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Abstract— A modified predictive optimal linear control (MP@I.<algorithm. is proposed for
controlling the seismic response of elastic stmegguThis algorithm compensates for the time
delay that occurs in real control applications bgdicting the structural response in the modified
optimal linear control equation. Since the enviremtal loads and disturbances are not measured
during real-time control, they are not involvedtie derivation of the control algorithm. Therefore
the predictive optimal linear controller (POLC)asproportional feedback of the only predicted
current state. In the modified control algorithm R®ILC), using a logical assumption, the
immeasurable disturbances are considered in the gtace equation and also in the derivation of
the control algorithm, so that the controller iscenbination of the control force in the last stepl a
the proportional feedback of the predicted statesthie last two steps. Hence, the control
performance of the modified control algorithm ispstior to that of the original one. The
feasibility and effectiveness of the proposed aangéigorithm is verified through frequency-
domain and time-domain analyses, and comparedtigtioriginal one. The tendon control system
of a three-degree-of-freedom structuresisiillusitlaio demonstrate the control effectiveness of the
modified predictive control algorithm;
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1. INTRODUCTION

Structural control has been widely studied sineedhrly 1970s as a new method of reducing strdctura
damages and preventing=collapses during earthgeakiations. Many analytical and experimental
studies have been performed<and have shown thafisamt response reduction during earthquakes can
be achieved by adding an-active control systemh® gtructure [1-5]. However, some of these
experimental results differ from those computed lditally, even in a well-controlled laboratory
environment. One of the most important reasonkastime delay exists in all structural controltgyss.
An important assumption is generally made in masherical studies that all operation in the control
system can be performed instantaneously. In rediyever, time has to be consumed in processing
measured information, performing on-line computati@and executing the required control forces.
Therefore, as stated clearly by Agrawal and Yargt[fe delay causes an unsynchronized application
of the control forces, and as a result, it degradesontrol performance and even renders the aitedr
structures unstable [8, 9].

Research efforts in active control have been fatuse a variety of control algorithms based on
several control design criteria. Some are consilletassical as they are applications of modernrobnt
theory. In classical linear optimal control, thenttol forces are to be chosen in such a way that a
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guadratic performance functional is minimized sabje the constraining dynamic equilibrium equation
Since the environmental loads and disturbancesatreneasured during real-time control, they are not
involved in the derivation of the control algorithmmaking the controller a proportional feedback of
current state [4 -11, 16].

Wong [1] developed a simple analysis method usiregliptive optimal linear control (POLC) to
reduce the degradation of control systems duerte telay: . In this predictive algorithm, the structural
response at timeis predicted at time « based on the structural response and earthquakedymotion
at timet - - . Using this predicted response, the control faictmet can be computed at time: and be
applied when the timearrives.

The objective of this paper is to develop a modifggedictive linear optimal control (MPOLC) to
reduce the degradation of control systems duente tielayt and the immeasurable disturbances which
can be ground motions, wind excitations, modelingrs or parametric uncertainties. In this modified
control algorithm, the immeasurable disturbancescansidered in the state space equation andratbe i
derivation of the control algorithm. A new variatidedefined and the disturbances are assumed ®dav
constant value for two successive time steps. Wighdefinition and using this logical assumptiamew
state space form of the dynamic equation is obdadoethat the immeasurable disturbances are eliedna
Then using a new prediction model of structurghoase and earthquake ground motion, the controkfor
at timet can be computed at timer and be applied when timarrives. The feasibility and effectiveness
of the proposed control algorithm is verified thgbufrequency-domain and time-domain analyses, and
compared with the original one.

