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Abstract– A modified predictive optimal linear control (MPOLC) algorithm is proposed for 
controlling the seismic response of elastic structures. This algorithm compensates for the time 
delay that occurs in real control applications by predicting the structural response in the modified 
optimal linear control equation. Since the environmental loads and disturbances are not measured 
during real-time control, they are not involved in the derivation of the control algorithm. Therefore 
the predictive optimal linear controller (POLC) is a proportional feedback of the only predicted 
current state. In the modified control algorithm (MPOLC), using a logical assumption, the 
immeasurable disturbances are considered in the state space equation and also in the derivation of 
the control algorithm, so that the controller is a combination of the control force in the last step and 
the proportional feedback of the predicted states in the last two steps. Hence, the control 
performance of the modified control algorithm is superior to that of the original one. The 
feasibility and effectiveness of the proposed control algorithm is verified through frequency-
domain and time-domain analyses, and compared with the original one. The tendon control system 
of a three-degree-of-freedom structure is illustrated to demonstrate the control effectiveness of the 
modified predictive control algorithm.           
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1. INTRODUCTION 
 

Structural control has been widely studied since the early 1970s as a new method of reducing structural 

damages and preventing collapses during earthquake excitations. Many analytical and experimental 

studies have been performed and have shown that significant response reduction during earthquakes can 

be achieved by adding an active control system to the structure [1-5]. However, some of these 

experimental results differ from those computed analytically, even in a well-controlled laboratory 

environment. One of the most important reasons is that time delay exists in all structural control systems. 

An important assumption is generally made in most numerical studies that all operation in the control 

system can be performed instantaneously. In reality, however, time has to be consumed in processing 

measured information, performing on-line computation, and executing the required control forces. 

Therefore, as stated clearly by Agrawal and Yang [6], time delay causes an unsynchronized application 

of the control forces, and as a result, it degrades the control performance and even renders the controlled 

structures unstable [8, 9]. 

Research efforts in active control have been focused on a variety of control algorithms based on 

several control design criteria. Some are considered classical as they are applications of modern control 

theory. In classical linear optimal control, the control forces are to be chosen in such a way that a 
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quadratic performance functional is minimized subject to the constraining dynamic equilibrium equation. 

Since the environmental loads and disturbances are not measured during real-time control, they are not 

involved in the derivation of the control algorithm, making the controller a proportional feedback of 

current state [4 -11, 16]. 

Wong [1] developed a simple analysis method using predictive optimal linear control (POLC) to 

reduce the degradation of control systems due to time delayτ . In this predictive algorithm, the structural 

response at time t is predicted at time τ-t  based on the structural response and earthquake ground motion 

at time τ-t . Using this predicted response, the control force at timet  can be computed at timeτ-t  and be 

applied when the timet arrives. 

The objective of this paper is to develop a modified predictive linear optimal control (MPOLC) to 

reduce the degradation of control systems due to time delayτ and the immeasurable disturbances which 

can be ground motions, wind excitations, modeling errors or parametric uncertainties. In this modified 

control algorithm, the immeasurable disturbances are considered in the state space equation and also in the 

derivation of the control algorithm. A new variable is defined and the disturbances are assumed to have a 

constant value for two successive time steps. With this definition and using this logical assumption, a new 

state space form of the dynamic equation is obtained so that the immeasurable disturbances are eliminated. 

Then using a new prediction model of structural response and earthquake ground motion, the control force 

at timet  can be computed at timeτ-t  and be applied when timet arrives. The feasibility and effectiveness 

of the proposed control algorithm is verified through frequency-domain and time-domain analyses, and 

compared with the original one. 
 

