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Abstract— The rapid growth of space utilization requires stamction.and maintenance of space
structures and satellites in orbit that, in turabstantiate the. application of robotic systems in
space. In this paper, a near-minimum-time optin@itol law is developed for a rigid space
platform with flexible links such as manipulatosnlar panels and stabilizing booms during an
orientating maneuver with a large angle of rotatidhe time optimal control solution for the
rigid-body mode is obtained as a bang-bang functiod applied to the flexible system after
smoothing the control inputs to avoid stimulatiohtloe flexible’'modes. This will also reflect
practical limitations in exerting bang-bang actudiurces/torques, due to delays and non-zero
time constants of existing actuation elements. Jineothness of the input command is obtained
by reshaping its profile based on consideratioaddfitional derivative constraints. The platform is
modeled as a linear undamped elastic system telisyan appropriate model for the analysis of
planar rotational maneuvers. The developed cotémlis applied on a given satellite during a
slewing maneuver, and the simulation results shbat the modified realistic optimal input
compared to the bang-bang solution goes well viighpractical limitations and also alleviates the
vibrating motion of the flexible appendage, whielveals the merits of the new developed control
law.
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1. INTRODUCTION

Extending the life of space systems, and therefedeicing the associated costs, will require extensi
inspection, assembly and. maintenance capabiliiexhit. Therefore, it is expected that robotic ides

will play a more important role in future missioifi$]. In order to control such systems, it is esisé¢iio
develop a proper. kinematics/dynamics model forsystem that has been studied under the assumgtion o
rigid elements [2-5], and elastic elements [6-8)jefie have also been various studies on the nonlinea
control problem of such systems with both rigid &#ledible elements, [9-14].

Tackling time limitations in space rendezvous, thgtimal control with a time minimization
constraint is of main importance. It should be ddteat high speeds, in turn, might stimulate th&tesy
flexible modes, which could drastically affect tbentrol system performance. Space projects invglvin
large structures, satellites with antennas or spdenels, stabilizing boongnd robotic manipulators are
examples where one should consider achieving ramdeuvers without stimulating flexible modes.
Therefore, the minimum-time optimal control for thigid mode and n flexible modes has become the
focus of several articles, [15-17]. The time-optirantroller is obtained by solving the state anestate
equations, considering Ponteryagin’s minimum ppleci The bang-bang type of control causes spillover
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effects that may induce high residual flexural ggedue to instantaneous switching in actuating
forces/torques. Using an approximation routinetfiar bang- bang input with the objective of elimingt
the sudden changes at switching times, a smootidrat input can be obtained, [18-19], where a near
minimum time optimal solution is obtained basedconstrained Ponteryagin's principle. While in d rea
implementation this is of great importance, unfodiely this approach is not able to thoroughly stite
input based on realistic actuation capabilities.

In this paper, to suppress and ideally eliminate Wbration of elastic appendages of a space
platform, a preshaping method is presented whishlt® in a near minimum time optimal controller.
Therefore, the optimal control problem is solveddonstrained parameters optimization, which yields
directly switching times. To this end, a near-minimtime optimal control law for a rigid space ptath
with flexible links during an orientating maneuwgith a large angle of rotation is developed. Timeeti
optimal control solution for the rigid-body modeoistained as a bang-bang function. The obtainettaon
law is applied to the flexible system after smooghthe control inputs to reflect practical limitais in
exerting bang-bang actuator forces/torques. Theo#mess of the input.command is obtained by
reshaping its profile with the first and seconddiderivatives constraints. The assumed modes mé&hod
the flexible appendage will be used where the EBEMoulli beam model is adopted. Based on the
obtained smooth control functions, the switchinges are obtained bgonverting the optimal control
problem into a constrained parameters optimizaposblem which will be solved numerically. The
developed control law is applied on a given sdéellihich consists of two elastic panels, duringeaing
maneuver. The first five flexible modes are congdein the simulated model, whereas a single torque
actuator is located on the central rigid body. Task is to rotate the system by a certain angular
displacement in minimum time. The simulation reshow that the developed realistic optimal input
compared to the bang-bang solution goes well vighgractical limitations and can successfully aantr
the end-point motion of the flexible appendages.

