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Abstract— The issue of the new elastic terms discoveredénmionlinear dynamic model of an
enhanced nonlinear 3D Euler-Bernoulli beam is dised. While. the elastic orientation is
negligible, the nonlinear dynamic model governiagsion-compression, torsion and two spatial
bendings is presented. Considering this model, soeve elastic terms can be identified in the
variation of elastic potential energy in each bagdnotion equation, and in each transverse shear
force. Due to the new terms, each term of a bendination and a transverse shear force, finds a
counterpart in the other bending equation and wese shear force, but the equations remain
asymmetric. The new terms have arisen, since vamiaf strains and variation of elastic potential
energy are derived from exact strains and exacbrdeftions regarding considerable elastic
orientation, then the elastic orientation is negldc The new terms perish in the nonlinear 3D
Euler-Bernoulli beam theory, since elastic orieiotatis neglected first, then variation of strains
and variation of elastic potential energy are datifrom the approximated strains.

Keywords—3D Euler-Bernoulli beam theory

1. INTRODUCTION

Deriving a set of partial differential. equationsvgming the motions of a spatial beam is a pressigui
stage in many engineering-fields. This stage besomare complicated as the beam flexibility increase
due to the demands forsaving'more material angrftucing lighter structures.

Zohoor and Khorsandijou [1] have derived the boupd®nditions and the ten coupled nonlinear
partial differential motion equations of an enhahg®nlinear 3D Euler-Bernoulli beam with flying
support. They [2]have exposed the dynamic modal fbfing manipulator with two highly flexible lirk
within which the flexibility has been modeled siarilto that of [1]. The dynamic model in [2] inclide
sixteen coupled nonlinear partial differential natiequations along with the boundary conditionsyTh
[3] have derived the nonlinear dynamic model of abile robot with flexible links experiencing
considerable and negligible elastic orientationtlieir cross-sectional frames. Elastic orientatien i
considerable in long links and is negligible in gHmks. They [3] have derived the variation oastic
potential energy of long links of a spatial mobilexible robot that might be reduced to the fully-
enhanced variation of elastic potential energy nthe enhanced variation of elastic potential gner
both of which belong to short links.

In [1-3], when the elastic orientation of a crosst®n is negligible, the variation of the straield
and the variation of elastic potential energy agved from the exact strains and deformationsrcigg
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considerable elastic orientation, and then thdielasentation is neglected. As a result, some e&sgtic
terms have arisen in the variation of elastic piéenergy, in motion equations and in transvetsear
forces. The new elastic terms would perish in thelinear 3D Euler-Bernoulli beam theory [4], sirtbe
variation of strains as well as the variation afstiic potential energy are derived from the appnated
strains corresponding to negligible elastic origata Hiller [5] has considered only three elastegrees

of freedom for each link as an Euler-Bernoulli beamal inner constraints are assumed for the othee th
elastic coordinates including axial deformationi &al. [6] have found that the traditional deformation
field used for Euler—Bernoulli beams fails to prodwan elastic rotation matrix that is completegoond-
order in the deformation variables. They have psegoa complete second-order deformation field along
with the equations needed to incorporate the beaweirinto a graph-theoretic formulation for flexabl
multibody dynamics. They have presented two exasnpdedemonstrate the effects of the proposed
second-order deformation field on the responsefleixéble multibody system.

Novozhilov [7] has studied the deformation of tipirismatic rods of an arbitrary cross-section. He
has considered®1and 2° order approximations for displacement componeéfitaroarbitrary point of
cross-section, using Taylor-series expansionsrmdef the two-.components of the position vectothef
arbitrary point apparent in the cross-sectionaimfa Strain components are derived from these
approximated displacements.

An analysis of shear correction factors has beeniecaout by Okumus [8] for a homogeneous
polyethylene thermoplastic cantilever beam whicheisforced by steel fibers with a rectangular sros
section. It has been shown that an applied sheee foroduces extension-shear coupling. A linear and
non-linear bubble finite strip method of analysiashbeen used by Azhari [9] to study the local,
distortional and lateral buckling monosymmetricgiains under pure bending.