2. DERIVATION OF CONTROL ALGORITHMS 
 
The response of an elastic structure with n degrees of freedom, installed with an active control system 
consisting of nc control actuators, is described by the following dynamic equilibrium equation: 
 

u(t)B(t)XEKX(t)(t)XC(t)XM 1g1 +=++ &&&&&                                            (1) 
 

Where M ,C  , and K are structural mass, damping, and stiffness matrices, respectively;X(t) , 
(t)X& , and (t)X&& are structural displacement, velocity, and acceleration vectors, respectively; (t)X g

&&  is 
earthquake acceleration corresponding to each degree of freedom (DOF); 1B is cnn×  location matrix of 
active control forces; 1E is the 1n× allocation matrix of external loads; and u(t) is cn -dimensional 
control force vector. 

The state space form of Eq. (1) can be written as 
 

)t(dE)t(uB)t(zA)t(z ccc ++=&                                                     (2) 
 

Where )t(z is n2  state vector; cA is n2n2 × continuous time state transition matrix; cB is cnn2 ×  
control force transition matrix; cE is 1n2 ×  ground acceleration transition matrix; and )t(d is generally 
environmental load or disturbance, which can be wind excitations, modeling errors or parametric 
uncertainties. But in this paper, )t(d is the earthquake acceleration time history ((t)X g

&&  in Eq.(1)). 
Hence, in other equations, )t(Xg

&& is replaced to )t(d , which emphasizes the general concept of  disturbances. 
These matrices and vectors are given by 
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The incremental solution of Eq. (2) can be obtained as follows: 
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∫
∆+ −∆+∆ ++=∆+

tt

t cc
sA)tt(AtA ds)]s(dE)s(uB[ee)t(ze)tt(z ccc                   (4) 

 
Where t∆ is integration time step and "s" is a time variable that in integral Eq. (4) is varied 

from t to tt ∆+ . The reason for using "s" instead of "t" is only for distinguishing the integral limitation. Let 
ttt 1k ∆+=+ and ttk = , then integrating Eq. (4) by assuming that the control force )s(u is uniform over 

the duration kt to 1kt + and that the ground motion )s(d as pulses gives 
 

kkk1k EdBuAzz ++=+                                                               (5) 
 
Where 

 
tAEE,B)IA(AB,eA cc

1
c

tA c ∆=−== −∆                                     (6) 
 
and kz , ku , and kd are discretized forms of )t(z , )t(u , and )t(d , respectively. Eq.(5) is a recursive 

equation of performing the entire time history analysis. 

In fact, the discrete state space form of a linear system must be expressed as 
 

kk1k BuAzz +=+                                                                (7) 
 

Since the environmental loads and disturbances are not available and so not measurable during real-

time control, they are not involved in the state space equation and also in the derivation of the control 

algorithm. In other words, since there is a time delay in the real-time control process as well as the 

environmental load, e.g. the earthquake acceleration is unknown and not predictable, (in fact, the 

disturbance kd is not effective in the calculation of control force ku ) we can say that the discrete state 

space equilibrium equation as shown in Eq.(7). 

Therefore, the control force at time step k (i.e., ku ) in Eq.(7) depends on the response of the 

structure. To determine this control force that gives an optimal linear control, define the cost function 

J to be 

∑
=

+=
N

0k
k

T
kk

T
k2

1 )RuuQzz(J                                                 (8) 

 
Where Q is a 2n2n× positive semi-definite weighing matrix and R is pp× positive-definite weighing 

matrix. Minimizing the cost functionJ , generally, according to Eq. (5), the control force equation is 
obtained as [1, 12] 
 

k
T1T

k
T1T

k PEdB)RPBB(PAzB)RPBB(u −− +−+−=                            (9) 
 
Where P is steady state Riccati matrix and is given by 

 
QA)PBBRI(PAP 1T1T ++= −−                                               (10) 

 
but due to the elimination of the immeasurable disturbances in Eq.(7), Kalman proposed just the first 

term on the right-hand side of Eq. (9), which is incorporated to the control force equation as [13] 
 

kssk zKu −=                                                                  (11) 
 
Where ssK is proportional state feedback gain matrix and is given by 

 

[ ] PABPBBRK T1T
ss

−+=                                                     (12) 
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It is observed from Eq. (11) that disturbance kd  is not incorporated into the minimizing process of cost 
function J  and so to the control force equation (Eq. (11)). Therefore, this method of calculating the 
control force without considering  disturbance is not suitable enough. 
 

