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Abstract– The inability of experts to articulate the knowledge required to solve a problem is, 
arguably, the greatest challenge to building an expert system. The problem is made worse in 
situations where the response of the expert must be so rapid that there is not even a chance of a 
plausible post hoc reconstruction of the decision processes involved. For this reason, construction 
of the knowledge base by example is the only approach available. Examples can be used in two 
ways. They may be used as input to an induction program whose task is to find an abstraction of a 
control strategy from the data. Examples may also be used to induce the expert to discern 
differences between cases, thereby allowing the knowledge acquisition system to construct rules 
semi-automatically. The work presented in this paper demonstrates the feasibility of both 
approaches. In particular, it shows that the RDR methodology can be extended to domains where 
the expertise involved is necessarily subcognitive. This is demonstrated by the application of a 
combination of ripple-down rules and machine learning to the task of acquiring piloting skills for 
an aircraft in a flight simulator.           
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1. INTRODUCTION 
 

To control a physical process by classical methods, it is necessary to construct a model of the system. 
Unfortunately, in many physical systems, it is often difficult or impossible to construct an accurate model. 
Two alternative approaches to controlling physical processes are: using qualitative reasoning [1, 2] and by 
learning from experience [3-5]. Although qualitative reasoning has shown some promise in some problem 
domains [6-8], learning from experience has received more attention recently [9, 10]. Here, the system can 
learn by emulating the behaviour of a skilled operator, that is, learning by observing a human operator, or 
it may perform trials repeatedly until a given success criterion is met, that is, learning by trial-and-error.  

Learning symbolic rules by observing a human operator is also called behavioral cloning [11, 12] and 
has two stages. First, an operator skilled in a task, is asked to control the system. During his or her 
performance, the state of the system along with the operator's action, are logged to a file. In the next stage, 
a learning program uses the logged information to construct control rules.  

Sammut et al, [3] demonstrated a particularly difficult application of behavioral cloning in learning to 
control an aircraft in a flight simulator. They used a flight simulator on a Silicon Graphic computer and 
restricted the task to learning to fly a Cessna 150 on a predefined flight path. Three human pilots were 
asked to fly the aircraft thirty times through the same flight plan. The accumulated file for the thirty flights 
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for each pilot was used to create a controller for each of the four controls available, namely, elevators, 
ailerons, thrust, and flaps. Quinlan's C4.5 [13, 14] was used as the induction engine.  

Although able to successfully construct an autopilot capable of flying the aircraft through the required 
flight plan, the original learning to fly experiments encountered a number of problems: 

• The decision trees constructed by C4.5 were so large that they were unreadable.  
• The autopilots were brittle. That is, they failed when a moderate amount of variation was 

introduced into the simulation.  
• They required a large number of examples from the trainer.  
Sammut [12] describes the measures that have been taken to reduce these problems in behavioral 

cloning. Another alternative to improving the quality of the autopilot is to move away from the fully 
automatic approach taken by behavioral cloning and to use a semi-automatic learning tool such as ripple-
down rules [15].  

This paper describes just such an approach. We show that ripple-down rules (RDR) can be used to 
construct a controller for a complex dynamic system, such as an aircraft. This is significant in that RDR 
have mostly been demonstrated for classification tasks. We also show that relatively compact and 
understandable rules can be built without an excessive number of examples being represented by the 
trainer and these rules can be quite robust. Another feature of this system is that it allows machine learning 
methods to be mixed with RDR's, drawing on the advantages of each approach.  
In the following sections, we briefly describe the problem domain and the nature of the data available. We 
give an overview of the knowledge acquisition system and give details of the machine learning and RDR 
tools used. We then report the results of the experiment and conclude with some indications of future 
research directions. 
 

2. THE LEARNING TASK 
 
The experimental setup for this work is similar to that described by Sammut et al [3]. Each pilot is asked 
to fly a Cessna 150 through a predefined flight plan.  
 

1. A flight starts with the aircraft at the beginning of the runway pointing to the North. It must 
take off and fly to an altitude of 2000 feet,  

2. Then maintain a straight and level flight until a distance of 32000 feet from the starting point.  
3. The aircraft then turns right to a compass heading of about 330 and maintains that heading 

until a distance of about 42000 feet.  
4. After reaching that distance from the starting point, the aircraft turns left until it is pointing 

back towards the runway.  
5. The pilot lines up on the runway,  
6. descends and  
7. lands. 