2. DERIVATION OF CONTROL ALGORITHMS

The response of an elastic structure witdegrees of freedom, installed with an active argystem
consisting ofn, control actuators, is described by the followingamic equilibrium equation:

MX(®)+ CX (1) + KX(t) = E,X(t) +B,u(t) 1)

Where M ,C , and Kare structural mass, damping, and stiffness matrioespectivelyX(t) ,
X(t), and X(t) are structural displacement, velocity, and accétEmavectors, respectiverXg(t) is
earthquake acceleration corresponding to each degrieeedom (DOF)B,is nxn_ location matrix of
active control forcesE, is the nxlallocation matrix of external loads; and u(t) s -dimensional
control force vector.

The state space form of Eq. (1) can be written as

2(t) = A 2(t) + Bu(t) + Ed(t) @)

Where z(t)is2n state vector;A_ is2nx2ncontinuous time state transition matrif is2nxn,
control force transition matrixE_ is2nx1 ground acceleration transition matrix; ad¢t)is generally
environmental load or disturbance, which can bedwaxcitations, modeling errors or parametric
uncertainties. But in this paped(t)is the earthquake acceleration time histo&g(t) in Eq.(1)).
Hence, in other equation§,(t)is replaced ta(t), which emphasizes the general concept of distodsm

These matrices and vectors are given by

X(t) 0 | 0 0
Z(t)z(X(t)J ’AC:[—M‘lK —M‘lc} ’BC:[M‘lB} 'EC:[M‘lEj )

The incremental solution of Eq. (2) can be obtaiagdollows:
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t+At

2(t+At) = ez(t) + "+ [ 7™ 2[B u (s) + Ed(s)] ds @)

Where Atis integration time step and "s" is a time variathat in integral Eq. (4) is varied
fromttot +At. The reason for using "s" instead of "t" is ordy #istinguishing the integral limitation. Let
t.,, = t+Atandt, =t, then integrating Eq. (4) by assuming that thetrmbriiorce u(s)is uniform over
the durationt, to t,,, and that the ground motial(s) as pulses gives

Z,., = Az, +Bu, +Ed, ®)
Where
A= B=A'(A-1)B, ,E=AE_At (6)

andz, ,u,, and d, are discretized forms of(t), u(t), and d(t), respectively. Eq.(5) is a recursive
equation of performing the entire time history gsa.
In fact, the discrete state space form of a lisgatem must be expressed as

Z,,, = Az, +Bu, (7)

Since the environmental loads and disturbances@ravailable and so not measurable during real-
time control, they are not involved in the statacgpequation and also in the derivation of the robnt
algorithm. In other words, since there is a timéaglén the real-time control process as well as the
environmental load, e.g. the earthquake accelerasounknown and not predictable, (in fact, the
disturbanced, is not effective in the calculation of control ferti, ) we can say that the discrete state
space equilibrium equation as shown in Eq.(7).

Therefore, the control force at time stkp(i.e.,u,) in Eq.(7) depends on the response of the
structure. To determine this control.force thategivan optimal linear control, define the cost fiorct
Jto be

N
J=1$) (z,Qz, +uiRu,) ®)
k=0

Where Q is nx 2npositive semi-definite weighing matrix and Rgs p positive-definite weighing
matrix. Minimizing the cost:functiod, generally, according to Eq. (8he control force equation is
obtained as [1, 12]

u, = -(B"PB+ R)"lBTPAZk -(B"PB+ R)"lBTPEdk 9
Where P is steady state Riccati matrix and is ghien
P=A"P(I+BR™B'P)'A+Q (20)

but due to the elimination of the immeasurablewlisinces in Eq.(7), Kalman proposed just the first
term on the right-hand side of Eq. (9), which isdrporated to the control force equation as [13]

u, =Kz, (11)

Where K _ is proportional state feedback gain matrix andverg by
K.=[R+B"PB['B"PA (12)
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It is observed from Eq. (11) that disturbardige is not incorporated into the minimizing processost
function J and so to the control force equation (Eqg. (11}efEfore, this method of calculating the
control force without considering disturbance @ suitable enough.