3. MODIFIED OPTIMAL LINEAR CONTROL 
 
So far in the optimal linear control method, the control force at instant k ( ku ) is only dependent and 
affected by the response of the structure at the same instant k, i.e. kz . In the definition of cost function J, 
only the control force and the state of system kz are considered (regardless of effect of acceleration kd ), 
and by minimizing  J and solving the Riccati equation, coefficientssK  is achieved without considering 

kd . So it appears that the accelerationkd does not exist in the state space equation, i.e. Eq. (7) is valid. It 
should be noted that due to the validity of Eq. (5), proportional coefficient ssK can be multiplied by kEd , 
as shown in Eq. (9). However, the effect of acceleration kd is not incorporated yet in calculatingssK . But 
the manner which is discussed below overcomes this problem. 

The discrete state space form of a linear system with immeasurable disturbances is expressed as  
 

kkk1k EdBuAzz ++=+                                                             (13) 
 
Where kd  are immeasurable disturbances if we define ky  as 

 

kkk EdBuy +=                                                                   (14) 
 
With this definition of the vectorky , the original equation can be expressed as 

 

kk1k yAzz +=+                                                                 (15) 
 

The disturbances are assumed to have a constant value for two successive time steps, so we have 
 

kkk1k uByyy ∆=∆=−+                                                            (16) 
and consequently, 

kk1k uByy ∆+=+                                                              (17) 
 

The reason for this essential assumption is that, with developments in technology, advances are 
made in control devices such as systems for measuring data (such as disturbances, internal noises to a 
system, earthquake acceleration, a state of the system, etc.), so that the possibility of measuring and 
sampling this data is provided for an infinitesimal fraction of time by sampler devices. Hence, if the 
interval of the time-step for data sampling is very small, the variation of the sampled data in two 
successive time steps will be small too. On the other hand, by using the zero order holder (ZOH) 
technique in the sampler device, the function of the sampled data will be the same as a piecewise 
continuous function. Hence, for small time steps (in this paper s01.0t =∆ ), the variation of sampled data in 
two successive time steps is too small and can be assumed equal to zero. 

Combining Eqs. (15) and (17) yields 
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Now, the state variable, the control variable and the parameters of the system are defined as follows: 
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Then the original problem is transformed to the equation set 

 

kk1k u~B
~

z~A
~

z~ +=+                                                                (21) 
 
We want to develop the optimal control for the quadratic performance functional 
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Where  
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=                                                         (23) 

 
Performance parameters defined above result in the same performance index as Eq. (8) 

Equations (21) and (22) show that we have transformed the problem into an equivalent LQR problem so 
that the optimal control is 

kkk z~K
~

u~ −=                                                                      (24) 
Where  
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And kP  can be computed from the appropriate discrete Riccati equation  
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This is a recursive relation that can be solved with one final condition. The steady-state solution to the 
Riccati equation leads to  

kssk z~K
~

u~ −=                                                                   (27) 
 
Finally, in terms of the original problem variables, we have  
 

[ ] 







−=∆

k

k
21k y

z
KKu M                                                        (28) 

 
By rearranging Eq. (15), then 

k1kk Azzy −= +                                                                  (29) 
Using Eq. (29) in (28) gives  
 

( )k1k2k1k1k AzzKzKuu −−−=− ++                                                (30) 
 

This equation expresses that the control is a unique function of the state variable. By rearranging Eq. 

(30) and transition instant k to k-1, the linear control law is obtained as 
 

[ ] 1k21k21kk zAKKzKuu −− −−−=                                                (31) 
 

This shows that the modified optimal linear control for a linear system with immeasurable 

disturbances is the proportional feedback of states in the two last steps, added to the control force in the 

last step. 
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So far, based on the conventional optimal linear control theory, the disturbances and environmental 
loads are not incorporated to minimize the process of cost function, and so to the control force calculation.  

