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Abstract— In this research the Discrete Element Method ipleyed to determine the seismic
three dimensional bearing capacity of rectangutaméations. A rigid but moving slip body
resting on its base is assumed to define the &itnechanism under the footing. A soil mass
enclosed in a three dimensional space with assumikde surfaces is considered as several
discrete blocks connected with Winkler springs. Demmetry of the failure surface under the
foundation is not fixed and can be altered duelltmfathe factors affecting the problem. This
geometry is determined by six independent anglbs. seismic loading can be applied to the soil
mass, soil surcharge and foundation loading ineugs-static. manner. This paper includes the
derivation of 3D DEM formulation in a three dimemsal state, and several examples solved by
means of a developed DEM program to explain theloitipy of the method and to compare the
results with the other methods.

Keywords— 3 Dimensional, bearing capacity, shallow found&ifootings, seismic, pseudo-static, discrete eteme
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1. INTRODUCTION

The bearing capacity of foundations has always lmenof the most interesting sources of research in
geotechnical engineering with numerous publishggegand reports. Among these, extensive studies
have been made for two dimensional problems g $doting which rest on a horizontal or inclined s
surface. In this regard, different methods of asialyare introduced. It seems that 2D theoretical
approaches have reached a relatively satisfactosf for ordinary loading and soil conditions. Hweg
three dimensional problems.of bearing capacitynewe static loading conditions, still require more
experimental and theoretical research activities.

In static conditions, the evaluation of the 3D khegrcapacity of shallow foundations is usually
assessed by introducing experimental and empisicape factors into the ordinary 2D equations fer th
strip footings developed by earlier researcherf siscMeyerhof [1], Terzaghi and Peck [2], Hansdn [3
de Beer [4], Vesic [5], etc. These empirical shigmors are commonly based on the test resultsrauta
from the works of Golder [6] and some additiongbullished data.

Shield and Drucker [7], for the first time, atteregbta theoretical evaluation of the bearing capagfity
rectangular foundations on homogeneous afay Q) by means of upper and lower bound solutid#eo,
the theoretical analyses of the bearing capacitjrotilar footings have been done by Kétter's equah
the state of rigid plasticity [8, 9]. Nakase [1Ged an ordinary limit equilibrium method and asstdime
cylindrical sliding surfaces in rectangular footingn normally consolidated clays, of which strength
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increases linearly with depth. Ugai [11] presentaate rigorous solutions for rectangular foundations
NC clays with the help of limit analysis, by imping the admissible velocity field originally propmsby
Shield and Drucker [7] to include the effect of oeighness of the footing base. Narita and Yamdguch
[12] presented a three dimensional analysis ob#eing capacity of rectangular foundations by reezn
the slices method, assuming that sliding surfanes@amposed of a set of log-spiral with differemitial

radii in the direction of the longer axis of thefmg base. Michalowski [13] introduced a 3D ankesysf
rectangular foundations based on the limit analfigigper-bound) approach, in which all mechanism of
failure considered in the analysis consisted of fiagions, each characterized by plane deformations
Michalowski and Dawson [14] then compared the tesof the suggested upper bound method with the
numerical results of the FLAE code. Also, Zhu and Michalowski [15] calculatee $hape factors for
square and rectangular footings which are basdtieproposed upper bound method and compared them
with finite element analysis results. Salgad@l [16] calculated, rigorously, the bearing capaoitytrip,
square, circular and rectangular foundations iy, ddased on the finite element limit analysis.

For strip foundations (2D state), incorporating #ifects of earthquake body forces, investigations
have been performed by using the method of inclisiemes [17] limit.equilibrium [18], and the upper
bound limit analysis [19-22]). Kumar and Mohan Ra8] have-computationally examined the effect of
horizontal earthquake body forces on the bearimppadsy of 2D foundations in a rigorous manner by
employing the method of stress characteristics.h@mani and Berrill [24] also evaluated the seismic
bearing capacity factors by the zero extension atgtivhich is first proposed by Roscoe [25].

