sources found by their nestmates. It 
has been shown experimentally [13] that this pheromone trail following behavior can give rise, once 
employed by a colony of ants, to the emergence of the shortest paths.  

In the ant colony optimization (ACO) meta-heuristic, a colony of artificial ants cooperate in finding 
good solutions to discrete optimization problems. Artificial ants are similar to real ants in some aspects, 
while they could behave differently as required by the nature of the problem in hand. Cooperation, 
pheromone reinforcement and stochastic decision-making policy using pheromone trails are amongst the 
most important similarities between artificial and real ant colonies. While the real ants are almost blind, 
the artificial ants are usually made to use local information in choosing their path, thereby providing 
artificial ants with sight. Real ants update pheromone trails on the paths as they walk, while artificial ants 
may be required to update pheromone only when they have finished their tour. While all ants contribute to 
pheromone trail reinforcement in a real colony, only an ant that has created the best path may be allowed 
to lay pheromone.  

The application of the ant algorithm to the arbitrary combinatorial optimization problem requires that 
the problem can be projected on a graph [7]. Consider a graph G = (D,L,C) in which D={ }n21 d,....,d,d  is 
the set of decision points at which some decisions are to be made, L={ }ijl  is the set of options j=1, 2,…,J 
at each of the decision points i=1,2,…,n and finally, C= { }ijc  is the set of costs associated with options 
L={ }ijl . The components of sets D and L may be constrained if required. A feasible path on the graph is 
called a solution (φ), and the minimum cost path on the graph is called the optimal solution (φ*). The cost 
of a solution is denoted by f(φ), and the cost of the optimal solution by f(φ*). Once the problem has 
defined these terms, the ant algorithm can be applied. In TSP, for which the ant algorithm was originally 
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applied, the graph G is defined with a fully connected graph connecting n cities to each other. Each city 
represents a decision point at which to decide the next city to go to. At each decision point i, the list of 
available cities j to go or equivalently the list of available arcs (i,j) to choose to go to city j, defines the set 
L, and finally the distance between cities i and j represent the cost cij associated with the option (i,j). A 
solution of the TSP is defined as a tour visiting each and every city once and only once with the tour 
having the same starting and finishing point. The feasibility of a trial solution in TSP is usually guaranteed 
by providing each ant with a list of allowable destinations called a tabu list which is continuously updated 
as the ant travels from city to another. The cost of the TSP solution is considered as the sum of the arcs 
lengths from which the solution is constructed. The TSP, therefore, is defined as finding the minimum 
length solution of the problem. 
 

3. ANT ALGORITHM FOR PIPE NETWORK OPTIMISATION 
 

A typical water distribution network is a collection of pipes, reservoirs, pumps, and different types of 
valves connected to each other in order to meet a specified demand at the nodes. Basically, the optimal 
design of pipe networks is a multi-objective task involving hydraulics, reliability, and water quality. The 
multi-objective design of water distribution networks is too difficult a problem when considering newly 
introduced optimization methods. Most of the investigation, therefore, considers the simpler problem of 
component design and, in particular the optimal pipe sizing problem.  

The application of the ant algorithm to any combinatorial optimisation problem such as the pipe 
network optimisation problem, as pointed out earlier, requires that the problem is defined in terms of a 
graph. For this, consider the a typical network, shown in Fig. 1, consisting of a fixed head reservoir, a 
source node, as an energy creating device and a set of demand nodes and connecting pipes so that the 
network can deliver water at the demand nodes under allowable conditions. These conditions are often 
considered as pipe velocities and nodal pressures remaining in a pre-specified range defined by the 
maximum and minimum velocity and pressure values. The pipe diameters are considered the design 
parameters that can be chosen from a set of commercially available diameters. The pipe network 
optimisation problem is then defined as selecting the diameter of each pipe of the network so that the 
resulting network has a minimum cost, while meeting the required conditions defined above. The proper 
representation of a pipe network optimisation problem requires the definition of the graph G = (D,L,C) 
and its component. Here, each pipe is a decision point at which the diameter of the pipe is to be 
determined. The component of the decision set D ={ }ni21 d,..,d,..d,d  is, therefore, the existing pipes of 
the network, where di  represents the diameter of the ith pipe to be selected from a set of commercially 
available diameters φ ={ }ijϕ  which may or may not be the same for all the pipes. Assuming that these 
diameters are the same for all the pipes, then φ= ),....,,( nd21 ϕϕϕ  would represent the list of available 
options at each and every decision point of the problem. If ucj is defined as the per unit length cost of the 
pipe with a diameter jϕ , the cost cij associated to the option φj at decision point di can now be calculated 
as the product of the per unit cost ucj and the length lei of the link under consideration. The cost of a trial 
solution f(φ), which may or may not be a feasible solution, is now calculated as the sum of the links cost 
given by 