2. EQUATIONS OF MOTION

In this section, the dynamics of the slewing fléxilspacecraft is investigated. The assumed modes
method for the flexible appendage will be usedhwib structural damping, where the Euler-Bernoulli
beam model is adopted. The control actuator is feddes a torque generating deviadt), acting on the
main body. Since the slewing maneuver is of re#dyivshort length and duration, microgravity and
dynamical effects due to orbital mechanics areigibge, compared to the control torque. Consideldng
rigid central body rotating in inertial space, witbxible appendages, it is assumed that the flexileam
performs only planar.motion as shown in Fig. 1.nfea (X X, X3) and (X X, X3) denote an inertial
(orbital) frame and a body-fixed coordinate, whéd,,X ,,X ;)and (X,,X,,X,) are unit vectors of
these frames, respectively. The origins of botmé&s (O) are located at the center of the masseafntkin
rigid body, and x X , X are defined along the principal axes of the rigadly. The flexible beam is
clamped to the rigid body at point C, apds the angle of rotation of the rigid body. (ség.B).

The governing differential equations of motion da@ obtained from the extended Hamilton's
principle [20], described as

f(5L+5W)dt:0 (1.1)

where L represents the system Lagrangian as aretiffe between the system kinetic energy dénd

potential energy\()
L=T-V 1.2)
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Control of space platforms with flexible links ... 15
and ow is the virtual work done by the control torqu)
AN =098 u(t) 2

where 0@ is angular displacement due to control torq(®. Assuming Euler Bernoulli beam theory and
small deformation, the total kinetic energy of #ystem contains two terms corresponding to theralent
body and the appendages which can be written as:

1 .2 1., _ _

T==1,6%+—[ pV Vdx (3)

2 2
wherex defines the position of any point of an appendaile respect to point Czlis the inertia of the
rigid body along the; axis, g is the angular velocity of the spacecraft, L is ngth of the appendages,
£ is the mass per unit length of the appendagesyaddfines the velocity of any point of the appendage
which can be obtained as

V(X,t) =1, = T, +@xF 4)

where TN and T, denote the velocity in the inertial and body-fixegference frames, respectively.
w= 6?)?3 is the angular velocity of the main rigid body whiis equal to its body-fixed frame angular
velocity with respect to orbital frame, amd defines the position-vector of any point of thepempdage
which can be expressed as

F(x,t)=0+X)X,+y X, 5)

where y(x, t) is the elastic deformation (the latelisplacement) of the appendage at time t artdrdis X,
and b is the distance between the system centeass to the point of attachment (C). Substitutigg(g)
into Eq. (4) we obtain

V(%) = =6 +[(b+X)6+ 1%, 6)
Substituting Eq. (6) into Eq. (3)'leads to:
Nl 52 L2 ] L .
T—§I0+ p.foy dx +20p.|.0(b+x)ydx (7)
wherel is the total moment of inertia of the system, cateq as
— L
| =|3+2ij (x +b)2dx 8) (

It should be noted that higher order terms in Ef). Were neglected, since it is assumed that the
deformation of the appendage is small.
The total potential energy of the system under iE@ernoulli assumption [21], is:

V = [, El(y')dx ©)

where El is the uniform flexural rigidity of the pgndage, and/'' is the second partial derivative of y
with respect to x. The lateral displacement of paint on the appendage can be described by theigrod
of spatial functions (the mode shape), and harmiimie functions as follows:

Y= () ) (10)
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where ¢ (x) is called the mode shape, andt) describes the modal generalized coordinate foi-tte
mode, and n denotes the number of modes retaingtieirapproximation. Considering Eq. (9), the
substitution of Egs. (7) and (9) into Eqg. (1) le&m$he equations of motion in the following matiixm:

Mg +Kg =G u (11.2)

where M and K are the so-called mass and stiffness matricepecdsely, G is the control input
distribution vector,j is the second time derivative of generalized cimatésq. These parameters can be

partitioned as
Mgy M [O 0 } [1}
&
M= K= G= (11.2)
{Mqé’ MOJ 0 qu 0

where elements of the mass and stiffness matrieestdained as

My =1 =15+2p[ (x +b)dk (1p.
[Mggli =IMgli = pls(b+Xg(3 dx (12.2)