But now, for solving this problem, a modified optimal linear control (MOLC) algorithm for the active 
control of structures is proposed, in which the disturbances are effective in minimizing the process of the 
cost function (Eq. (22)) and the control force calculation (Eq. (31)).  
 

4. OPTIMAL LINEAR CONTROL WITH TIME DELAY 
 
If time delay τ  exists in the control system, the control force computed at time τ-t  will be applied to the 
structure at time t [14]. Let j be the number of time steps of the time delay, i.e., ∆tjτ = , then the control 
force computed in Eqs. (11) and (31) will be applied at time step  k+j  , i.e.,  
 

kjk zKu ss−=+                                                                    (32) 
 

[ ] 1k21k21jkjk zAKKzKuu −−++ −−−=                                              (33) 
 

The state space equation as given in Eq. (5) for the optimal linear control or a modified one with time 
delay τ  becomes  
 

kj-kkk EdzBKAzz ss1 +−=+                                                         (34) 
 

[ ] kjkjkkkk Ed)zAKKzKB(uAzz 121211 +−−−−= −−−−+                                    (35) 
 

In these OLC and MOLC algorithms with time delay, the control force ku depends only on the states 
at time steps k-j and k-j-1. Therefore, the actual implementation of this algorithm is physically possible, 
however the control result may be jeopardized due to the time delay. 
 

5. PROPOSED PREDICTIVE OPTIMAL LINEAR CONTROL FOR  
COMPENSATING FOR TIME DELAY 

 
According to the control force equations presented in Eqs. (11) and (31), the control force at time step k 
should be regulated by the structural states and the earthquake ground motion at the same time step. 
Consider a time delay ∆tjτ =  and let ttk =  and τtt j-k −= , the optimal control force, computed at time 
step k-j (i.e., jk−u ), will only be applied when time step k arrives if Eqs. (11) and (31) are used directly, 
and this unsynchronized application of the control force with structural vibration may cause detrimental 
effects to the stability of the controlled structure. In order to avoid this problem, the structural response at 
time t, i.e., kz , must be calculated at time step k-j, then the control force at time step k, i.e., ku , can be 
applied at the right time when time step k-j arrives. However, the precise calculation ofkz at time step k-j 
is practically impossible because the ground motion within the time steps k-j to k (i.e., 

k1jkjk d,,d,d K+−− ) are unknown. Hence predicting kz becomes necessary in order to compensate for the 
negative effects of the time delay [1]. 

Consider again Eq. (2), where the solution can be written in the form 
 

∫
−

++= −
−

∆ k

jk

k
t

t

t
jk

tj
k sssˆ )]dd(E)u([Beezez cc

sAAA ccc                     (36) 

 
Where kẑ  represents the predicted value ofkz . Eq. (36) is similar to Eq. (4) except that t∆  in Eq. (4) 

is replaced by tj∆  in Eq. (36). Performing integration in Eq. (36) first requires numerical discretization 

of both the control force u(s) and the earthquake ground acceleration d(s) between times j-kt  and kt . 
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First consider the control force u(s), where the objective is to determine the control force at time step k 

(i.e., ku ). At time step k-j, the control forces within time steps k-j and k-1 will be known since they are 

determined at the previous time steps. For example, the control force at time step k-1 (i.e., 1u −k ) should 

have been computed at time step k-j-1, and similarly the control force at time step k-j (i.e., jk−u ) should 

have been computed at time step k-2j [1]. Therefore integration of the control force term in Eq. (36), by 

using the trapezoidal rule, can be performed as follows: 
 

[ ]kc
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1jkc
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1
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t c
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t c
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t c
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++++∆=

+++=
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∫∫∫∫

L

L

 

(37) 
 
Now, substituting this result back into Eq. (36) gives 

 

[ ]
∫

−

−

−
∆

+−
∆−

−
∆

−
∆

+

++++∆+=
k

jk

ckc

cccc

t

t c
sAtA

kc2
1

1kc
tA

1jkc
t)1j(A

jkc
tjA

2
1

jk
tjA

k

s))dsd((Eee

uBuBeuBeuBetzeẑ L

    (38) 