Experimental and theoretical investigations'havin lmtearly demonstrated that the bearing capacity
of foundations substantially reduces during eardlkga. Unfortunately, no theoretical solution for 3D
bearing capacity in seismic conditions have'beésred so far and very limited information is aval&ato
predict the 3D behaviour of foundations during artrequake.

Different investigators have used different:methofianalysis in their studies. Among these methods,
limit equilibrium, limit analysis-<and continuum lEsmethods such as finite element and finite difiee
methods are widely used. Calculations based ofirttieequilibrium method for the problem of bearing
capacity generally do not'satisfy all equilibriuonditions; therefore, additional assumptions agelired
with respect to interslice forces and stresses. fiiiee element method or finite difference method,
require information about the.initial stress stasésting in the soil, a correct constitutive modeid
correct parameters for the constitutive model. gn@ntation of these requirements increases the
complexity of the analysis and the probability otartainty in the results. Also, such an analysigfien
quite time consuming and achieving the convergefcesults becomes a difficult task.

The new concept of discrete element method (DEMijclvfalls within the framework of the limit
equilibrium methodology, in a two dimensional statas presented by Chang for the bearing capatity o
foundations [26], slope stability [27] and the neilag wall [28]. In this new concept of DEM, instkaf
modeling individual particles, he considered a swks as several discrete blocks connected wittkI&/in
springs. By developing the concept proposed by GHa6-28], a three dimensional formulation of the
discrete element method were presented by the @®up®, 30]. Mirghasemi and Maleki-Javan also used
this method to analyze the Retaining Wall EarthsBuee in Static and Pseudo-Static Conditions [I3i].
this paper, for the first time, an effort is madeletermine the seismic three dimensional bearapgaty
of rectangular foundations using DEM. Several tabdmd graphs are provided to demonstrate the
applicability of this method. The computations liistresearch are carried out by means of a dewtlope
DEM program named BCAP, (Bearing Capacity Analysis Program in 3 Dimenyiowritten in
MATLAB.
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2. DISCRETE ELEMENT MODEL

To determine three dimensional bearing capacityecfangular shallow foundations by DEM, a rigid but
moving slip body resting on its base is assumedefine the failure mechanism under the footing. The
soil mass enclosed in a three dimensional spade asisumed failure surfaces is considered as several
discrete blocks are connected with Winkler sprirgsshown in Fig. 1.

Block A -7

AN

o W Block-B

Fig. 1. Connection of adjacent blocks with Winkégrings in 3 dimensional state

Each group of Winkler springs consists of thres sétsprings at different orthogonal directions.eOn
set of springs is located in the direction nornmakte contact surface in order to simulate the mbrm
stiffness, and the two other sets are placed withen contact surface perpendicular to each other to
simulate the shear resistance on all interfaceshasn in Fig. 2. Therefore, compared to the 2D ehod
there is one set of shear springs added in thecositirface between two adjacent blocks.

Shearspring (t)

Shear spring (s)

_®— — Normal spring (n)

Fig. 2. Winkler spring in 3 dimensional state

The behaviour of the:normal and tangent springsssimed to be Elasto-Plastic. As shown in Fig. 3,
the normal springs do not yield in compression, ibuension they would yield at the tensile capaoit
F, as:
= 2c.cosp

vt l+Sin¢ (1)

where (c) is cohesion ang)(is the internal friction angle of the soil. Alsbased on Mohr-Coulomb
failure criteria, the shear springs yield whenshear strengtht() is reached, as:

T, = C +0y . tang 2

When stresses in the normal or shear springs exbeeadfinal strength, springs yield. In order &duce
the stiffness of yielded springs, the secant meiboapplied. Regarding the stress-strain relatignsls
shown in Fig. 3, the initial normal stiffness,{ka) alters to secant normal stiffness,dka). With the
same concept, the initial shear stiffnesgefkis substituted by the secant normal stiffnesg.(k’