 

i

n

1i
j leuc)(f ×= ∑

=

ϕ                                                                       (1)  

 
Here a difficulty not present in other combinatorial optimization problems such as TSP arises. In TSP  

for example, a tabu list representing the list of available options at each decision point is so constructed 
that only feasible solutions are created. This is not possible in pipe network optimization problems, where 
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the feasibility of the solution can only be determined after all the components of the solution are known. 
This means that some of the solutions created by the algorithm may be infeasible. This is the situation 
which arises in other evolutionary methods such as the genetic algorithm. A method for coping with this 
problem is to check the feasibility of the solution once they are totally constructed and reject the infeasible 
solutions. Rejecting infeasible solutions, however, is costly and may lead to the loss of useful information 
within some of the infeasible solutions. The usual remedy, which is adopted here, is to penalize the 
infeasible solutions so that the total cost of these solutions is much larger than that of the feasible 
solutions. This technique discourages the algorithm from creating more infeasible solutions. The total 
penalized cost of the network is defined as follows: 

i

n
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in which n and nn is the number of existing pipes and nodes, respectively; inH  is the nodal head; minH  
and maxH  are the minimum and maximum allowable hydraulic head; iV  is the pipe velocity; minV and 

maxV are the minimum and maximum allowable flow velocity; CSV is the total constraint violation of the 
trial solution; and pα is the penalty parameter with a large value when the constraints are violated, ie; the 
term in parenthesis is positive, and zero value otherwise. The second term, therefore, represents the 
penalty cost due to constraint violations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig.1. Representation of pipe network optimization problem in terms of graph 

  
The problem under consideration is now formulated in a proper format required for the application of 

the ant algorithm. The method used in this paper is based on that suggested by Stuzle and Hoos [11] which 
may be defined by the following steps: 
1- m ants are randomly placed on the n pipes of the network and the amount of pheromone trail on all arcs 
are initialized to some proper value at the start of the computation. 
2- A transition rule is used at each pipe to decide which diameter is selected for the pipe under 
consideration. Once the diameter of the current pipe is selected, the ants move to the next pipe and the 
solutions are incrementally created by ants as they move from one pipe to the next. This procedure is 
repeated until all pipes of the network are covered. The transition rule used here is defined as follows [6]: 
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Where )t,k(pij  is the probability that the ant k selects  diameter φj for the ith pipe at iteration t; )t(ijτ  is 
the concentration of pheromone on arc (i,j) at iteration t; )leuc(

1
ij

ij ×=η is the heuristic value 
representing the cost of choosing option j for pipe i, and α and β are two parameters that control the 
relative weight of the pheromone trail and heuristic value referred to as the pheromone and heuristic 
sensitivity parameter, respectively. The heuristic value ijη is analogous to providing the ants with sight 
and is sometimes called "visibility". This value is calculated once at the start of the algorithm and is not 
changed during the computation. The role of the parameters α and β can be best described as follows. If α 
= 0, the cheapest diameters are more likely to be selected leading to a classical stochastic greedy 
algorithm. If, on the contrary, β = 0, only pheromone amplification is at work, leading to the pre-mature 
convergence of the method to a strongly sub-optimal solution [6]. A trade-off between the heuristic value 
and trail intensity therefore appears to be necessary. 
3- Eq. (2) is used to calculate the total cost of the trial solutions generated. The generation of a complete 
trial solution and the calculation of the corresponding cost is called a cycle (k). The calculation of the total 
cost of a trial solution requires the determination of the constraint violation by the solution. This in turn 
requires that the distribution of nodal pressures and pipe velocities in the network are known, and can be 
readily obtained by a steady state analysis of the network using any available pipe network simulation 
code [14]. This, however, requires the definition of some parameters in the Hazen-Williams equation 
which states the relation between head loss and flow in each link. Here, a Hazen-Williams formula of the 
type 