3. MODIFIED OPTIMAL LINEAR CONTROL

So far in the optimal linear control method, thentcol force at instank (U, ) is only dependent and
affected by the response of the structure at threesastank, i.e. z, . In the definition of cost functiod,
only the control force and the state of systepare considered (regardless of effect of acceleradip),
and by minimizing J and solving the Riccati equation, coeffici&nf is achieved without considering
d, . So it appears that the acceleratiQuioes not exist in the state space equation, i.e(&ds valid. It
should be noted that due to the validity of Eq, (Bpportional coefficienK can be multiplied bjd, ,
as shown in Eq. (9). However, the effect of acegiend, is not incorporated yet in calculatiig,. But
the manner which is discussed below overcomespthisiem.

The discrete state space form of a linear systeimimimeasurable disturbances is expressed as

z,,, =Az, +Bu, +Ed, (13)
Whered, are immeasurable disturbances if we defjneas
Y, = Bu, +Ed, (14)
With this definition of the vectoy, , the original equation can be expressed as
Zy = AZ 1Y, (15)

The disturbances are assumed to have a constaetfealtwo successive time steps, so we have

Yiew =Yk =4y, =BAu, (16)
and consequently,
Yiu =Y T BAU, 17)

The reason for thisressential assumption is thah developments in technology, advances are
made in control devices such as systems for mempdata (such as disturbances, internal noises to a
system, earthquake acceleration, a state of themystc.), so that the possibility of measuring an
sampling this data is provided for an infinitesinfi@ction of time by sampler devices. Hence, if the
interval of the time-step for data sampling is vemall, the variation of the sampled data in two
successive time’ steps will be small too. On theeotiand, by using the zero order holder (ZOH)
technique in the sampler device, the function & slampled data will be the same as a piecewise
continuous function. Hence, for small time stepstifis papeat = 001s), the variation of sampled data in
two successive time steps is too small and carssenzed equal to zero.

Combining Egs. (15) and (17) yields

Z A 1|z 0
= +| _|Au, 8j1
yk+1 O I yk B
Now, the state variable, the control variable drelgarameters of the system are defined as follows:

- V4 -
Z :( kJ , U, =Au, (19)
Y«
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SHEE

Then the original problem is transformed to theagiqun set
Zy, = 'E‘Ek + éak (21)

We want to develop the optimal control for the qadid performance functional

N-1 - -
J=1>(Z/QZ; +U,RT,) (22)
k=1
Where
~ [Q o0 -
= , R=R 23
Q {0 0 (23)

Performance parameters defined above result ingthe performance index as Eq. (8)
Equations (21) and (22) show that we have trangdrthe problem into an equivalent LQR problem so
that the optimal control is

u, =-K, .z, (24)
Where

K, =[R+B"P,B] 'BIP, A (25)
And P, can be computed from the appropriate discretea®iequation
Pk = '& ! Pk+l'& - '& ! Pk+1§[ETPk+lE + ﬁ]_1 ET Pk+1'& + 6 (26)

This is a recursive relation that can be solvedh wite final condition. The steady-state solutiotht®
Riccati equation leads to

Gk = _R sszk (27)

Finally, in terms of the original problem variahlese have

) zZ,
Au, = _[Kl : Kz] (28)
Y
By rearranging Eq.(15), then
Yk = Zpn —AZ, (29)
Using Eq. (29) in (28) gives
Uy — U, =—Klzk—K2(zk+l—Azk) (30)

This equation expresses that ¢batrol is a unique function of the state varialdlg.rearranging Eq.
(30) and transition instatktto k-1, the linear control law is obtained as

u, =u,, —K,z, _[Kl_KZA]Zk—l (31)

This shows that the modified optimal linear contfor a linear system with immeasurable
disturbances is the proportional feedback of state¢lhe two last steps, added to the control fancthe
last step.
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So far, based on the conventional optimal lineantrad theory, the disturbances and environmental
loads are not incorporated to minimize the prooég®st function, and so to the control force ckldtian.

But now, for solving this problem, a modified opéihtinear control (MOLC) algorithm for the active
control of structures is proposed, in which thdudisances are effective in minimizing the proceisthe
cost function (Eqg. (22)) and the control force oddtion (Eq. (31)).