 
Each stage of a flight needs its own strategy because the pilot's goals at different points in a flight require 
different actions. Like the original learning to fly experiments, we divide the flight into the same seven 
stages that we used to specify the flight plan for the pilots.  
The source code of the flight simulator has been modified so that,  

• the pilot can trace a flight and diagnose incorrect decisions using RDR's;  
• RDR's also allow the pilot to add new rules during a flight;  
• the display panel has been altered to display some additional variables digitally;  
• all the state variables and control settings can be logged to a file. 
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3. KNOWLEDGE ACQUISITION WITH DRDR 
 
The original motivation for embarking on research in behavioral cloning arose from the observation that 
many human skills are performed subconsciously. In such cases, it is pointless to ask an expert “how did 
you do that?” Since that skill is not accessible by introspection, one method for reconstructing the skill is 
to record its performance and analyze the data with machine learning tools.  

The same inability to introspect motivated the development of ripple-down rules. However, the RDR 
methodology does not seek to entirely exclude the human from the process of building rules to emulate the 
desired skill. Rather, the human is asked to critique the performance of the rules and point out differences 
between cases when the program fails. In the case of controlling a dynamic system, RDR's make use of the 
fact that, while the human operator is not aware of the mechanisms involved in a low-level skill, he or she 
may be aware of goals and sub-goals. This knowledge allows the operator to reason about cases.  

Dynamic Ripple Down Rules (DRDR) implement the RDR method for controlling dynamic systems 
[16]. The basic algorithm of DRDR is the same as RDR. In actual implementation, DRDR stores the 
knowledge base as a binary tree with a rule at each node. Each node has a rule condition and conclusion 
and two branches depending on whether the rule is satisfied or not by the data being considered.  

A ripple-down rule as the general form:  
 

if  condition then conclusion because case except  
   

if  ... 
else if  ... 

For example:  
   

if  a and b then c because 1 except 
if  d then e because 2 

else if  f and g then h because 3 
 

This is interpreted as if a and b are true then we conclude c unless d is true. In that case, we conclude e. 
We will refer to the entire if-then-except-else structure as the RDR and an if-then pair as a single rule.  

The numbers, 1, 2 and 3, in this example, refer to cases. RDR's are built incrementally. Each time the 
RDR fails to produce the correct answer, a new rule, along with the case that caused its creation, is added 
to the RDR. Suppose an RDR fails. We compare the new case with the case associated with the last fired 
rule. The differences give rise to the conditions that will be placed in a new rule that will distinguish the 
new case from the old. If a rule's conditions were satisfied by a case when they should not have been, a 
new rule is added as an exception. When a rule's conditions were not satisfied by a new case when they 
should have been, a new rule is added as an alternative (else).  

The initial RDR usually has the form:    
 

if  true then default conclusion because default case 
 

That is, in the absence of any other information, the RDR recommends taking some default action. For 
example, in a control application it may be to assume everything is normal and not make any changes. If a 
condition succeeds when it should not, then an exception is added (i.e. a nested if-statement). Thus the 
initial condition is always satisfied, so that when the do nothing action is inappropriate, an exception is 
added.  

A ripple-down rule can also be viewed graphically as a binary tree in which nodes are 
condition/conclusion pairs and the exceptions and alternatives follow the branches of the tree. 
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Although the basic RDR methodology has been retained, we require additional features in order to 
apply ripple-down rules in this domain. These extensions form the basis of Dynamic RDR's (DRDR), and 
are described next.   

The pilot can pause a flight to investigate the DRDR when it is not flying according to the pilot's 
wishes. When this happens information must be transferred from the flight simulator to the knowledge 
acquisition tool, where much of the information is presented graphically.  
 
a) Dealing with multiple actions 
 

In this experiment, we required a system capable of producing four conclusions given a simulator 
state (one for each of the elevators, flaps, ailerons, and throttle). One way to solve this problem is to use 
Multiple Classification RDR instead of simple RDR [18]. However, we found it much easier to use a 
system that can handle four separate knowledge bases concurrently.  
DRDR handles the four knowledge bases and outputs multiple conclusions (one from each of the four 
RDR's). Whenever the pilot pauses the flight to investigate the current rules, he or she is able to see 
DRDR's conclusion for all action variables.  
 