γηµ −= D)
C
Q(Lh f                                                                      (4) 

 
is used, in which L = length of a pipe; Q = flow rate of a pipe; C = Hazen-Williams coefficient, D = 
internal diameter of a pipe and  η, γ, and µ are empirical constants. The value of these parameters will be 
discussed later when presenting the results of the model for the benchmark problem. 
4- The pheromone is updated after Steps 2 and 3 are repeated for all ants and, therefore, generation of the 
m trial solution and the calculation of their corresponding cost, referred to as an iteration (t). The general 
form of the pheromone updating used here is as follows [6]: 

 
ijijij )t()1t( τ∆ρττ +=+                                                         (5) 

 
where )1t(ij +τ is the amount of the pheromone trail on option j of the ith decision point , i.e. arc (i,j), at 
iteration t+1; )t(ijτ concentration  of pheromone on arc (i,j) at iteration t; 10 ≤≤ ρ  is the coefficient 
representing the  pheromone evaporation and ijτ∆  is the change in the pheromone concentration 
associated with arc (i,j). The amount of pheromone trail )t(ijτ  associated to arc (i,j) is intended to 
represent the learned desirability of choosing option j when in decision point i. The pheromone trail 
information is changed during the problem solution to reflect the experience acquired by ants during 
problem solving. The main role of pheromone evaporation is to avoid stagnation, that is, the situation in 
which all ants end up doing the same tour. In addition, evaporation reduces the likelihood that high cost 
solutions will be selected in future cycles. 

Different methods are suggested for calculating the pheromone change. The method used here is 
originally suggested by Stutzle and Hoos [11] in which only the ant which has produced the best solution 
of the iteration is allowed to contribute to pheromone change. 
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best
ijij τ∆τ∆ =                                                                      (6) 

 
The amount of pheromone change is usually defined as [6]: 

 








=

otherwise                   0

k antby  chosen is j)(i, arc if          
)(f

R
kk

ij ϕτ∆                             (7) 

 
where k)(f ϕ  is the cost of the solution produced by the ant k, and R is a quantity related to the 
pheromone trail called the pheromone reward factor. The amount of pheromone added to each of the 
options during a cycle is a function of the cost of the trial solution generated. The better the trial solution, 
and hence the lower the cost, the larger the amount of pheromone added to the option. Consequently, the 
solution components (diameter options) that are used by the best ant and form a part of the lower cost 
solution receive more pheromone and are more likely to be selected by future ants. This choice clearly 
helps to direct the search towards good solutions.  

At the end of each iteration, each ant has generated a trial solution. The pheromone is updated before 
the next iteration starts. This process is continued until the iteration counter reaches its maximum value 
defined by the user. 

The application of ACO as defined earlier requires a priori defining a number of parameters such as 
evaporation coefficient, pheromone and heuristic sensitivity parameter, pheromone reward factor and the 
initial value of the pheromone trail. The performance of the ACO algorithms is very sensitive to the values 
of these parameters which are problem dependant and are usually chosen in a trial and error fashion for 
each problem. This is one of the main shortcomings of the ACO algorithms compared to other 
evolutionary search methods such as GAs, where at least some common rules exist for defining the proper 
value of the parameters required. This is further complicated when attempting ACOAs for the 
optimisation of constrained problems such as pipe network optimisation problems where a penalty 
parameter has to be defined.  