4. OPTIMAL LINEAR CONTROL WITH TIME DELAY

If time delay ¢ exists in the control system, the control forcenpated at timet - will be applied to the
structure at time [14]. Letj be the number of time steps of the time delay,zi=ej4t, then the control
force computed in Egs. (11) and (31) will be appke time stepk+j , i.e.,

U, =Kz, (32)
Upsj = Ueja — K32y _[Kl - KZA]Zk—l (33)

The state space equation as given in Eq. (5) foofitimal linear control or a modified one with &m
delay r becomes

z,,, =Az, -BK¢z, ; +Ed, (34)
Z,,=Az, -B(u,, - KZZk—j 7 [K1 - KZA]Zk—j—l) +Ed, (35)

In these OLC and MOLC algorithms with time deldye tontrol forceu, depends only on the states
at time stepk-j andk-j-1. Therefore, the actual implementation of this &thm is physically possible,
however the control result may be jeopardized duée time delay.

5. PROPOSED PREDICTIVE OPTIMAL LINEAR CONTROL FOR
COMPENSATING FOR TIME DELAY

According to the control force equations presertellgs. (11) and (31), the control force at timepdt
should be regulated by_.the structural states aadettrithquake ground motion at the same time step.
Consider a time delay=jat and lett, =t andt,_; =t-z, the optimal control force, computed at time
stepk-j (i.e., u,_;), will only'be applied when time stéparrives if Egs. (11) and (31) are used directly,
and this unsynchronized application of the conftoote with structural vibration may cause detrinaént
effects to the stability. of the controlled strueum order to avoid this problem, the structuesponse at
timet, i.e.,z,, must be calculated at time steyp, then the control force at time stkpi.e., u,, can be
applied at the right time when time steparrives. However, the precise calculatiorz gt time stefk-j
is practically impossible because the ground motieithin the time stepsk-j to k (i.e.,
dy;,dy_ju,---,d,) are unknown. Hence predictirey becomes necessary in order to compensate for the
negative effects of the time delay [1].

Consider again Eq. (2), where the solution can bitem in the form

2 A jAt

z, = e Z, .+ el J'ttk e "[B .u(s) + E_d(s)ld s (36)

-1

j

WhereZ, represents the predicted valuepf Eq. (36) is similar to Eq. (4) except thAt in Eq. (4)
is replaced byjAt in Eq. (36). Performing integration in Eq. (36jsfirequires numerical discretization
of both the control force u(s) and the earthquataiigd acceleration d(s) between tings and t, .
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First consider the control force u(s), where thgedtive is to determine the control force at tinbepsk
(i.e., u,). At time stepk-j, the control forces within time stepg andk-1 will be known since they are
determined at the previous time steps. For exantiptecontrol force at time stepl (i.e., u,_,;) should
have been computed at time stepl, and similarly the control force at time step(i.e., u,_;) should
have been computed at time stej [1]. Therefore integration of the control forcentein Eq. (36), by
using the trapezoidal rule, can be performed dsvist

f:k e"*B u(s)ds = fttkfj*l e "B u(9)ds + f:k'“z e "B, u(s)ds+ - + f:k e "B u(s)ds

k=j+1
= At[%e_AJk”’Bcuk_]. +e MR Uy e+ e B U+ %e‘AJchuk]
(37)
Now, substituting this result back into Eq. (36)eas
5 LA A 1 AAjAL A (j-D)At A At 1
e _ 38
et " e (E d(e)ds (38)
k-j

In order to integrate the last term on the rightéhaide of Eq. (38), approximation to the earthguak
ground motion is necessary. In this paper, it siased to be a white noise process with a mean ¢gjual
zero. Hence the expectations of the acceleratibesat timef,_;,, tot, are

E(dk—j+l) = E(dk—j+2) =..-=E(d,)=0 (39)
Based on this assumption, the integral.in Eq. (@®omes

e [ e™(E, d(s))ds = " E Atd, (40)

After evaluating the integrals, Eqg. (38) becomes

5 _ AAjAt A At A (j-1)At A jAt
7, = e Pz + At|Fer B U, + e IVMB U+ + 3B U [+ e*ME Atd,
(41)

Where z,_is the predictive state at time stép Let the control forceu, follow the optimal linear
control or modified one, i.e.