Mgqlij = Pl 4(¥%; (X dx (12.3)

[kegly = Pl ELg(X) @; (¥ dx (12.4)

where[[]; denotes the i-th element of the vedil, and[[]; denotes thdi, j) element of the matrik]] .
The mode shape functiog (X) for the appendage (fixed-free beam with lengtislgbtained as [21]:

¢(x) = (coshk;x - cosk x) - a;, (sinhk x - sink; x) (13.2)

sinhki L —sin ki L
ap = 13.2
: coshki L+ coski L ( )

The boundary conditions are considered as

0O,

+ A X Xi

o

r(x,t) ¢y "
X3 OZ
X2
Fig. 1. Spacecraft configuration
p0)=¢0)=¢'(L) =¢"(L) =0 (14)

The dynamics model of Egs. (11) for a flexible swaaft in a slewing maneuver is a suitable model fo
control analysis, [22], which is discussed next.
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3. OPTIMAL CONTROL DESIGN

Considering the system dynamics described by afdatear, undamped, ordinary differential equasion
such as Egs. (11), the control torque u(t) is gascantrol input which is normally bounded as:

Umax =U ) =u max (15)

The system described by Eqgs. (11) can be transtbimte the decoupled modal equations using the
eigenvalues and corresponding eigenvectors infoomatf the system:

7, +a)|2/7i =Q,u i=21--,n (16)

where 7, () is the i-th modal coordinateg; is the i-th modal frequency (i-th diagonal elemefit
eigenvalue matrix), and scalai, are defined as

O=[®, ®, .- DT =4G 71

where A is an nxn matrix with its columns being the correspondingeevectors, and n is the number
of modes considered in the control design. Eq. ¢48)then be written in the following matrix form:

n+An =du (18.1)
Where T T
o Moo=l , ®©KP=A , =Py (18.2)

It is desired to convey the system described by. E{8) from the initial conditions of
n(0)=[0 0 0 --- O], to thefinal conditions ofn(t;)=[6,0 0 --- O] subjected to the input constraints
(15) in minimum time, where 6, is the final angular position of the spacecrafthia slewing maneuver.
Therefore, the performance index for the optimalVall be as follows:

ts
J=di=t, 19)

where the initial time is taken as zero anid the given time for the maneuver. The rigid-bodyde can
be described by the first equation of Egs. (18}hia casew =0 and so we obtain

i, =®u * which can betransformto -~ &=du (20.1)

The boundary conditions are

6(0)=6(0)=6¢, )= 0

o) =6 200
Now, writing a state-space model for Eq. (20) yseld
X, = X,
X, =®,u (1)

where x, =@and x, =@ are the angular displacement and velocity of fiees platform, respectively. To
implement methods developed in the optimal conth&ory, [22], based on the performance index
described by Eqg. (19) and the dynamic equationdessribed by Egs. (21), the system Hamiltonian is
defined as

H =t +AX, +AX, =t +AX,+A Py (22)
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where A and A,are thecostate variables (or Lagrange multipliers). Using Pontryagin’s nnmim
principle to characterize the optimal solution, tdpdéimal control input is obtained as follows:

U (t) =, [It) 20 —t)]+1¢ )] (23)

where 1(t) is the unit step function, angdt) describes the well-known bang-bang solution fuum;t[22].
The control profile is characterized with a singleitching timet,. If this control input is applied to the
system as described by Egs. (11), its vibratioh lvélinevitable due to neglecting the flexible mad€o
eliminate this oscillating motion, one should elizie the sharp transitions of the bang-bang inpuihat
the energy transfer to the flexible modes is mimadi This is discussed in the next section.

4. REALISTIC OPTIMAL CONTROL DESIGN

In this section, the control input profile given By. (23) is approximated by a smooth and contisuou
profile throughout the entire maneuver, with theusgtion limits of +u, .. Furthermore, this will reflect
practical limitations in exerting bang-bang actudtwces/torques.in reality, due to delays and nerc
time constants of existing actuation elemefitgerefore, a realistic optimal (near-minimum tingehtrol
law is found that eliminates the jump-discontirestiof the input torque in order to reduce stru¢tura
vibrations. By this near-optimal approach, we cann&” the control profile in such a way that it
systematically trades off residual vibration wittetmaneuver‘time. To this end, the time derivative
constrains of the control input can be used. Inftllewing, two cases are considered as employireg t
first and second derivatives for reshaping the rabmtiput profile.