The Newton-Rophson iterative scheme is appliedni@deling nonlinearity properties in plastic
conditions. In this iterative scheme, an approxiomato the exact stress-strain curve is made basdte
slope at the start of the increment, but usingenative procedure in which the stiffness is updateeach
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iteration, the approximation gets refined. The pedlstiffness is obtained using stress dividedttajrsat
each iteration.

shear normal

/ .
7 / Compression

e 1
kshear Akshear I(normal

shear — normal
-

k' Pl
normal | -
s F,
(a) Tension (b)
Fig. 3. Stress-Strain behaviour of Winkler sprirgjsshear springs, b)normal springs

The initial values of stiffness in the normal arftbar directions between blocks can be estimated
through their relation with the values of Young'sdulus (E)-and shear modulus (G), respectively. For
isotropic elastic materials, the ratio of (E / G)given by 2(1%),.in‘whichv is the Poission’s ratio and
varies from 0 to 0.5 for different kinds of soildius, the practical range of {knai/ Kshea) iS from 2 to 3. It
is found that the results in the present metho&d@mn. the Winkler spring constants ratiqefk/ Kshea)
rather than their individual values. Also, the e f (koma/ Kshea) in the above mentioned range have an
insignificant effect on the computed results [26].

3. FAILURE SURFACE GEOMETRY

In this model, for discretizing the assumed failateface, pentahedron wedges are used as showg. in F
4. Similar to the previous bearing capacity appheacdescribed by some authors [29, 30, 32], theréai
mechanism contains an active zone, blow the foofmoge 1), which is pushed downward into the soil
mass and a passive wedge (zone 1ll) moves laterHtlg transition between the downward movement of
the active zone and the lateral movement of theiy@zone takes place through the radial shear hne
The shape of the failure surface of zone (ll) isuased logarithmic spiral. These three regions aan b
divided into any arbitrary number of blocks, e.g, N, and N, respectively. The geometry of the failure
surface is a function of the footing width (B) dedgth (L), internal friction angle of the undertieaoil

(9p), and the six independent anglesigfa,, oz, o4, 8; ando,.

The angle®; and6, determine the inclination of lateral failure swéa in a three dimensional space.
The absolute values & and6, are assumed identicél8; | = I 6, I). As shown in Fig. 5, if the lateral
failure surfaces incline inward or outwafj,and8, possess negative or positive values, respectivély.
zero value for these angles indicates that lafailaire surfaces are vertical. However, unlike thessical
limit methods, there is no special pre-assumptiorthie determination of the failure surface's angles
(including 8; and8,). These six angles are found by a trial and gorocedure to obtain the minimum
ultimate bearing capacity. The result of the catioh procedure for a certain shallow foundation
indicates which mode of side surface geometry (Biggoverns the problem.

Due to the existence of six independent angleserg extensive number of failure surfaces are
examined to determine the minimum bearing capaditberefore, with more complex failure surface
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geometry, the accuracy of the solution is improwvedomparison with simpler failure surfaces geometr
commonly considered in classical limit equilibriwmlimit analysis methods.

(@) (b) (c)
Fig. 5. The inclination of lateral failure surfadeghree dimensional space, a) zero valuéfand
0, (vertical), b) negative value (inclined inward),positive value (inclined outward)

4. 3D FORMULATION

To obtain the three dimensional formulation of DEMjs assumed that each block is rigid and only
relative displacements of adjacent blocks are takenconsideration. Also, in comparison with ralat
translation, the relative rotation of two neighldagrblocks is small. Therefore, due to the fact tha two
adjacent blocks remain in contact and no separabiccurs at contact surfaces under the relative
displacement, the continuum theorem can be appbedhow the discontinuous deformations in the
studied media.

In Fig. 6a, consider two blocks A and B, which @enected together in (x,y,z) space before
displacement. After loading, two contacting blogke moved and exaggeratedly illustrated as separate
(Fig. 6b).