A

u, =-K.z, (42)
Or
U =u,,-G,z,,-G,z, (43)

According to Eq. (31)G, andG, areK; —K,A andK, , respectively.
Then substituting the control force in Egs. (42)(48) into Eq.(41), and solving for the predictive
state give, respectively,

. At Ao -
z, =l +?BCKSS] 1{eA°'A‘(zk_j +E Atd, ;) + At[%eAcJA‘Bcuk_j +oe t eA°“BCuk_l]} (44)
2, =01 +2B.6 1 e* @z, +E.Atd,_ )+ Atfre* B U, ++1B (U, -G,2, )] 45)

k — 2 c— 2 k=j c k-j 2 ck-j 2 Pc\Yk-1 1-k-1

April 2008 Iranian Joal of Science & Technology, Volume 32, Number B2



98 F. Amini and M. Amin Afshar

As shown in the above equations, the control foateime stegk can be totally determined by the
state and earthquake acceleration at timeksfepnd the control forces within time stdpgandk-1.

Finally, the real state at time step k+1 is calidavhen the time actually arrives, and it is cotedu
based on Eq. (5). In this equation, the optimatdincontrol force is calculated by using Eqgs. @)
(44) and the modified one is obtained by using E43) and (45).

The real statez, determined in Eq. (5), the control forcg, determined in Egs. (42) or (43), and the
measured earthquake ground acceleratlpmill then be used to predict the staﬁelgj using Egs. (44)
and (45). This recursive calculation process comsnuntil the strong motion phase of the earthgialse

diminished.
6. NUMERICAL VERIFICATION

The tendon control system of a multiple-degreereélom (MDOF) structure is studied to verify the
feasibility of the modified predictive optimal liae control algorithm numerically. The control

effectiveness is evaluated through frequency-domaathtime-domain analyses.
In time-domain analysis, the reduction of the guial responses and the applied control forces are

demonstrated by subjecting the structure to redhgaakes, 1940 El Centro, 1995 Kobe and 1994
Northridge. (Fig. 1)

Avceleration{e)

1940 El Centro
L L

0.4 1 1 1 1 1 1 1
m] 2 4 =] =] 10 12 14 16 18 20
time(=ec)
1
=R —
=
=
= o
=)
=
=
= -0.5 |- —
1995 Kobe
-1 1 1 1 1 1 L 1 s L
[u] 2 4 [=] =] 10 12 14 16 15 z20

timerlsaec)

1994 Morthridge
18 20

Acceleration(y)
6 o a
1% 1%
?
|

1 L L 1 1 .
=] =] 10 12 14 16

timei(sec)

Fig. 1. Magnified EI Centro, Kobe and Northridgethgquakes time history

A three-story structure (Fig. 2) is subjected tatepuake excitation and counteracted by the tendon
control device implementation on the first floob[1Relevant parameters of the control systemisted

in Table 1.
In frequency-domain analysis, the degree of vibraBuppression is shown by the magnitude of the

frequency response functions of the control systems
The natural frequencies of the uncontrolled stmectare 2.24 Hz, 6.80 Hz and 11.49 Hz,

respectively, and the damping ratios are 1.61%9%,3and 0.36%, respectively. The structural states

sampled with periodt = 001s.
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| X3(1)

—p X2(1)

L X1(1)
TT— :fiwtcnd.nn
—

Actuator H-\.._‘?\
= |

—

Fig. 2. MDOF model structure with control device

Table 1. Relevant parameters of MDOF control system

System paramet Parameter valt
981 0/ 0
Mass matrixM (kg) d ('[) 0..981 0
0 0 o981