The present paper highlights a verification of fgparding the nonlinear dynamic model of an
enhanced nonlinear 3D Euler-Bernoulli beam. Gedmetnlinearity of an enhanced nonlinear 3D Euler-
Bernoulli beam with circular cross-section..is takiemo consideration, and material nonlinearity is
neglected. The nonlinear dynamic‘model of the beagomposed of the boundary conditions and four
coupled nonlinear partial differential equationseiovension-compression, torsion and two spatial
bendings of the beam, whose elastic. orientationamesnnegligible. Although the elastic orientatian i
negligible, two new elastic terms can be identifiedhe variation of elastic potential energy, ecke
bending motion equation and in each transverse $biez.

A justification is made for the necessity of theéstence of the new elastic terms in the two coupled
nonlinear partial differential bending equationd @amthe transverse shear forces of an enhancdthean
3D Euler-Bernoulli beam. Due to the new terms, eacim in a bending equation and a transverse shear
force has found a_counterpart in the other bendmgation and transverse shear force, but the eqsati
are still asymmetric. The bending motion equatiand transverse shear forces derived in accordaitice w
the nonlinear 3D Euler-Bernoulli beam theory [4¢ asymmetric, and some terms in a bending equation
and transverse shear force do not have a counténptive other bending equation and transversershea
force.

The new terms have arisen, since the variatiorirains and the variation of elastic potential egerg
are derived from exact strains and exact deformatomponents regarding considerable elastic
orientation, then the elastic orientation is neigldc They are lost in the nonlinear 3D Euler-Bethou
beam theory [4], since elastic orientation is neiglé first, then the variation of strains and tadation of
elastic potential energy are derived from the axiprated strains.

Some other new elastic terms that are not discusséklis paper can be revealed if the motion
equations are derived from the fully-enhanced viaraof elastic potential energy, or from the exact
variation of elastic potential energy before substin of the rotational elastic coordinates wir@ In
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the present paper the motion equations are defivedthe enhanced variation of elastic potentiargg
that is an inexact variation of the elastic po&nginergy within which the rotational elastic cdoates
have been substituted by zero.

2. NONLINEAR 3-D EULER-BERNOULLI BEAM

In this paper a slender beam undergoing tensiompoession, torsion and spatial bendings, is modeled
according to the nonlinear 3-D Euler-Bernoulli betmaory. So the beam cross-sections are assumed to
remain plane and perpendicular to its center lieire and after spatial elastic bending deflectibime
assumption of a plane cross-section during bengtimgies that the out-of-plane warping of the cross-
section has been neglected. Since the beam expesieglastic torsion beyond bendings and axial
deformations, the out-of-plane warping of crosgisecarises according-to Saint Venant's theory of
torsion, unless the cross section is circular. &twee, to comply with the Bernoulli's hypothesigjyo
circular cross-sections are considered in this pdpshould be noted that spatial bending induoesion,
even in isotropic beams.

In-plane warping of the cross-section is negledtethis paper, so the Poisson's ratio is substtute
with zero in the formulations. In order to prepareecessary and sufficient condition for neglectimg
plane and out-of-plane warpings of the cross-sectite components gf, shown in Fig. 1, are assumed
to be constant.

Fig. 1. Displacement field [1]; circular cross-sec

This paper emphasizes the new terms of the beamndgrmodel due to the geometric nonlinearity,
while neglecting the material nonlinearity. The tme&s assumed to be made from a linearly elastic
isotropic material with uniform density and crosstsonal area. It is straight before elastic defaion
and its cross-sectional frame undergoes largeielaséntation. As shown in Figs. 1-§, is the principal
frame of the cross-section within which the two nemits of cross-sectional area about tHeafd 3" axes
are equal. The coordinate reference frames aré-mgded orthogonal in Figs. 1-3, and their axes ar
marked by numbers to indicat8 2" and ¥ axes respectively.

Spatial elastic deformation of a cross-sectiorhmag by six coordinates along with two holonomic
constraints in Figs. 2-3. In Fig. 3, the lengthttef beam element iss before, anc(1+ €)As after elastic
deformation. Therefore one can write Eq. (1) and the axial strain of the centerline as Eq. (2).

February 2008 Iranian Journalf Science & Technology, Volume 32, Number B1
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In the left-hand-side illustration of Fig. 3 thegins of £, and F, coincide via translation to show
that the pose of the cross-section facg@ the deformed elsément relative to the crossisedacing s
in the undeformed element is determinedsay Av, Aw, o, B andy, whereas the pose @f relative to
F, is determined by, v, w, a, p andy. Pose is a short term instead of the positionaai®htation of a
frame.