Let U? and U represent the translation and rotation of theldtgment vector of blocks A and B,
respectively (i=1,2,...,6). These vectors in (x,yspace contain six components, where three elements
(Ug,Uy,Uy) represent translations in (X,y,z) directions &mel other three elements £Us,Ug) represent
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rotations around this axis. Let point P be the reeaf the interface surface between these two blotke
displacement of block B relative to block A at pdmis then expressed as follows:

{ APy} = [R%1{U"}-[R%1{U%} 3)(

where [R;] is the matrix joining the centroid of the blocktd point P. If, however block B is fixed, the

values of | are taken as zero. The displacement vector ofethside of Eq. (3) can be transformed from
an (x,y,z) coordinate to the local (n,s,t) coortinavhich rf is an outward unit vector normal to the side
face of block A at point P as follows:

{ APysd =[T1{ APy} (4)

where [T] is the transformation orthogonal matrTF(Tij(: 'I‘lij). Due to_the relative translations and
rotations between the two neighbouring blocks siiings are deformed and the normal and sheasstres
are created on the interface surfaces. Therefoemyapoint P' on the interface, the springs' defdion in
normal A,P") and in shear direction&,P'A\P") can be obtained by:

AP =AP +AW.S + AW 1 (5.1)
AP =AP +D Wt (5.2)
AP =DP +AW.S (5.3)

where Q[w,AWwAW) are the relative rotational-components of thepkicement vector in local
coordinates. Also,ssand  are the distance of point P* from point P on titerface in s and t directions,
respectively. That is to say, the total stressribistion on the interface surface due to relative
displacement can be divided as:

(a) Uniform normal stress distribution, due to the tigkatranslation of the centres of the interface
surfaces of two adjacent blocks, in the directibn axis Q\,P).

(b) Triangular normal stress distribution, due to thkative rotation of two adjacent blocks, around
the s axidw.tp).

(c) Triangular normal stress distribution, due to thkative rotation of two adjacent blocks, around
the t axis {w.sp).

(d) Uniform shear stress distribution, due to the netatranslation of two adjacent blocks, in the
direction of the s axis\(P).

(e) Uniform shear stress distribution, due to the nedatranslation of two adjacent blocks, in the
direction of the t axis/{P).

() Nonuniform shear stress distribution in the dirctof the s axis, due to the relative rotation of
two adjacent blocks, around the n axigw.tp).

(g) Nonuniform shear stress distribution in the dir@ttof the t axis, due to the relative rotation of
two adjacent blocks, around the n axign.s>).

To obtain the equivalent forces,flr,F) and moments (MMsM,) in point P, these stresses can be

integrated on the interface surface as follows:

FP :Hkn manA+”kn (3, (A, WA+ Hkn.tp. A WA (6.1)
F = [[k, @,P@A+ [[kt, (B, widA (6.2)
FP :”kt thEjA+J.J‘k1.SP. A wHA (6.3)
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M? = [[ (k, D,P O, +k, B w2 JdA+ [[(k P, +k D W JdA (6.4)
M? = [[k, @, P, WA+ [k, B WS, T, WA+ [[k, DwH [HA (6.5)
M = [[k, @, P, dA+ [k, B W, B, A+ [k, B wis] @A (6.6)

where k, ks and k are the stiffness coefficients for a unit surfaoea of normal and shear springs in (n,s,t)
directions, respectively.