-16416 30222 -16248
3691 -16248 13336

{ 3.828 -0.573 0.617 }

27417 -16416 3691
Stiffness matrixK (N/cm)

-0.573 4569 -0.026
0.617 -0.026 4.375

Damping matrixC (N-s/cm)

Tendon stiffnessk, (N/cm) 3721
Tendon inclinationg. (°) 36
4k, cosa
Control forces location matrixg; 0
0
—-981]
Loads allocation matrix; -981
—-981]
I . K 0
Response weighing matrigQ 0 M
Control weighing matrixR 4k,

Top-floor displacements of a three-story structoradeal control (without time delay) and predieti
control with time delay steps L=10, 20, 30 are ®ddn time-domain analyses, as shown in Figs. &) &

7. The same results are shown in Fig. 9 for frequelomain analyses. L is identical fondex in Egs.
(44) and (45).

Also, the displacement response of this structarecbntrol with time delay is represented for the
same time delay steps in time-domain analyse$oild be noted that time delay is not compensated i
this control algorithm. Hence, time delay has niegaeffect on the control performance (according to
Egs. (34) and (35)

In Figs. 4, 6 and 8, the control forces requiredifieal control (without time delay) and predictive
control with time delay steps L=10, 20, 30 are ®ddn time-domain analyses.
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Fig. 3. Top-floor displacement of three-story stune under
El Centro earthquake for a) without time delay,

b) L=10, c) L=20, d) L=30
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As shown in Figs. 3, 5 and 7, the structural respsrusing POLC and MPOLC are very close to that
of the ideal system with no time delay. While thantrol system with time delay, which causes the
unsynchronized application of the control forcaseg the worst performance and leads to the inggabi
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of the structure. Therefore, the structural respaafter control with time delay is even worse tliaat
before control, so it is better not to put any cohaction in this case.

Also, it is observed that, both POLC and MPOLCglben the acceptable time delay range within
which the structure can remain stable.

Figures 4, 6 and 8 show that the modified optirredr control (MOLC) uses a larger control force
than that for optimal linear control (OLC).

As shown in Fig. 9, the peak of the frequency raspofunction for the modified optimal linear
control is completely suppressed and the contrfdcéfreness is excellent. Therefore, the modified
optimal linear control algorithm is much betterdantrol effectiveness than the optimal linear colntr
Identical results are obtained for the MPOLC and.@lgorithm and it is observed that the displaceime
frequency response of MPOLC is much lower than oh&OLC for different time delay steps.
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40+ : ; — Modified optimal linear control - 40+ . Modified predictive optimal linear control -
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Fig. 9. Top-floor displacement frequency responsefion of three-story structure for
a) without time delay, b) L=10, c) L=20, d) L=30

The control efficiency of the proposed optimal eohstrategy (MOLC) can be evaluated in several
terms of performance criteria. The performanceeddtused here are the percentage reduction of root
mean-square (RMS) displacement respdfseand percentage RMS optimal control fol€eg relative to
the structural total weight:

K . — R |VIS(uncontrollad displacemat) - R M S(controlleddisplacemm) xlOOO/O (46)
R M S(uncontrolted displacemat)
K . — RIvlS(optimaI controlforce) XlOOO/O (47)
tr(M)g
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tr(M) is the trace operator of mass matrix M andado 2943 kg. Higher values of the percentage
displacement response reductin,and the percentage relative optimal control fokcgindicate more
efficient control capability.