The pheromone reward factor R and the initial value of the pheromone concentration are interrelated. 
The pheromone reward factor has to be defined in such a way that the pheromone change defined by Eq. 
(7) is of the same order as the pheromone concentration during the computation process and in particular 
at the early stages of the computation. A very high value of the reward factor R leading to a higher value 
of the pheromone change compared to the pheromone concentration would lead to a rapid increase in the 
pheromone concentration of the options which have been chosen by ants in the early stages of the process. 
These paths will then dominate the ant decision table leading to the so-called premature convergence of 
the method. On the other hand, a high value of the pheromone trail compared to the pheromone change 
results in a very small change in the pheromone concentration of the options chosen by ants, hindering the 
convergence of the algorithm if it occurs at all. The values of pheromone concentration and pheromone 
change will now be of the same order in the early stages of the computation, giving ants enough chance to 
explore the search space. Here a value of unity is selected for the reward factor R to reduce the cost of 
sensitivity analysis. This, however, requires the careful initialisation of the pheromone trail to balance 
between convergence characteristics of the method and the quality of the final solution obtained. It can be 
shown that the pheromone trail update rule defined by Eq. (7) will lead to an analytically maximal trail 
strength calculated by a geometric series as [11]: 

 
 

)(f
1

optmax ϕ
τ =                                                                        (8) 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Application of ant algorithm to pipe… 
 

October 2007                                                                            Iranian Journal of Science & Technology, Volume 31, Number B5 

493

Since the value of the reward factor is set to unity as noted earlier, here opt)(f ϕ  is the cost of the optimal 
solution of the underlying problem.  It can be seen that setting the initial pheromone trail to the 
pheromone change calculated at the first iteration   

)(
1

bestf ϕ
will lead to a logical balance between current 

pheromone trail strength and the pheromone change, in particular at the beginning of the search 
preventing premature convergence to suboptimal solutions. 

When an elitist strategy is used for pheromone updating, early stagnation of the search may occur. In 
this situation the trail strength on one of the options available at each decision point is so high compared 
to the other options that the same option is nearly always chosen by the ants. No better solutions are, 
therefore, found by the ants and usually the best found solution is constructed by most of the ants. Stutzle 
and Hoos [11] introduced an MMAS method to have a more direct control over the influence of the 
pheromone strength. They introduced two limiters for the pheromone trail to prevent early stagnation of 
the search at suboptimal solutions. These limiters act as the upper and lower bounds of the pheromone 
trail strength. The upper bound as defined in Eq. (8) was found to be of lesser importance, while the lower 
limit played a more decisive role. Stutzle and Hoos [11] introduced the following formula for the 
calculation of the lower trail strength limit based on some analytical arguments: 

 

 
)1(max

min dec

dec

np
p−

=
τ

τ  

(9) 
n/1bestdec )p(p =  

 
where minτ  represents the lower limit for the pheromone trail strength; decp is the probability that an ant 
constructs each component of the best solution again, and bestp  is the probability that the best solution is 
constructed again. This argument is based on the strong assumption that around good solutions other good 
or even better solutions are located. This is definitely the case for TSP, the problem for which the MMAS 
is proposed as it is shown that reasonably good tours are located in a small region of the search space. 
This is not necessarily true for the pipe network optimization problem in which good solutions may be 
surrounded by costly infeasible solutions. In the next section the application of the method on some 
benchmark problems in the literature is addressed. 