 
In order to integrate the last term on the right-hand side of Eq. (38), approximation to the earthquake 

ground motion is necessary. In this paper, it is assumed to be a white noise process with a mean equal to 
zero. Hence the expectations of the acceleration values at time 1jkt +−  to kt  are  
 

0)dE()dE()dE( k2jk1jk ==== +−+− L                                                           (39) 
 
Based on this assumption, the integral in Eq. (38) becomes 

 

jkc
tjAt

t c
sAtA dtEe(s))dsd(Eee c

k

jk

ckc
−

∆− ∆=∫
−

                                                      (40) 

 
After evaluating the integrals, Eq. (38) becomes  

 
[ ] jkc

tjA
kc2

1
1jkc

t)1j(A
jkc

tjA
2
1

jk
tjA

k dtEeuBuBeuBetzeẑ cccc
−

∆
+−

∆−
−

∆
−

∆ ∆++++∆+= L  

(41) 
 

Where kẑ  is the predictive state at time step kt . Let the control force ku follow the optimal linear 
control or modified one, i.e. 
 

kssk zKu ˆ−=                                                                       (42) 
 
Or 

k21k11kk zGzGuu ˆˆ −−= −−                                                         (43) 
 
According to Eq. (31), 1G  and 2G  are AKK 21 −  and 2K  , respectively. 

Then substituting the control force in Eqs. (42) or (43) into Eq.(41), and solving for the predictive 
state give, respectively, 
 

[ ]{ }1kc
tA

jkc
tjA

2
1

jkcjk
tjA1

ssck uBeuBet)dtE(ze]KB
2

t
[Iẑ ccc

−
∆

−
∆

−−
∆− ++∆+∆+∆+= L   (44) 

 

[ ]{ })ẑG(uBuBet)dtE(ze]GB
2

t
[Iẑ 1k11kc2

1
jkc

tjA
2
1

jkcjk
tjA1

2ck
cc

−−−
∆

−−
∆− −++∆+∆+∆+= L    (45) 
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As shown in the above equations, the control forces at time step k can be totally determined by the 

state and earthquake acceleration at time step k-j, and the control forces within time steps k-j and k-1.  
Finally, the real state at time step k+1 is calculated when the time actually arrives, and it is computed 

based on Eq. (5). In this equation, the optimal linear control force is calculated by using Eqs. (42) and 
(44) and the modified one is obtained by using Eqs. (43) and (45). 

The real state kz determined in Eq. (5), the control force ku determined in Eqs. (42) or (43), and the 
measured earthquake ground acceleration kd will then be used to predict the states jkz +ˆ  using  Eqs. (44) 
and (45). This recursive calculation process continues until the strong motion phase of the earthquake has 
diminished.  
 

6. NUMERICAL VERIFICATION 
 
The tendon control system of a multiple-degree-of-freedom (MDOF) structure is studied to verify the 
feasibility of the modified predictive optimal linear control algorithm numerically. The control 
effectiveness is evaluated through frequency-domain and time-domain analyses. 

In time-domain analysis, the reduction of the structural responses and the applied control forces are 
demonstrated by subjecting the structure to real earthquakes, 1940 El Centro, 1995 Kobe and 1994 
Northridge. (Fig. 1) 
 

 

 

 

Fig. 1. Magnified El Centro, Kobe and Northridge earthquakes time history 
 

A three-story structure (Fig. 2) is subjected to earthquake excitation and counteracted by the tendon 

control device implementation on the first floor [15]. Relevant parameters of the control system are listed 

in Table 1. 

In frequency-domain analysis, the degree of vibration suppression is shown by the magnitude of the 

frequency response functions of the control systems. 