b) Creating rules by actions 
 

When creating new rules for elevators or ailerons, it is difficult for users to provide the exact value for 
their conclusion. It is easier for them to show the correct action by moving the joystick. In the present 
implementation, it is not possible to access the joystick to obtain the control values, however, an 
approximation to the joystick is provided by analog slider controls  
 
c) Interaction between DRDR and LDRDR 
 
As we shall see, the use of RDR's still requires the pilot to reason about his or her actions. Although the 
RDR methodology makes this much easier, there are still some cases when it is easier to show the 
knowledge acquisition system more examples and let it induce the appropriate rules. Thus, DRDR has the 
ability to interact with a learning program that also generates ripple-down rules.  
 

4. LEARNING RULES USING LDRDR 
 
For fast dynamic systems, experiments have shown that it is very difficult for an expert to completely 
describe his or her strategy and the reasons for choosing that strategy [4, 17]. Further, the descriptions are 
incomplete and approximate and cannot be directly translated into an automatic controller. Nevertheless, 
such descriptions contain general information about the system and they can be used as guidelines for 
constructing an automatic or semi-automatic controller. Therefore, it is attractive to attempt to modify and 
complement manually created rules by rules that have been automatically created from pilot performances.  

To automatically construct rules from the pilot's behavior, we use LDRDR [16]. The basic algorithm 
for LDRDR is to search the data logged from a flight, record by record, and find those attributes that cause 
an action, then create rules based on those attributes and their qualitative states. The assumption is that the 
qualitative state of variables changes when an action is performed.  

The main reason for introducing LDRDR [16] instead of using one of the existing machine learning 
programs was the need to deal with sequential data. In addition, it was necessary to have a program that 
was compatible with DRDR, with the ability to learn incrementally. Other machine learning algorithms 
that construct ripple-down rules, for example, Induct/RDR [15], are batch algorithms and are not designed 
to deal with sequential data. LDRDR is specifically designed to work with sequential data. It takes the 
current knowledge base, the behavioral traces, and a priority list as its input. It creates rules that are added 
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to the knowledge base to deal with cases not previously handled correctly. The LDRDR algorithm 
constructs a controller as follows:  

 
for each record in the behavioral trace: 

o Test the next record against the knowledge base;  
o If the conclusion of the RDR differs from the recorded trace, create a new rule to correctly 

handle the new record; 
o Add the new rule to the knowledge base. 

 
The condition part of a new rule is constructed by examining those variables that change most in 

correspondence with changes in control actions. The behavioural trace includes all the information that a 
pilot would normally see in the aircraft instruments. LDRDR tries to relate the pilot's actions to changes in 
the instrument readings, and thereby predicts what actions are required depending on the state of the 
instruments.  

The logged data usually contains information from different stages. This data is usually noisy and 
contains many redundant records. Pre-processing prepares the logs for the learning program. This includes 
segmenting the logged data, discretising control values, eliminating spurious values and creating separate 
inputs for each control action.  

After pre-processing, each of the data files and the existing RDR's for a particular control action are to 
the LDRDR algorithm. LDRDR also uses a priority list, which we discuss later. The output of LDRDR is 
an extension of the original RDR to cover cases in the input data that were not covered by the original 
RDR. The new RDR is converted into C if-statements by recursively traversing the RDR and creating one 
if-statement for each rule. An if-statement's conditions are the conjunctions of all true conditions in the 
RDR from the root to the rule. Rules will be executed sequentially. If any of the rules is executed, control 
will jump to the end of the list to guarantee a single conclusion from the tree. If none of the rules fires, the 
last rule, which is the default rule, will be executed.   
 
a) Data collection and preparation 
 

For those parts of the flight where it is difficult for the pilot to diagnose a problem or suggest correct 
rules, he or she can simply show the correct action by switching to manual mode and flying the aircraft. 
During the flight, the pilot's actions, along with the state of the simulation are logged to a data file. The 
state information is logged every second or when a change to a control action has been detected.  