Allsr Liaestie Defurmalion

Fig. 2. Six dependent spatial elastic coordinate3]{ circular cross-section
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Considering the two triangles in the left-hand-sidlestration of Fig. 3, the beam structural holamio
constraints, Egs. (3, 4), are derived to elimirtate superfluous coordinates, nametyand g. Therefore,
the nonlinear 3D Euler-Bernoulli beam is @ holonomsystem withu, v, w, andy as its independent
elastic degrees of freedom.
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Fig. 3. Two holonomic constraints among elastiordmates [1-3]; circular cross-section
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Exact elastic orientation is determined by the Ewleglesa, g, and y, which obviously have an
unchangeable sequence. This unchangeable sequenbedn mathematically interpreted by the fact that
the matrix multiplication is not commutative. Exaatastic orientation of the cross-section is déscti
nonlinearly by the elastic degrees of freedom in E), which is a rotation transformation matrix
projecting a vector fronk, onto F;. Due to the nonlinearity of Eq. (5R,,, R, R+ Ry, Ryys Ry Ry

Ry andr  are not converted intgw, -R,,» Ry -R, R, =R,0 Ryv —R,, andRr,, respectively by
replacingv with —-w and w with v. This is referred to as the formulation asymmeiyEq. (5) apart
from its matrix asymmetry.

(u’+1)/(e+]) v/(e+ ! w/( e L
R= —v'cow/r— W'(u'*—)sirv/(&)l ( u+'-)1 cq#—r W'v's'm{(r+e)1 ryiff +9o (5)
v'siny/r—w'(u '+]) 003//( e L —( u )13iv|/ + WV 'coy;f (rve)1 rog$ +9
Elastic angular velocity and normalized curvature given by Eqgs. (6, 7) according to the Kirchlsoff'
kinetic analogy [1-3]. Elastic angular accelerati®igiven by Eq. (8). The Egs.(6-8) are asymmedirice

Q,: Q,» Q. K,» Kyr Kyr Q0 Q @ndQ are not convertedinta ', -0,, Q,, k,» =k, k,» Q . -Q, and
Q, respectively by replacing with -w andw with v.

o=[e, o, o] = o dy+du Vv WT

(6)
et o v bl ] .
Q=[o, o Qz]T:[l 0 gfy+ C{u v 'W]T+t{'U' v "WT' (8)
where
~(e+Dw v/r (U'*LJ)(ef)w/'r 0
C:r(e]-l-jl)z -v (e+ 1 siny+ w'( u+ ) cog ( ut )i €)lsir Vw'ops— 2 1 o ©)

! 2

-V (e+1) coy/- w'( u+ ) siy ( ut )1 €)lcygs vw'sn ?r §in

3. EXACT STRAIN FIELD

Elastic displacement of a general point of the Beamedium is illustrated in Fig. 1, within whicheth
cross-section of the beam is assumed not to exmerim-plane and out-of-plane warpings. The exact
displacement field of the beam is given by Eq. (I@ich is an asymmetric formulation, singe, A,
anda, are not converted intgy, -, anda, respectively, by replacing with -w andw with v.

u-Y| v cosy+ u+l W siny [+2] V'sity- u'+1 w ‘cog
r e+l e+l

+—
r
u 0] 10 . -
A(s,)=| v|+R'| y|-| y|= v+i[(u'+ ]) co;v—\;—rll sig- }_Zr[( i )1 sivl+\(?wl cq% (10)
w z| |z

ro. r
W +y——siny+ zl — cos/—
ye+1 Y (e+1 ¥ %
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The linear part of the Green-Lagrange geometriairsttensor is taken into consideration. The exact
components of this strain are given by Eqgs. (1Dictw are asymmetric due to the nonlinearity and
formulation asymmetry of Eq. (5). As shown by Ed4), the strains' formulation is asymmetric, wiasre
the strain tensor is a symmetric matrix. The asytmynef the strains' formulation in Egs. (11) can be
verified by the fact thag_, ¢ ande , are not converted intg_, -¢,, and E4 respectively by replacing

v with —w andw with v.