Table 2. RMS displacement percentage reduction

Percentage Reduction K (%) in RMS responses
Control Type Control without Time Delay Predictive Conirol
Time Delay L-0 L~10 L-10 L-30
Farthyuake | El Centro Eohe Northridge | El Centro Kohe Northridge | El Centro Kohe Northridge | EF Cenire Eobe Northridge
OLC 41.38 4159 k1 38.86 .06 33.08 3843 38.68 e M3 340 1.7
MOLC $a.00 8912 $14 T4.58 T4.06 56.42 13.56 13.03 [ % 6713 65.45 .6
Table 3. Percentage relative RMS control force
Percentage relative K (%) in RMS control force
Conirol Type Control without Time Delay Predictive Conirol
Time Delay L=0 L=10 L=10 L=30
Farthquake | Fl Ceniro Kohe Northridge | E Ceniro Kobe Norihridge | El Ceniro Kohe Norihridge | El Ceniro Kohe Northridge
oLC .24 4.7 La3 122 4.65 L&5 1.2 46 Lé 111 442 L5E
MOLC 2.49 19.88 1159 £.93 18.26 13.47 8.52 18.25 8.87 8.75 17.84 13.42

Tables 2 and 3 show, respectively, the RMS dispiace percentage reductiorK() and the
percentage relative RMS control force for the twesented control algorithms, i.e. OLC and MOLC
under El Centro, Kobe and Northridge earthquakesvdth time delay step L=0,10,20,30.

It is seen in Table 2, that the structural respamskiction by means of modified optimal linear
control (MOLC) is much more than that using optirfiaéar control (OLC), in both ideal and predictive
forms. But by increasing in time delay ‘steps, thtor is reduced for both control algorithms. Al#ds
observed from Table 3 that the percentage rel®iMsS control force applied by MOLC is much more
than that applied by OLC for the structure subjttethree earthquake excitations.

Both optimal linear control'and modified optimaidiar control are effective in the response redoctio
of structures under earthquakes, but the lattewsh better result for vibration suppression in tihee
domain and the frequency domain.

7. CONCLUSION

If the existence.of time delay is neglected, thatim system is susceptible to dynamic instability.
Therefore, it is better not to put any control itihe structural system before time-delay is analyesed
tackled properly. The problem of time delay is sol\by developing the prediction model of the dyrami
of the structure and the external excitation.

On the other hand, based on the conventional opfimzar control theory, the disturbances and
environmental loads are not incorporated into mining the process of the cost function, and sah&
control force calculation. The reason is that theimnmental loads, e.g. earthquake acceleratiom, a
unknown and not predictable.

In this paper, for the solution of this problenmadified predictive optimal linear control (MPOLC)
algorithm for the active control of structures i©posed, in which the disturbances are effective in
minimizing the process of the cost function and tieatrol force calculation. The feasibility of the
proposed control algorithm is successfully veriftacbugh frequency-domain and time-domain analyses.
According to the proposed control algorithm, thatcol forces are generated from the predictionhef t
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structural states in the last two steps, multipbgdhe proportional feedback gains and the coffitrale in
the last step. Such a simple on-line calculatiothefcontrol forces makes the proposed controlréhgo
favorable to real-time control implementation.dtabserved that the modified optimal control usegdr
forces compared to the optimal linear control.

Consequently, it is obvious that the control perfance of the modified predictive optimal linear
control (MPOLC) is superior to that of the origirade (POLC).

This problem, in which all parameters of a struetwith a large number of DOF cannot be measured
perfectly at instank, is not a disadvantage of the MOLC algorithm. Bjng methods of estimation for
unmeasured parameters of state, in the base of oteasured parameters, an estimated full state per
instant can be achieved and then applied for thé.®@lgorithm. This manner is presented in the LQG
method, therefore, the idea of composition LQG wiltk MOLC algorithm is the subject of the next
paper, in which the authors show how these metbad$e used for calculating the control force.

In addition to the environmental loads such as vérdtations and earthquake acceleration, it sebats
MOLC is capable of compensating most of the otliucbances.caused by modeling errors or parametric
uncertainties, e.g. the difference between themastid time delay-and an exact time which has to be
consumed in processing measured information, paifgy on-line, computation, and executing the
required control forces. In such cases, the pedoge of MOLC can be studied and verified in other
research.
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