Block A Block A

Block B

Y Y

(@) (b)
X X

Fig. 6. Displacement of adjacent blocks in 3 dinremel state, a) before and, b) after displacement

Since the relative rotation of two adjacent blogksonsidered small, it can be assumed that the
spring’s coefficients k ks and k are constant in Eq. (6). As a result, similar ¢bods (elastic or plastic)
exist for all springs located at the same directioross the contact surface. The integrals of ®qcdn be
obtained from ordinary surface inertial moment ¢igues. Then, Eq. (6) can be expressed as:

{ Fpn,s,t} =[k]{ APqs:} (7)

where [K] is the stiffness matrix of the associatadace. For convenience, the interface forcékerlocal
coordinate are transformed to.the global coordibgte

{ pr,y,z} =[T] T{ AFy s} (8)

From Egs. (3),44), (7) and (8), the forces actingall (n) sides of a block should satisfy the éoand
displacement-equilibrium requirement given by:

n
{fa3 =2 -RGITS T [K] [T7] [R%] {U°} + RG] [T k%] [T7] [R%]{U 9)
P
where {f} is the body force vector in the centroid of bloékIn contrast to the finite element method, in
which the constraint information is given on noda€DEM it is given on the centres of blocks. Based
Eq. (9), the relationship between the forces apdithplacements for all blocks can be written #svic:

{fr=[K]{U} (10)

where K] is the global stiffness of the system and thetorsc{f} and {U} consist of body forces and
displacements for all blocks, respectively.

In Eq. (10), there are twelve variables for eaabck) the body forces vector®(ff,f%,m%,mf,m%)
and the displacement vector,(u,u%,w,w?,w?%). Body forces are known, thus the 6N simultaneous
equations for a system of N blocks can be solvedfbunknown variables. The relative displacemdnt o
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two adjacent blocks can be determined by Eqg. (Be flormal and shear forces between blocks can be
obtained from Egs. (4) and (7). Also, the localKE) and overall (O.F.S) factors of safety can be
evaluated by the ratio of shear strength force heas force on local and overall failure surface,
respectively from:

T..A
LFS= P (11.1)

() +( fa
2T,A
X (Tsi)z"'(rti)zAi

OFS= (11.2)

whereTtg;, T; andt, are the shear stresses on the failure surfackeirdirections of s and t and shear
strength, respectively.

5. SEISMIC LOADING

Considering the effect of earthquakes horizontakkration on vertical center loads is a usual way
limit state methods for evaluating the bearing cépaof foundations. In this way the effects of the
inclination of the loads are simply included in ttemputation procedure.

Pseudo-static dynamic analysis provides an easytavagtimate the bearing resistance of foundations
for any imposed earthquake acceleration. In sucmethodology the earthquake body forces are
incorporated into gravity forces. Here, as a peestdtic-manner, the effects of the earthquakezbotal
acceleration (R are applied to the soil weight, soil surchargel @he foundation vertical load,
simultaneously.

One of the important advantages of DEM is that dhiferent loading and soil parameters can be
simultaneously applied in a single analysis to fthd critical failure surface that offers the minim
bearing capacity. The loading-system may consisiodfweight, soil surcharge, foundation verticaad
and the effect of seismic loading. Therefore, théue critical failure surface related to all ofede
parameters is obtained and the accuracy of theigolis improved in comparison with conventional
methods, in which the method of superposition edun the superposition method, e.g. Terzaghi atkth
[33], the critical failure surfaces related to epelnameter are obtained separately.

6. RESULTS
a) Comparison with other methods

Bearing capacity estimation is generally basedcherstiperposition method proposed by Terzaghi jB3],
which the contribution of different loading andlsp@rameters including self weighg) (internal friction
angle (p), surface surcharge (g), and cohesion (c), areeegpd in the form of non-dimensional bearing
capacity coefficients as follows:

G 0.5BA' + aNj + N (12)

where three dimensional bearing capacity coefftsi€M,, Ny and N related to soil weight, surcharge
and cohesion, respectively) include the relategeliactors (5 s,, <) in the form of:

Ny =5 Ny (13.1)

N; = 5N (13.2)
Iranian Journal of Science & Technology, Volume 3Rumber B2 April 2008
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N =5 N (13.3)

in which N, Ny and N are the ultimate bearing capacity coefficientsatrip foundation in a 2D state.