 
3. TEST PROBLEMS 

 
The first problem to be considered is a two-loop network with 8 pipes, 7 nodes, and one reservoir shown 
in Fig. 2 [2]. All the pipes are 1,000-m long and the Hazen-Williams coefficient is assumed to be 130 for 
all the pipes. The minimum nodal head requirement for all demand nodes is 30 m. There are 14 
commercially available pipe diameters as listed in Table 1, while the nodal demands and elevations are 
shown in Table 2.  Figure 3 shows the variation of the global best solution cost against the number of 
network analysis required for different values of bestp . All methods have been capable of locating the best 
ever obtained solution of 41900 within 5100 evaluations. The best performance was shown with bestp = 
1.0, leading to faster convergence to the optimal solution in only 4700 evaluations. This compares 
favorably with the ~250,000 evaluations required by the method of Savic and Walters [2], ~53,000 
evaluations required by the method of Cuncha and Sousa [15], and 9,201 evaluations required by the Fast 
Messy Genetic Algorithm of Boulos et al. [4] to get the least cost solution of 419,000 units. Figure 4 
shows the effect of different values of the bestp on the number of ants constructing the iteration best 
solution at each iteration. The number of ants following the foot steps of the best iteration ant is very low 
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at the beginning of the computation where the pheromone trail strength is more or less the same for all the 
options available at different decision points. As the pheromone trail built up on the options constructing 
the best solution, more ants follow the same path creating the same solution. This explains the sudden 
increase in the number of best solutions generated as the computation proceeds. For bestp =1, representing 
no trail limit, the number of ants creating the best solution at each iteration rises quickly to 100 percent, as 
expected, while this number decreases with decreasing values of  bestp . For smaller values of bestp , the 
lower trail limit defined by Eq. (9) has a higher value and, therefore, comes into play sooner than that for 
higher values. For this test problem, however, the use of a lower trail limit leads to slower convergence 
since the method is able to locate the optimal solution before stagnation occur. It should be noted that 
these experiments are carried out with hydraulic parameter values η = 1.85, γ = -4.87, µ = 10.5088 for D 
in meters and Q in cubic meters per second [2, 4] and ACO parameter values m=100, ρ =0.9, α =1, 
β =0.1 and R=1 as explained before. A sensitivity analysis was only carried out to find the value of 
β =0.1 assuming fixed values of ρ =0.9 and α =1. 

Fig. 2. Two loop network 
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Fig. 3. Variation of the global best solution cost against the number of 

 network analysis for different values of bestp  (Test 1) 
 

The second test problem concerns the rehabilitation of the New York City water supply network with 
21 pipes, 20 demand nodes, and one reservoir as shown in Fig. 5 [1]. The commercially available pipe 
diameters and their respective costs are listed in Table 3, while the pipe and nodal data of the existing 
network are shown in Table 4. The Hazen-Williams coefficient is assumed to be 100 for all the pipes [1]. 
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Figure 6 shows the variation of the global best solution cost against the number of network analysis 
required for different values of bestp using the same values of hydraulic and ACO parameters used before 
except for the new value of  β =0.3. This example clearly shows the effect of the lower trail limit on the 
convergence characteristics and the quality of the final solution obtained. For the highest possible value of 

bestp =1, the method converges very quickly to a sub-optimal solution of 38.8M$ in just 5200 evaluations. 
For smaller values of bestp =0.6 and bestp = 0.3 the quality of the solution is improved to 37.6M$ and 
37.1M$ with the latter representing the best ever solution obtained for this problem. These solutions are, 
however, obtained at the expense of slower convergence and within 8500 and 7000 evaluations, 
respectively. Decreasing the value of bestp to a smaller value of 0.15 shows an adverse effect on the 
quality of the solution obtained in the 9100 evaluation with a cost of 37.6M$. These solutions compare 
favorably with the ~1,000,000 evaluations required by the method of Savic and Walters [2] and 37,186 
evaluations required by the Fast Messy genetic algorithm of Boulos et al. [4] to get the same solution of  
37.1M$. The variation of the number of best solutions created at each iteration shows the same behavior 
as that of the previous example as shown in Fig. 7. 

 

0

20

40

60

80

100

0 5000 10000 15000 20000
No. of Evaluations

N
um

be
r o

f A
nt

s 
co

ns
tru

ct
in

g 
th

e 
Be

st
 

So
lu

tio
ns

pbest=1.0
pbest=0.6
pbest=0.3
pbest=0.15

 
Fig. 4. The ratio of the best solution generated at each iteration 

for different values of bestp  (Test 1) 
 

Table 1. Cost data for the two-loop network 
 

Diameter (cm) 2.54 5.08 7.62 10.16 15.24 20.32 25.4 30.48 35.56 40.64 45.72 50.8 55.88
Cost (units/m) 2 5 8 11 16 23 32 50 60 90 130 170 300 