There is always a delay between a stimulus and a response. Ideally we would like to record the pilot's 
action and the event that actually provoked the action. The problem is how can we know when that was? 
This is not a trivial issue, because human reaction time is not a constant, varying from person to person. 
Moreover, the reaction time of a person varies depending on the task. If the task is performed frequently 
and becomes familiar, the response time is shorter than for situations which are new for the human. In 
addition to these problems, pilots usually anticipate the future location of the aircraft and prepare a 
response for that state. In this experiment, following Sammut, et al [12], we decided to use a response time 
of one second in each stage of the flight. We have not attempted to model the pilot's predictive behavior.  

As with DRDR, different sets of rules are created for each stage. In each stage, different knowledge 
bases are created for each action. Therefore, twenty-eight knowledge bases have to be created for a 
complete flight (4 control action, 7 flight stages).  

The first stage of pre-processing is to segment the data into the stages where they were recorded. To 
make the segmentation of logged data easy, a new attribute has been added at the beginning of the 
recorded data to show the record's stage number. Based on this attribute, the filtering program segments 
the recorded data.  
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The Cessna aircraft's control system consists of four moveable control surfaces (elevator, flaps, 
ailerons, and rudder) plus the throttle. The values of the control variables are continuous. However, the 
learning algorithm can only deal with discrete class values. To solve this problem, a pre-processor is used 
to sub-divide the variable settings into intervals that can be given discrete labels. The range for each 
partition is chosen by analyzing the frequency of the occurrence of the values. The method of 
discretisation follows Sammut et al. [12].   
 
b) Constructing new rules 
 

After performing the pre-processing just described, each of the data files and the existing RDR for a 
particular control action are used to extend the RDR using the LDRDR algorithm. LDRDR also uses a 
priority list. This is a list of attributes which are sorted based on their importance relative to the action. 
There is a priority list for each control action. The priority lists are described in the next section in more 
detail.  

The algorithm extends RDR as follows:  
Inputs: current knowledge base; behavioural traces; a priority list.  
for each attribute in the priority list:   

1. Compare the attribute's previous qualitative state with its next qualitative state. If there is a 
change (e.g. it was increasing and becomes steady) then:  

2. Create a test for the attribute. The test is based on the attribute's current value and its previous 
qualitative state. The test always has the form: 

attribute op  value 
Where op is ">=" if the previous direction was increasing and "<=" if it was decreasing. "Value"  
is the value in the current record. The new test is applied to the cornerstone case associated with 
the last rule that was satisfied to make sure the test is true for the current case but excludes the 
cornerstone case. 
3. Add the test into a condition list.  
4. Attributes in the priority list are ordered by a numerical score. Increment the attribute's 

priority.  
5. If the number of tests in the condition list reaches a user defined maximum, scan the rest of 

the attributes and simply update their priorities if their qualitative state has changed. 
end loop  

If the condition list is not empty, create a rule and add it to the RDR. The conclusion of the rule 
comes from the action recorded in the trace. The current record becomes the rule's cornerstone case. The 
rule will be added as an exception to the last rule in the RDR if that rule is evaluated true (true branch). It 
is added as an alternative if false (else).  

The output of LDRDR is an extension of the original RDR to cover cases in the input data that were 
not covered by the original RDR.    
 
c) The priority list 
 

A human expert usually only considers a small number of variables at any time [15]. To emulate this 
behaviour, LDRDR limits the number of conditions per rule. To avoid missing important conditions in 
rule generation, LDRDR creates a priority list for the actions. The expert can provide the priority list or 
LDRDR can use its default priority list. If LDRDR creates the priority list, the priority of all attributes will 
be initialized to zero at the beginning of learning. If the expert decides to enter his or her own priority list, 
he or she can specify a set of attributes that will be tested first and the rest of the attributes will be decided 
by LDRDR. The expert also has the opportunity to enter a list of attributes in order and let LDRDR update 
the list automatically.  
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There is a priority list for each control action. These lists can be transferred from one stage to another. 
During learning, the priority list is updated automatically by considering attributes that contribute more in 
rule generation (except for the attributes that the expert decides are to be tested first). The priority of an 
attribute increments by one each time LDRDR notices a change in its qualitative state. This list is always 
sorted by priority.  

LDRDR chooses attributes from the top of the list. After choosing the attribute, LDRDR looks at the 
logged data to decide whether there is a change in the qualitative state of that attribute or not. The attribute 
will be included in one of the tests in the new rule if there is a change in its qualitative state. This process 
continues until LDRDR creates the maximum number of tests allowed or reaches the end of the priority 
list.   
 