In classical limit methods, the exact values ofcearge and cohesion bearing capacity coefficients
are often obtained by assumption or by derivatiod asually fixed atd; = a, = W4 + @2), (03 = 172)
and @, =172 + @) from:

20
Ny =19 (Z+§) exp(tgd) (14)
y o (No-t
¢ = (W) a5)

However, in the present method these critical angte not predefined and are found by a trial and
error procedure. To compute the cohesion coeffigidh or N;) in. DEM, the unit weight of the soil and
the load surcharge are set to zero and ¢ = 9.81ByPassuming/= 0,.c = 0 and q = 9.81 kPa, the bif
N, are calculated. On the other hand, by assumin@dc= 0 andy= 19.61 kN/m, the N; or N, are
obtained. The width of footing (B) and the Winkigring constant ratio (E/G) are assumed 1 m and 2.7
respectively. Also, for obtaining greater accuratye number of blocks in zones (l), () and (11§
chosen to be 1, 25 and 1, respectively in all cdatjpns. In order to make the 3D DEM results
comparable to the 2D available solutions, the faptispect ratio (L/B) was set equal to 1000.

In Figs. 7 and 8, the values of, Wnd N, obtained respectively by Egs. (14) and (15), arepared
with the results of 3D DEM in two conditions.of st#cal failure with an assumption afy(= a, =174 +
@2), (03 =12) and (1, = /2 + @), and a critical failure surface correspondinghte minimum bearing
capacity. As can be seen, thgdhd N values ebtained from Egs. (14) and (15) are alriaesttical to the
DEM results with a classical failure surface assiintowever, the critical values ofyMdnd N in DEM,
corresponding to the critical failure surface, abeiously less than the classical exact valuegpfgreater
than 30. The reason is that in a limit .equilibrium methed are always looking for the most critical
failure surface to get the least bearing capacity.

On the other hand, the values gfdbtained from various methods and 3D DEM are coetgpm Fig.

9. From this comparison, it is_concluded that thkies of N obtained by 3D DEM are very close to the
results of the Vesic [5] method. These differenicesarious methods are not surprising. For instance
Bowles [34] suggests that fer= 40, N, varies between 38 and 192 in different 2D methods.

As previously.described, no theoretical solutioas 3D bearing capacity under seismic conditions
were found in the literature. Therefore, here thigarisons are made with the other methods onlg2Eor
state and 3D static loading conditions. For mot&lston, the results of DEM in static loading citiwhs
in 2D and 3D states can be found elsewhere [263219,

To compare the statically 3D bearing capacity ¢oeffits (N, N'g, N') resulting from other methods
with DEM, the result of two classic semi-empiricakthods which are extensively used for the shape
factors, namely presented by Meyerhof [1] and Haifi8F and two latest solutions of 3D bearing céyac
of foundations obtained by the slices method (Mdaitd Yamaguchi [12]) and the upper-bound approach
of limit analysis (Michalowski [13]) are presentedFigs. 10 to 12 foxp = 30. The proposed method
gives results which are more in accordance withsatal semi-empirical 3D bearing capacity coeffitse
such as Meyerhof [1] and Hansen [3], which are dbasethe test results carried out by Golder [6] and
some additional unpublished data.
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In Fig. 13, the comparison of the seismic 2D bepigapacity coefficients related to soil weight
(Nyayn) With those obtained from the other methodsgfer 30 are presented. In addition, comparison of
the seismic 2D bearing capacity coefficients relate soil surcharge (Myn) and cohesion (Ny,) are
respectively presented in Figs. 14 and 15. As eagelen from these figures, the values obtainedHiy D
are comparatively smaller than other methods. Maredhe relationship between the seismic 2D bgarin
capacity coefficients with earthquake horizontaiederation can be approximately expressed by ardine
function.