 The natural frequencies of the uncontrolled structure are 2.24 Hz, 6.80 Hz and 11.49 Hz, 

respectively, and the damping ratios are 1.61%, 0.39%, and 0.36%, respectively. The structural states are 

sampled with period s01.0t =∆ . 
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Fig. 2. MDOF model structure with control device 

 
Table 1. Relevant parameters of MDOF control system 

 
System parameter Parameter value 

Mass matrix, M  (kg) 
















98100

09810

00981  

Stiffness matrix, K  (N/cm) 
















−
−−

−

13336162483691

162483022216416

36911641627417  

Damping matrix, C (N-s/cm) 
















−
−−

−

375.4026.0617.0

026.0569.4573.0

617.0573.0828.3  

Tendon stiffness, kc (N/cm) 3721 

Tendon inclination, α (°) 36 

Control forces location matrix, B1 
















0

0

cos4 αck
 

Loads allocation matrix, E1 
















−
−
−

981

981

981
 

Response weighing matrix, Q 








M

K

0

0  

Control weighing matrix, R 4kc 

 
Top-floor displacements of a three-story structure for ideal control (without time delay) and predictive 

control with time delay steps L=10, 20, 30 are studied in time-domain analyses, as shown in Figs. 3, 5 and 
7. The same results are shown in Fig. 9 for frequency-domain analyses. L is identical to j index in Eqs. 
(44) and (45). 

Also, the displacement response of this structure for control with time delay is represented for the 
same time delay steps in time-domain analyses. It should be noted that time delay is not compensated in 
this control algorithm. Hence, time delay has negative effect on the control performance (according to 
Eqs. (34) and (35) 

In Figs. 4, 6 and 8, the control forces required for ideal control (without time delay) and predictive 
control with time delay steps L=10, 20, 30 are studied in time-domain analyses. 
 

d(t) 
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(a) 

 
 (a) 

  
(b) 

 
 (b) 

  
(c) 

  
(c) 

  
(d) 

  
(d) 

Fig. 3. Top-floor displacement of three-story structure under 
El Centro earthquake for a) without time delay, 

 b) L=10, c) L=20,  d) L=30 

Fig. 4. Control force of three-story structure under El 
Centro earthquake for a) without time delay, 

 b) L=10, c) L=20, d) L=30 
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 (a) 

 
 (a) 

 
(b) 

 
 (b) 

 
(c) 

 
 (c) 

 
(d) 

 
 (d) 

Fig. 5. Top-floor displacement of three-story structure under 
Kobe earthquake for a) without time delay, 

 b) L=10, c) L=20, d) L=30 

Fig. 6. Control force of three-story structure under Kobe 
earthquake for a) without time delay, 

 b) L=10, c) L=20, d) L=30 
 

www.SID.ir



Arc
hi

ve
 o

f S
ID

F. Amini and  M. Amin Afshar 
 

Iranian Journal of Science & Technology, Volume 32, Number B2                                                                                 April 2008 

102 

  
(a) 

 
(a) 

 
 (b) 

 
(b) 

 
(c) 

 
(c) 

  
(d) 
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Fig. 7. Top-floor displacement of three-story structure  
under Northridge earthquake for a)without 

 time delay, b) L=10, c) L=20, d) L=30 

Fig. 8. Control force of three-story structure under 
Northridge earthquake for a) without time delay,   

b) L=10, c) L=20, d) L=30 
 

As shown in Figs. 3, 5 and 7, the structural responses using POLC and MPOLC are very close to that 
of the ideal system with no time delay. While the control system with time delay, which causes the 
unsynchronized application of the control forces, gives the worst performance and leads to the instability 
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of the structure. Therefore, the structural response after control with time delay is even worse than that 
before control, so it is better not to put any control action in this case. 

 Also, it is observed that, both POLC and MPOLC lengthen the acceptable time delay range within 
which the structure can remain stable.  

Figures 4, 6 and 8 show that the modified optimal linear control (MOLC) uses a larger control force 
than that for optimal linear control (OLC). 