X
+ l|l< (:0§z+1+u ’K +ﬂK’ sin
rox el ¥ r”
€ :V—'—X l+—u,K sin +L’ K +ﬂ|; cosy -z &K’ coq——v ,K +ﬂK, Sig
W= o Ty ST e T ro e’ (11)

. _ﬂ'_'_x -W'K, +TK, COSY L2 WK, =K, siny
“2 02 I+e ¥ e

Xy

g, =U+y VIK siny—l+u, K +W’K cosy
XX r X 1+e z r X

The motion equations of this paper and [1] are ickamed to-be valid for negligible elastic orientat;
but the variation of strains used in the variatrelastic potential energy must be derived from elxact
strains of Egs. (11). Then the elastic rotationafrdes of freedom are substituted with zero in the
formulations, some of which are given by Eqgs. ([{l23]. Some of the parameters become symmetric, as
the elastic rotational degrees of freedom; aep @ndy are substituted with zero. By replacingwith
-w andw with v in Egs. (12)e, R,,, R,» R, Ry, iRy Ryt Rypv Ryt Ryr Ky Ky K, 8K, @nd ak,
are converted inte, Ry ~Ry,» Ry =Ryt Ry =Ry Ryr =Ry Ry Kyn =K1 Ko 3K, and -k,
respectively, Butsk, is not converted int@gk, . As a result, the strains' variation and the vemaof
elastic potential energy and consequently the @mqstof motion, two coupled nonlinear partial
differential bending equations; i.e. Eqs. (26, &}l equations of transverse shear forces; i.e.(Bgs31)
will become asymmetric.

As the elastic rotational degrees of freedom abststuted with zerog,, Q0 Q0 Q, Q) QA
Dy Dy E4r € andg , are also converted intgy, Q0 Q0 Q1 Q0 Q0 Ay A, AL £y —E, and
£y respectively, by replacing with -w andw with v.

X

100
V=a=0 , w=B=0, vy=0, r=+u , e u , dedu , R=|lo1o
00 1
K=Y Ky=_W, . K, = v -, 6KX=V725W'+6V’ . (12)
1+u 1+ u (1+u'
1 I, " T , , 1 1. , . T
3K, = -V Oy —dw + '(W du +U5W) . K, = wdy+8v - (véu + USV)
1+u 1+ u I+ u ¥ ou

4. VARIATION OF ELASTIC POTENTIAL ENERGY

When the elastic rotational degrees of freedonsabstituted with zero, the variation of elasticguial
energy is given by Eq. (13), within which the stess are derived using Hooke's law for a lineadstet
isotropic uniform beam with a circular cross-setjd-3]. Poisson's ratio has been substituted nétio,
because in-plane warping does not exist.
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U°= .TJ.{TXX&XX * ZTXY&XV + ZTXZ&XZ} dAds=
0A (13)

L
J'{EAe6e+ Ek,k, + Ek 8Kk, + G2k,5k, +( E- G) Kx%rKyé v+( E g f(xrﬁé W'} d
0

The terms (14) that are the last two terms in titegrand of Eq. (13) would be lost according to the
nonlinear 3D Euler-Bernoulli beam theory, sinceaiss' variation therein are derived from the
approximated strain field of Eqgs. (15) concernirggligible elastic orientation. The inaccurate sisai
variation of Egs. (16) produces Eqs. (17) for thacturate variation of elastic potential energyhe
theory. The terms (14) improve the nonlinear 3DeE@Eernoulli beam theory.

K, K , y
+(E-G) Iy +(e- 0) B2y
r r (]_4)
€y =€— K, + XK € Z—EK z € =}K y €y =€,,=€,=(
XX z y 1 Xy 2 X ’ Xz 2 X ’ yy 7z yz (15)
1 1
O,y =0e— YK, + DK, &xyZ—EZSKX , &XZ:E WK, O, =0,,=d,,=( (16)
L
8U° = [{ EAedet Ek, 8k, + EK 3K, + G 2K;dK,} ds an
0

5. MOTION EQUATIONS

Four coupled nonlinear partial differential equatiogoverning tension-compression, torsion and two
lateral bendings of a beam with negligible elastientation are derived using Hamilton's princigieey
are more accurate than the motion equations ofnéinear 3D Euler-Bernoulli beam. Non-conservative
forces and moments that produce damping and egdgitms in the motion equations are neglected.

The variation of the elastic:potential energy of B@) is not exact, since therein the rotatiomasbte
coordinates have been substituted by zero. Equét®)nis substituted in Eq. (21) which is the Haanils
principle, and is differentiated by.the partialfdiential operations of Eqs. (18). Therefore theiomo
equations of this paper have lost some other eltatins that are not discussed here. They wouldapp
if the exact variation of elastic potential enevggre used instead of Eq. (13).