160

120

—— Equation (14) /
Nq 80 + DEM, Classical Failure Surface
——DEM, Critical Failure Surface //
40
o - J¢ (Deg.)
T

0 y T T T T T T
0 5 10 15 20 25 30 35 40 45

Fig. 7. Comparison of exact mathematical valueN odind 3D DEM in 2D state

160

;P
120
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Nc 80 & DEM, Classical Failure Surface
—— DEM, Critical Failure Surface/
40
"._*,'__‘/0/ @ (Deg.)
T T

0 — T T T T T

0 5 10 15 20 25 30 35 40 45

Fig. 8. Comparison of exact mathematical valued aind 3D DEM in 2D state
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Fig. 9. Comparison of Nobtained from conventional methods and 3D DEMDns2ate
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Fig. 10. Comparison of Nobtained from various methods fpr~ 30°
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Fig. 11.Comparison of Nobtained from various methods fp= 30
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Fig. 12. Comparison of Nobtained from various methods fpr 30
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Fig. 13. Comparison of seismic 2D bearing capauigfficients related to
soil weight (N,ayn) in various methodsp= 30)
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Fig. 14. Comparison of seismic 2D bearing capauigfficients related to
soil surcharge (jyn) in various methodsp(= 30)
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Fig. 15. Comparison of seismic 2D bearing capamigfficients related to soil
cohesion (Ngyn) in various methodsp= 30)

b) Pseudo-static 3D bearing capacity coefficients

In Fig. 16, the values of static 3D bearing cagaoitefficients related to soil weight (Nfor various
soil internal friction angles and footing aspediamobtained by DEM are presented. Also, in Figtle
values of seismic 3D bearing capacity coefficiaetated to soil weight (M) for variousg and L/B
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ratios with an assumption of, k 0.3g are shown. As can be seen, the values gf, Nonsiderably
decrease by increasing the earthquake horizontalexation and smoothly decrease by increasing the
foundation aspect ratio. Due to linear variatiohsl9q,, with earthquake horizontal acceleration, only the
graphs related to,k= 0 and k = 0.3g are presented and the values gf,Nrelated to the other earthquake
horizontal accelerations can be simply estimatednbgrpolation. It is worth mentioning that, in the
presentation of these graphs the small values afifge capacity coefficients (e.g. smaller than 9 a
waived.

kn = 0 (Static state)

120" t0 40 every 10°
150 ¢ e

=40
100 k

LB
Fig. 16. Static 3D bearing capacity coefficientated to soil weight () for
various@ and L/B ratio obtained by DEM (k= 0)
kh =0.3g
N'yapn. €:30°&40°
15
LB

Fig."17. Seismic 3D bearing capacity coefficiessited to soil weight (yn) for
various@ and L/B ratio obtained by DEM (k= 0.3g)

In Figs. 18 to 21, the values of static 3D beaagacity coefficients related to soil surcharge for
variousq, L/B ratio and k obtained by DEM are presented. As can be seeutives pertaining to values
of N'y4yn.behave differently fop= 30, k, equal to 0.3g and 0.4g, and fpr 40 and k equal to 0.2g to
0.4q. It is observed that, for, lgreater than about 0.2g apdreater than about 2¢he values of Nlayn.
increase, first with increasing the L/B up to 2 dhen decrease by increasing L/B. In general, Hiees
of bearing capacity coefficients increase with dasing L/B due to the increase of the contributibn
side failure surfaces with respect to overall falsurface. On the other hand, the values of bgarin
capacity coefficients decrease with increasingis observed in Figs. 20 and 21, the reductioectsfof
kn prevail with respect to increasing the effectsL in high values ofp and k in square footing
(L/B=1).
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kn = 0 (Static state)
Q: 10" to 40° every 10°