Case |. First derivative constraint of control inpu. The bang-bang input obtained in the previous
section is shown in Fig. (2a). An approximated oartput that is smoother than the bang-bang input
shown in Fig. (2b). This control input is obtainggadding another state variable to the first topémal
control problem which describes the first time dative of the control input, along with an additbn
constraint that confines the magnitude of this\@give to a given value. Consequently, the degffee o
smoothness of the generated control input is cthedrdy choosing an appropriate value for the maxim
value of the input first time derivative; [19]. Gaidering the new Hamiltonian for the three statéaldes,
and using Ponteryagin’s minimum principle, as Wil discussed in the next section, the modifiedrobnt
input is obtained as

Uy(t) = AU, 3 b, (t—t)) 1t -t,) (24)

where B-[1,-1,-1,1,1,-1], 1(t;} defines the unit step function,=0, &=t , and “a” is the slope of the
inclined lines‘which is the maximum value of theuhfirst time rate, and controls the smoothnesthef
modified input y(t). Therate of this control input is shown in Fjga), which certainly satisfies the given
limits.

Case II. Second derivative constraint of control iput. To make the control input smoother than the one
computed in the previous case, one could add afatate variable to the previous time optimal oaint
problem which describes the second time derivativeontrol input, along with an additional constttai
that confines the magnitude of the second rategioen value Fig. (2c). Following a similar procegas
described above, the modified control input in tidse is obtained as

u, =a“% S by, (t-t,)?1¢ -t,) (25)
=0

where b-[1,-1,-1,1,1,-1,-1,1,1,-1], 1(j}t defines the unit step function,=0, t,=t; , and “a’” is the
maximum value of the input second time rate. Tloese rate of (t) is shown in Fig. (3b).
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Fig. 3. Control input derivatives: a) First ratewf(t) , b) Second rate dfi,(t)

5. PARAMETER OPTIMIZATION PROCEDURE

In the previous section, the two modified contrgduts, 4 and 4, were obtained by reshaping the main
bang-bang optimal control input profile. In eaclsesathere are corresponding boundary conditionts tha
construct boundary-value problems. The performamdex for all cases is the one described by Eq). (19
The general constraints for all cases are as fatlow

flle(tf)_ef =0

Those foru,(t) are

and those fou,(t) are

February 2008

f,=x,(t;)=0

f,=u(t,)=0

fo=u,(t)-u,,=0

f5 = uz(tS) + umax= O

(26.1)

(26.2)

(26.3)

(26.4)

(26.5)
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f6 = us(tz) - umax = 0 (266)
f7 = u3(t5) + umax = o (267)

Then, the system Hamiltonian is introduced as
H=t +> Af (27)
where A, is the Lagrange multiplier for the i-th constragguationf;. By solving the following equations:

_OH

g, _ﬁ: i=1,..n (28.1)
oH .
9, =5 = i=1..n (28.2)
j

where n; and n; are the number of constraints and switching timespectively. Therefore, a set of
n +n, equations is obtained which can be solved to deter the switching times including the final
maneuver timet,, and the Lagrange multipliers. To solve the es&hbtl set of equations various
numerical techniques can be used. In this work;dsingple shoeoting (Newton) numerical method is
employed.
Solution procedure. The steps of the numerical procedure for the molutf the developed time optimal
and near-minimume-time optimal control laws are swarized below.
1) Find the bang-bang control input profile for thestimode (rigid body mode) using Eqg. (23).
2) To smoothen the bang-bang control profile, chodtdeecase | or I, whichever makes a smooth
transition between its steps in the form of aniimed line or a curve of order two, respectively.
3) Determine the constraints of the problem by conBidethe state equations and then convert the
optimal control problem into the parameter optirtimaproblem as discussed above.
4) Solve the parameter optimization problem by theohg (Newton) method.
Next, the developed control law is applied on aegisatellite during a slewing maneuver, and the
simulation results are discussed.