Equation (22) will result, if the time integratiof the variation of kinetic energy, i.e. Eq. (18)dahe
variation of the gravitational potential energg, iEq. (20), are substituted in Eq. (21) [1-3].

jFéu'ds: R;wj RBuds j & u'ds F o EF'+uj F' as)
jéTdt = ﬁ j -p&T8E dAdsdt=
0 00A (19)
el 1 , du ou|ls=L
ol (e -a"]14)|o 6y+{Ad'T—<(QT[I]—QT[I]Q)C>} & |las+(a[]-aT[]a)c| av|| Lot
010 0 ow ow ||s=0
3U? =gpA[0 © ]]J;(éd) ds 20)
J(;(éT—éUg—éUe)dt:O 1)
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t (L
j{j(AlawAzau FA DA W )ds+(816y+826u+ Bov+Bw+B AU +B §v'+T3§w)
oLo

s=L
dt=0
s= 0} (22)

The agent variables of Eq. (22) are introduced @y. £24-34). Four coupled nonlinear partial diffeia
Egs. (24-27) are the motion equations of an enlthnoalinear 3D short Euler-Bernoulli beam with a
fixed support. They govern the tension-compressionsion and two lateral bendings of a beam
experiencing negligible elastic orientation. E¢&1-27) should be solved under the boundary conditio
of Egs. (23) ab=0 ands=L.

(Blzy'zo or y=0) and (B=0 or v+ p and( B= 0 or ¥ )0 and ,B O or w)
and (TBZ:O or 0:() and(fgz V=0 or v':)O anc{]B; w0 or w')o (23)
The coupling among spatial bending, torsion andilaglastic deformation of an isotropic beam is
determined by the nonlinear partial differential E24-27). Therefore spatial bending induces torsind
extension in an isotropic beam. It should be ndled bending-induced torsion or axial deformatioa a
nonlinear phenomena and cannot be sensed in limedeling.

A, =26l -p(QT[I]-Q"[1]G)1 0.0] =0 (24)
where
QT ]-QT[1]0 = 1[ Q) (@+0:0,) (2.-2,2,)]
] l 2 2! '
A, =-pat+p((Q"[1]-QTI1Q)C) {0 |+EAu-EIf =1 ) =0 (25)
0 (1+u')
N o\ Vo L ' (26)
A =-pav+p((aTlil-a fila)c Va1 —X— ) —e [ LY+ YW g YW ) o
3 pPAv p<( [] [] )C> 0 (l+u')2 (1+ u,)3 (1+ U)Z (:H- u)’2
r O r K r rr r IY' Y’I
A, =-paw +p((QT[1]-07[Q)c ) o |-BI{ ) ~BI{ =Y ) 6l Y ) —gpA =0 27)

1 (1+ u')z (1+ u')3 (1+ u)z (3 u)’2

Equation (13) has twormore elastic terms than Eg), €ventually the additional elastic term in E26) is
the term (35), in'Eq. (27) is the term (36), in E8P) is the term (37) and in Eq. (31) is the t¢B8).
These new terms have improved the formulationdhefronlinear 3D Euler-Bernoulli beam theory. The
new terms have arisen, since the strains' variaiwhthe variation of elastic potential energydegved
from exact strains and exact deformation componergarding considerable elastic orientation, then t
elastic orientation is neglected. They are loghig nonlinear 3D Euler-Bernoulli beam theory [4hce
the elastic orientation is neglected first, thea #trains' variation and the variation of elastiteptial
energy are derived from the approximated strains.

Equations (24, 25) are respectively the motion g#guna corresponding to torsional and axial
deformation of the beam. Equations (26, 27) arentbion equations corresponding to spatial bending
deformation of the beam. Equations (28, 29) giwe tthisting moment and the axial force of the beam
respectively. In the Euler-Bernoulli beam theohg twisting moment and the axial force are respelgti
G21y and EAu'. Equations (30, 31) give the transverse sheae$oof the beam along th&'and the §
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9
axes of Fo respectively. In the planar Euler-Bernoulli bedmedry the transverse shear force is either
ENV' Or Elw''.