75

R e

L/B

Fig. 18. Static 3D bearing capacity coefficientated to soil surcharge (I)for
various@ and L/B ratio obtained by DEM (k= 0)

kh =0.1g

N' o o o
adm ¢:10 to 40 every10

60

IR e e

z LB

Fig. 19. Seismic 3D bearing capacity coefficieetated to soil surcharge (\jn)
for variousg and L/B ratio obtained by DEM (k= 0.1Q)

kh :0.29
N'q.dyn. P o o
¢:20 to40 every10
40
u
P e
0 ——— LB

Fig. 20. Seismic 3D bearing capacity coefficiesisted to soil surcharge g\,)
for various@ and L/B ratio obtained by DEM (k= 0.29)

In Fig. 22, the values of static 3D bearing capaciefficients related to soil cohesion JNor
various soil internal friction angles and footirgpact ratios obtained by DEM are presented. Ats&id.
23 the values of seismic 3D bearing capacity coefiis related to soil cohesion {\.) for variousp and
L/B ratio are obtained with an assumption gf=k0.4g. As described previously, the values QfyN'
related to other earthquake horizontal acceleratéam be estimated by interpolation. Similar tagalof
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N'.ayn, the values of Ny, considerably decrease by increasing the earthgbafizontal acceleration,
while smoothly decreasing as the foundation agpict is increased.

kn=0.3g & 0.4g

N oL
adn €:20°,30° &40

@40, 30° & 20°, kh=0.3g

LB

Fig. 21. Seismic 3D bearing capacity coefficieisted to soil surcharge (Nyn) for
various@ and L/B ratio obtained by DEMk 0.3g & 0.49)

Kn = 0 (Static state)

N'c o o o
@:0 to40 every 10

150

100 1

50 1

LB

Fig. 22./Static 3D bearing capacity coefficientated to soil cohesion (N'
for various@and L/B ratio obtained by DEM (k= 0)

kh =049

N* o o o
o ¢:0 to40 every 10

LB

Fig. 23. Seismic 3D bearing capacity coefficiertated to soil cohesion (Nyn)
for various@ and L/B ratio obtained by DEM (k= 0.49)
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7. CONCLUSION

In this research, an analysis based on the diseteteent method (DEM) is carried out for determnin
the pseudo-static three dimensional bearing capatihallow foundations. The soil mass in the as=ili
three dimensional failure surface is consideredeagral discrete blocks connected with Winklerings:.
Using an iteration method, the six angles defiriimgfailure surface geometry are independentlyedain
order to obtain the most critical failure mechanismresponding to the minimum bearing capacity. The
formulation of the method is explained and the feestatic bearing capacity coefficients for various
internal friction angles and footing aspect ratoe presented. Also, the results are compared atlitbr
methods in a 2D state.

The present method is theoretically more rigordwa tclassical limit equilibrium analyses; it offers
more ability in solving bearing capacity problenms domplex geometry and loading conditioiithie
results obtained from the present study can be suised as follows:

1. The bearing capacity coefficients obtained by DHE# lsighly dependent on the internal friction
of the soil, especially fapamounts greater than30

2. For large internal friction angles the bearing cilyacoefficients rapidly increase when the
foundation aspect ratio (L/B) drops to 1, whereassmall-internal friction angles the amount of
increase is much smaller.

3. The N, and N values obtained from exact classical limit solusi@re almost identical to DEM
results which are obtained with an assumptiona@sgital failure surface angles.

4. The critical values of Nand N<in DEM are obviously less than classical exacueslfor@
greater than 30

5. The seismic 2D bearing capacity coefficients reldtesoil weight (Nayn). soil surcharge (Niyn),
and soil cohesion (\y») obtained by DEM are comparatively smaller thaosehof the other
methods.

6. The relationship between the seismic 2D bearingapcoefficients with earthquake horizontal
acceleration can be expressed by a linear function.

7. In general; the values of seismic 3D bearing capaciefficients related to soil weight (),
soil surcharge (Nun) and soil cohesion (Ni,,) obtained by DEM, considerably decrease by
increasing the earthquake horizontal acceleratiod smoothly decrease by increasing the
foundation aspect ratio, with the exception of Mgy, which increases first with increasing L/B
for k, greater than about 0.2g apdreater than about 20
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