As shown in Fig. 9, the peak of the frequency response function for the modified optimal linear 
control is completely suppressed and the control effectiveness is excellent. Therefore, the modified 
optimal linear control algorithm is much better in control effectiveness than the optimal linear control. 
Identical results are obtained for the MPOLC and POLC algorithm and it is observed that the displacement 
frequency response of MPOLC is much lower than that of POLC for different time delay steps. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Top-floor displacement frequency response function of three-story structure for 
 a) without time delay, b) L=10, c) L=20, d) L=30 

  
The control efficiency of the proposed optimal control strategy (MOLC) can be evaluated in several 

terms of performance criteria. The performance criteria used here are the percentage reduction of root-

mean-square (RMS) displacement response dK  and percentage RMS optimal control force uK  relative to 

the structural total weight: 
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tr(M) is the trace operator of mass matrix M and equal to 2943 kg. Higher values of the percentage 

displacement response reduction dK and the percentage relative optimal control force uK indicate more 

efficient control capability. 
 

Table 2. RMS displacement percentage reduction 
 

 
 

Table 3. Percentage relative RMS control force  
 

 
 

Tables 2 and 3 show, respectively, the RMS displacement percentage reduction (dK ) and the 

percentage relative RMS control force for the two presented control algorithms, i.e. OLC and MOLC 

under El Centro, Kobe and Northridge earthquakes and with time delay step L=0,10,20,30. 

It is seen in Table 2, that the structural response reduction by means of modified optimal linear 

control (MOLC) is much more than that using optimal linear control (OLC), in both ideal and predictive 

forms. But by increasing in time delay steps, this factor is reduced for both control algorithms. Also, it is 

observed from Table 3 that the percentage relative RMS control force applied by MOLC is much more 

than that applied by OLC for the structure subjected to three earthquake excitations. 

Both optimal linear control and modified optimal linear control are effective in the response reduction 

of structures under earthquakes, but the latter shows a better result for vibration suppression in the time 

domain and the frequency domain.  
 

7. CONCLUSION 
 
If the existence of time delay is neglected, the control system is susceptible to dynamic instability. 

Therefore, it is better not to put any control into the structural system before time-delay is analyzed and 

tackled properly. The problem of time delay is solved by developing the prediction model of the dynamic 

of the structure and the external excitation. 

On the other hand, based on the conventional optimal linear control theory, the disturbances and 

environmental loads are not incorporated into minimizing the process of the cost function, and so, to the 

control force calculation. The reason is that the environmental loads, e.g. earthquake acceleration, are 

unknown and not predictable.  

In this paper, for the solution of this problem, a modified predictive optimal linear control (MPOLC) 

algorithm for the active control of structures is proposed, in which the disturbances are effective in 

minimizing the process of the cost function and the control force calculation. The feasibility of the 

proposed control algorithm is successfully verified through frequency-domain and time-domain analyses. 

According to the proposed control algorithm, the control forces are generated from the prediction of the 
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structural states in the last two steps, multiplied by the proportional feedback gains and the control force in 

the last step. Such a simple on-line calculation of the control forces makes the proposed control algorithm 

favorable to real-time control implementation. It is observed that the modified optimal control uses larger 

forces compared to the optimal linear control. 

Consequently, it is obvious that the control performance of the modified predictive optimal linear 

control (MPOLC) is superior to that of the original one (POLC). 

This problem, in which all parameters of a structure with a large number of DOF cannot be measured 

perfectly at instant k, is not a disadvantage of the MOLC algorithm. By using methods of estimation for 

unmeasured parameters of state, in the base of other measured parameters, an estimated full state per 

instant can be achieved and then applied for the MOLC algorithm. This manner is presented in the LQG 

method, therefore, the idea of composition LQG with the MOLC algorithm is the subject of the next 

paper, in which the authors show how these methods can be used for calculating the control force. 

In addition to the environmental loads such as wind excitations and earthquake acceleration, it seems that 

MOLC is capable of compensating most of the other disturbances caused by modeling errors or parametric 

uncertainties, e.g. the difference between the estimated time delay and an exact time which has to be 

consumed in processing measured information, performing on-line computation, and executing the 

required control forces. In such cases, the performance of MOLC can be studied and verified in other 

research.  
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