 
Table 2. Nodal demand and elevation data for the two-loop network 

 
Node Demand (m3 /h) Elevation (m) 

1 
2 
3 
4 
5 
6 
7 

---- 
100.0 
100.0 
120.0 
270.0 
330.0 
200.0 

210.0 
150.0 
160.0 
155.0 
150.0 
165.0 
160.0 

 
Table 3. Optimal solution obtained for two-loop network 

 
Pipe  1 2 3 4 5 6 7 8 
Diameter (cm) 45.72 25.4 40.64 10.16 16 25.4 25.4 2.54 
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Table 4. Pipe cost data for New York network  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Table 5. Pipe and nodal data for New York tunnel network 

 
 

As a final test we consider the same problem with the hydraulic constant parameters (η = 1.852, γ = -
4.871, µ = 10.669) for D in meters and Q in cubic meters per second, equivalent to  µ = 4.7279 for D in 
feet and Q in cubic feet per second, as used by Maier et al. [10]  to solve this problem using the ACO 
algorithm. The best solution of 38.64M$ was obtained with bestp =0.15 in the 18200 evaluation which is 
the best ever solution reported by Maier et al. [10] for this problem. The convergence characteristics of the 
method for different values of bestp is shown in Fig. 8, while the optimal diameters for duplicate pipes are 
shown in Table 7 and compared with other solutions in the literature. Table 8 compares the hydraulic 
grades at critical nodes of the network with that of Maier et al. [10]. The method of Maier et al. [10], 

Diameter Pipe Cost 
(inch) (mm) ($/ft) ($/m) 
36 (910) 93.5 (306.8) 
48 (1220) 134.0 (439.6) 
60 (1520) 176.0 (577.4) 
72 (1830) 221.0 (725.1) 
84 (2130) 267.0 (876.0) 
96 (2440) 316.0 (1036.8) 
108 (2740) 365.0 (1197.5 
120 (3050) 417.0 (1368.1 
132 (3350) 469.0 (1538.7) 
144 (3660) 522.0 (1712.6) 
156 (3960) 577.0 (1893.0) 
168 (4270) 632.0 (2073.5) 
180 (4570) 689.0 (2260.5) 
192 (4880) 746.0 (2447.5) 
204 (5180) 804.0 (2637.8) 

Pipe data Nodal  data 
Pipe Start node End node Length 

(m) 
Existing diameter 

(mm) 
Node Demand 

(l/s) 
Min. total head 
 (ft)              (m) 

1 1 2 3535.6 4570 1 reservoir 300       91.4 
2 2 3 6035.0 4570 2 2616 255      77.72 
3 3 4 2225.0 4570 3 2616 255      77.72 
4 4 5 2529.8 4570 4 2497 255      77.72 
5 5 6 2621.2 4570 5 2497 255      77.72 
6 6 7 5821.6 4570 6 2497 255      77.72 
7 7 8 2926.0 3350 7 2497 255      77.72 
8 8 9 3810.0 3350 8 2497 255      77.72 
9 9 10 2926.0 4570 9 4813 255      77.72 

10 11 9 3413.7 5180 10 28 255      77.72 
11 12 11 4419.6 5180 11 4813 255      77.72 
12 13 12 3718.5 5180 12 3315 255      77.72 
13 14 13 7345.6 5180 13 3315 255      77.72 
14 15 14 6431.2 5180 14 2616 255      77.72 
15 1 15 4724.4 5180 15 2616 255      77.72 
16 10 17 8046.7 1830 16 4813 260          79.25 
17 12 18 9509.7 1830 17 1628 272.80      83.15 
18 18 19 7315.2 1520 18 3315 255      77.72 
19 11 20 4389.1 1520 19 3315 255      77.72 
20 20 16 11704.3 1520 20 4813 255      77.72 
21 9 16 8046.7 1830    
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however, required six parameters α, β, ρ, R, pherP  and PC to be determined before the main calculations in 
which α, β, ρ, R are as defined in this paper and pherP  and PC (the same as αp used here) are penalty 
parameters used for pheromone change and total cost calculation, respectively. This, of course, requires a 
huge amount of calculation in addition to the computational effort required to solve the problem. This 
should be compared with only three free parameters αp , β and ρ used in the presented method since the 
value of α and R was assumed equal. The only sensitivity analysis required before the main calculation 
was to determine the proper value of β, since the previous experiences suggests a value of around 0.9 for ρ 
which was successfully used here. 