6. SIMULATION RESULTS

To illustrate the.numerical procedure, the slewimgneuver of a given satellite is considered. Tistesy
parameters and maneuver specifications are listthble 1. The flexible solar panels are consida®d
Euler-Bernoulli beams and simulated by the assumedes method, in which the first five modes are
retained in the dynamics model. A single torqueiatctr located on the main body (satellite bus)sisdu
to control the rotating maneuver. The natural fesgies ) , and the components o in Eq. (17), for
the first five modes, are given in Table 2.

Now, to defineu,(t), following the solution procedure the mid-maneueerd final times are
obtained as;£3.155s and+6.311s. The attitude of the rigid platform and éippendages are illustrated in
Fig. (4). If we apply this control torque to thesti flexible mode (second equation of Egs. (169, i
response is obtained as shown in Fig. (5a). As shinwhis figure, the amplitude of this vibratiabout
10 cm and may cause drastic damage. To alleviasevtbrating motion, the control inputl, (t) is
calculated and applied.
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Table 1. System parameters and maneuver speafisati

Parameter Value

Distance between O and C b 0.80m

Iy 132 Kgnt
Central body inertia I, 77 Kgn®

3 135 Kgnf
Solar panels length L 4m
Solarpanelsthicknes t 0.02n
Solarpanelswidth w 050 n
Solar panels material stiffness El 20.10Nm
Solar panels material density P 0.81 Kg/nt
Maximum torque avilabl u 20 N.ir
Total mass of spacecraft M 800 Kg
Total slewing angle 0, 20 deg

Table 2. Flexible modes specifications

I a,; (rad/s) ®,

1 0 0.0628
2 1:2355 -0.0328
3 6.9311 0.0092
4 19.3320 0.0043
5 38.2100 -0.0026

Following the presented solution procedure, switghiimes and the final maneuver time can be
calculated as

t;=1.0, £=2.69, $=4.694, t=6.389, t=7.689s

The attitude of the rigid platform and the appemsagre illustrated in Fig. (4). Solving for thesfir
flexible mode, the vibration of the endpoint of gqgpendages are shown in Fig. (5b). Compared twtha
u,(t), the amplitude has reduced by 2 cm. For more temuone can increase the value of “a” which is
taken equal to one:so far, but this results iraderoff between the maneuver time and the amplitdide
the vibration. The application af,(t) is a better approach for vibration suppression and maintaining the
maneuver time near its'minimum value. To this end, &ivigctimes and final maneuver time are obtained
as

t,=1.0,t,= 2.0, = 2.31,§= 3.31.t= 4.3
t,=5.31,t, = 6.31,§= 6.62,4= 7.62,& B8.6¢

The attitude of the rigid platform and the appendages are itledtia Fig. (4), and the vibration of the
endpoint of appendages are shown in Fig. (5c). As seen, the amplasdeduced to 5.3 cm, which
shows a drastic suppression of the endpoint vibration under thieadjopl of u,(t). Comparing the
maneuver duration in these cases, it can be seen that the applidai, (t) results in a 2.309s increase of
maneuver time (where=6.311s is the minimum duration obtained foy(t)), while reducing the
amplitude of appendage vibration by 55%.
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7. CONCLUSION

In this paper, a near-minimum-time optimal control law forigid space platform with flexible links
during an orientating maneuver with a large angle of instavas developed. The time optimal control
solution for the rigid-body mode was obtained as a bang-bangdaonetid applied to the flexible system
after smoothing the control inputs to reflect practical lirotz in exerting bang-bang actuator
forces/torques. The modified control input was obtained by addingiadditstate variables to the
original time optimal control problem to describe the derivativesontrol input, along with additional
constraints that confine the magnitude of the derivativeébeqiven values. The developed control law
was applied on a given satellite (called Sepehr) consistingvofefastic panels during a slewing
maneuver. The simulation results revealed that the develmgmdoptimal input compared to the bang-
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bang solution goes well with the practical limitations andvidtes the vibration of the flexible
appendages.
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