B, = -2Gly (28)
. ~ 1 V'2+W 2! (29)
B, =-p(Q"[I]-Q"[1]&)c|0|-EAU +EI _
0 (1+ u')
0 . , 0ot roor ’
B;=-p(Q"[I]-Q"[1]Q)c|1|+El Y Ve e Y g Y (30)
0 (l+ u') (1+ u) (1+ u) (B_ u)'
0 " | I L o
B, =-p(Q7[I]-Q"[1]@)c|o|+EI Y ) +EL LY S-E Y g VY (31)
1 (1+ u') 1+ u') (1+ u) 3+ u)'
B,=0
(32)
VII
B; =-El
(1+u')2 (33)
WII
B, =-El——
T () (34)

Equation (32) is always zero for circular crossises and small elastic orientation. Equations 38,

give, respectively, the bending moment of the bedout the 3 and the 2 axes Osto- In the planar
Euler-Bernoulli beam theory the bending momenttisee EIv' ' or Elw' .

(G-B)I ( 1V+V: )2 (35)
(E-G)1 ( lvu: 52 (36)

(E-G)1 1y+m;)2 (37)
(G-§) |(1+u)2 (38)

6. CONCLUSION

The set of four nonlinear partial differential ejoas of motion of a spatial beam is exposed.
Twisting, tension, compression and spatial bendipfgan isotropic beam are nonlinearly coupled
even if the elastic orientation is small.
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New terms have arisen in the formulations, sinee dtrains' variation and the variation of elastic
potential energy are derived from exact strains exatt deformation field regarding considerable
elastic orientation, then the elastic orientatisméglected. They are lost in the nonlinear 3D Eule
Bernoulli beam theory [4], since elastic orientatie neglected first, then the variation of straansl

the variation of elastic potential energy are detifrom the approximated strains regarding small
elastic orientation. The additional elastic terntip (26) is the term (35), in Eq. (27) is the tdB8),

in Eq. (30) is the term (37) and in Eq. (31) is téwem (38). The new elastic terms (14, 35-38) antou
for the enhancement of the nonlinear 3D Euler-Beltnbbeam theory. As far as the accuracy of
formulation is important, the nonlinear terms, udihg the new elastic terms (35-38), should be
considered, even if the elastic orientation is igdgke.

Due to the existence of the new elastic termséntdio coupled nonlinear partial differential berglin
equations and in the equations of transverse $beass, each term in a bending Eq. (26 or 27) and i
a transverse shear force Eq. (30 or 31) has fowndiaterpart in the otherbending Eq. (27 or 2@) an
in the other transverse shear force Eq. (31 or S0ne of the formulations become symmetric as the
elastic rotational degrees of freedom; ie. g and y/are substituted with zero, but the motion
equations and transverse shear forces remain adyimmehis is due to the fact thagk  is
asymmetric and causes the strains' variation aadvdhniation of elastic potential energy to remain
asymmetric. As a result, the coupled nonlinearigladifferential bending equations and equations of
transverse shear forces, i.e. Equations (26, 273B0will become asymmetric. By replacingwith

-w andw with v in these equations, it can be verified thaf, A,, B, and B, are not converted
into A,, -A,,B, and-B, respectively.

The bending equations and transverse shear forméged in accordance with the nonlinear 3D
Euler-Bernoulli beam theory [4], ‘are asymmetric aswime terms in a bending equation and
transverse shear force do.not+have a counterpaheimther bending equation and transverse shear
force. It can be verified by excluding the new terf85-38) from the Egs. (26, 27, 30, 31)

Some other new elastic terms that are not discurdis paper can be revealed if Eq. (21) is d=tiv
from the fully-enhanced variation of elastic potehenergy, or from the exact variation of elastic
potential energy before the substitution of thetiohal elastic coordinates with zero. In this pape
Eg. (21) and the:motion equations are derived filoenenhanced variation of elastic potential energy,
namely Eg. (13), which is not the exact variatidnetastic potential energy, since therein the
rotational elastic coordinates have been subdtitbiezero. As a result, the mentioned terms have
vanished.

If u is assumed to be small and the nonlinear termth@fEqgs. (24-27) are eliminated, then
(QT[l]_QTMQ) will be approximated by[2ly 0 o and the well-known Eqgs. (39) appear.
Equations (39) governs the torsional, longitudiaatl two lateral vibrations of a uniform Euler-
Bernoulli beam. Each individual equation of Eq®)(3 valid for small elastic rotation angle, blét
set of Egs. (39) cannot model the three dimensidlexibility of a beam, even if the elastic
orientation is negligible.