 
Table 6. Optimal pipe diameters obtained by different methods for New York  network. (Test 2) 

 

 
 

  
Fig. 5. New York tunnel network 

Present work Savic and Walters (1997) Boulos et al. (2000) Pipe 
 (inch)    (mm) (inch)     (mm) (inch)        (mm) 

7 108    (2740) 108    (2740) 108    (2740) 
16 96      (2440) 96      (2440) 96      (2440) 
17 96      (2440) 96      (2440) 96      (2440) 
18 84      (2130) 84      (2130) 84      (2130) 
19 72      (1830) 72      (1830) 72      (1830) 
21 72     (1830) 72     (1830) 72     (1830) 
Cost (106$) 37.13 37.13 37.13 
Evaluations 7,000 ~1,000,000 37,186 
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Fig. 6. Variation of the global best solution cost against the number of 

    network analysis for different values of bestp  (Test 2) 
 

 
Fig. 7. The ratio of the best solution generated at each iteration 

for different values of bestp  (Test 2) 
 

Table 7. Comparison of hydraulic grades at critical nodes  for New York  network. (Test 2)  
 
 
 
 
 
 
 

 
Table 8. Optimal pipe diameters obtained by different ant algorithms for New York network. (Test 3) 

 
Present work Maier et al. (2003) Pipe 
(inch)    (mm) (inch)     (mm) 

7 144    (3650) 144    (3650) 
16 96      (2440) 96      (2440) 
17 96      (2440) 96      (2440) 
18 84      (2130) 84      (2130) 
19 72      (1830) 72      (1830) 
21 72     (1830) 72     (1830) 

Cost (106$) 38.64 38.64 
Evaluations 18,200 13,928 

Savic and Walters (1997) Present Work Node  
Min. Total Head 
(ft)              (m) 

HGL 
(ft)          (m) 

Excess 
(ft)           (m) 

HGL 
(ft)          (m) 

Excess 
(ft)           (m) 

16 260          79.25 260.16  (79.4) 0.16   (0.04) 260.16  (79.4) 0.16   (0.04) 
17 272.80      83.15 272.86   (83.2) 0.06    (0.01) 272.86   (83.2) 0.06    (0.01) 
19 255          77.72 255.21   (77.9) 0.21    (0.06) 255.21   (77.9) 0.21    (0.06) 
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Fig. 8. Variation of the global best solution cost against the number of 

    network analysis  for different values of bestp  (Test 3) 
 

Table 9. Comparison of hydraulic grades at critical nodes for New York  network. (Test 3) 
 

 
 

 
 
 
 

 
4. CONCLUDING REMARKS 

 
An ant algorithm for the optimisation of pipe networks has been presented in this paper. The relation 
between the pheromone change and initial pheromone strength is used for the initialisation of the 
pheromone trail at the start of the computation. The use of an elitist strategy is known to lead to the rapid 
stagnation of the ant algorithms leading to the suboptimal final solution of the method. The concept of 
limiting the minimum value of the pheromone trail strength is used to overcome this problem. This 
method, however, introduces an additional parameter, the probability of ants constructing the best found 
solution, to be known a priori. Numerical experiments were carried out on two benchmark examples to 
test the sensitivity of the method to the value of this newly introduced parameter. No conclusive 
conclusion regarding the proper value of the parameter could be drawn. A value in the range of 0.15-0.3, 
however, was found to lead to best performance of the method. The presented ant method using the 
proposed values of the parameter is shown capable of yielding the best ever solutions obtained for the 
examples considered.  
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