I Jrr

A, =2Gly '-p2ly=0, A,=-pAu+EAu'=0, A,=-pAv-Elv =0, A,=-gpA-pAW-Elw =0
(39)

Equations (28-31, 33-34) are reduced to Egs. #d)dives the twisting moment, axial force, tramsee
shear forces and bending moments of the beam.
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rer 1=

B,=-G2ly , B,=—-EAu' , B,=+EW''', B,=+Ew ', B,=—-EWv ,''B,=-Elw (40)

NOMENCLATURE
A cross-sectional area
elastic displacement vector sffrom B that is projected ontg, ; It is equal toysg+s ¢s) v sy

e axial strain of centerline

R, inertial reference frame having 4 axis in the opposite direction of gravity.
K cross-sectional frame after elastic deformatidmsTs a curvilinear coordinate frame havingsbaXis tangent
to the curve created by cross-sectional area center

E cross-sectional frame before elastic deformation

I, 21 second moment and polar moment of a circular esestional area

2000
[|] area tensor with respect fp; It is equal to:; 0 1 0
0 01

L length of the beam before elastic deformation

position vector olg from S projected ontcr.; It is equal to:[o y Z]T

p
0 -z vy
p z 0 0
-y 0 O
R elastic rotation transformation matrix projectmgector fromr, onto F;; It is equal to:

1 0 0 coP(s) 0~ sif( st cof ¥t sif )st
0 cosy(s}) siy( st 0 1 0 - s 3t b st

0 -siny(s,) cog( s)t|| SB( 9t 0 BE F, 0 0

agent variable; It is equal tW

=

S center of cross-sectional area after elasticrdefton
S center of cross-sectional area before elastiordeftion
S Lagrangian coordinate denoting distancesdfom B before deformation

u elastic axial deflection & along the T axis of R

v elastic bending deflection gt along the ?' axis of R

w elastic bending deflection &t along the % axis of R

y,z two components of position vector of a point apphin the cross-sectional frame

a so-called elastic bending rotation angleSaabout the § axis of Fs (1*" Euler angle)

B so-called elastic bending rotation angleSaabout the %' axis of the updated, by a (2" Euler angle)

y so-called elastic twisting angle gtabout the T axis of R (3Y Euler angle)

5  [su &v ow]

density
o] general point of the beam cross-section in Fig. 1

°
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Q,

0o -9, q , T
o -a | Withadualvecton =[qo, o, o,]
-0y oy 0

9
il
9
il
REFERENCES

Zohoor, H. & Khorsandijou, S. M. (2007). Enhanceshimear 3D Euler-Bernoulli beam with flying suppar.
Nonlinear Dynamics, Volume 51, Numbers 1-2 January, 2008, pp 217-230

Zohoor, H. & Khorsandijou, S. M. (2007). Dynamic deb of a flying manipulator with two highly flexiel
links. J. Applied Mathematical Modelling, available online.

Zohoor, H. & Khorsandijou, S. M. (2007Mlonlinear dynamic analysis of a spatial’ mobile flexible robot. PhD
Thesis, School of Mechanical Engineering, Shariiversity of Technology.

Nayfeh, A. H. & Pai, P. F. (2004Linear and nonlinear structural mechanics. Wiley Series in Nonlinear
Science, John Wiley & Sons, Inc., Hoboken, Newelers

Hiller, M. (1996). Modelling, simulation and contrdesign for large and heavy manipulatdrebotics and
Autonomous Systems, Vol. 19, pp. 167-177.

Shi, P., McPhee, J. & Heppler, G. R. (2001). A deiation field for Euler—Bernoulli beams with apgations to
flexible multibody dynamicsMultibody System Dynamics, Vol. 5, No. 1, pp. 79-104.

Novozhilov, V. V. (1999)Foundations of the nonlinear theory of elasticity. Unabridged Dover republication of
the work published by Graylock Press Rochester, MB3, pp. 198-217.

Okumus, F. (2004). An analysis of shear correcfactors in a thermoplastic composite cantileverniea
Iranian Journal of Science and Technology, Transaction B: Engineering, Vol. 28, No. 4B, pp. 501-504.

Azhari, M. (2000). Stability of - monosymmetric I-bbea using the bubble finite strip methdcanian Journal of
Science and Technology, Transaction B, Engineering, Vol. 24, No. 1, pp. 23-33.

Iranian Journal of Science & Technology, Volume 3Rumber B1 February 2008