5. CONSTRUCTING AN AUTOPILOT WITH PARVAZ 
 
If autopilot rules can be built by induction from examples why do you need any other method of 
knowledge acquisition? Although better suited than C4.5 for building control rules for dynamic systems, 
LDRDR still suffers from the problem that the rules that it synthesises can be more complex than they 
need to be. As we mentioned earlier, the main reason for invoking LDRDR is when the pilot finds it too 
difficult to reason about his actions, usually in situations that require rapid responses.  

The manual knowledge acquisition part of this system (DRDR) is effective when it is possible for the 
pilot to articulate rules related to his or her performance. These rules tend to be general in nature and if 
they are not complete in themselves, they are often useful as constrains on the learning system. Thus, the 
complexity of the rules is reduced.  

Knowledge acquisition begins by applying some simple rules created manually by DRDR or by using 
LDRDR to logged information. In both cases, rules can be tested by running the simulation in autopilot 
mode. During the flight, if the aircraft does not follow the expected path, the pilot is able to pause the 
flight and trace the rules that have been executed or are currently being executed. The pilot is also able to 
modify existing rules that seem incorrect by adding new rules. In this case, the previous and current status 
of the aircraft, plus all the simulations state variables, will be presented to the pilot. Also, all the rules 
under execution for each control action will be reported.  

If the pilot decides to create rules using LDRDR, he or she must fly the aircraft and record data. This 
task can be repeated as many times as the pilot wants. After logging data, the log files are preprocessed 
and passed to LDRDR  

The above procedure is repeated until a set of successful clones has been created. In our experiments, 
knowledge bases are created one stage at a time. This has the advantage that rules constructed for one 
stage can be transferred and adapted for other stages, thus reducing some of the effort required in later 
stages. The priority lists can also be transferred from one stage to another or new priority lists can be 
created for each new stage.  

After every modification of the RDR (manually or automatically), the flight simulation is run in 
autopilot mode to test the new RDR. To do this, the code of the original autopilot is replaced by the RDR 
(translated into C). A C function is also incorporated into the flight simulator to determine the current 
stage of the flight and when to change stages. The appropriate set of rules for each stage is then selected 
from four independent if-statements in each stage for every control action [3].  
 
a) Analyzing rules 
 

Information about the knowledge structure in the system is presented graphically to assist the pilot in 
understanding the current state of the knowledge base. The pilot may view the RDR either in text form as 
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rules or graphically as a tree structure drawn on the monitor. The tree may be traversed by moving the 
mouse over the tree.   
 
1. Drawing the trees and interpreting them as if-then rules: Drawing the RDR's makes it easy for the 
pilot to examine the rules from the root to each node. This option also provides the pilot with a feeling for 
the size of the RDR and the number of refinements that he or she has made so far. However, just by 
looking at the RDR, it is difficult to get a detailed view of the knowledge bases or their complexity.  

DRDR has the option to convert the RDR into a decision list of if-then rules. In this case, each node 
of a RDR will be displayed as a rule. This includes all the satisfied conditions from the root to that node. 
In our experiments we found this option very useful for users when they needed to create new rules. Rules 
are stored as C if-then statements. A macro, "THEN" has been added for readability. 
 
2. Navigating through the tree and investigating rules: To investigate the rules for each control action 
or to create a new rule for an action, the user must have knowledge not only about the state of the aircraft, 
but also about the rules. However, displaying the rules or drawing the RDR does not provide sufficient 
information for the user to understand what has happened so far or why the rules do not work properly. 
DRDR has to provide more information to make the context useful to the user.  

DRDR makes it possible for the pilot to investigate each node by entering its number. In this case, the 
current status of the aircraft plus the conditions satisfying the last rule are presented. Also, the conclusion 
reached and all the satisfied conditions are reported to the pilot. The rule's number plus the number of its 
parent and children are also available. The pilot is also able to see the information about all these nodes. 
 
b) Creating new rules 
 

After evaluating the existing rules, if the pilot finds a conclusion is wrong or there is no interpretation 
for the current situation then he or she is able to add new rules. To help, the system provides a list of 
differences between the current state of the flight and the state of the simulation associated with the last 
condition that was satisfied. Choosing one or more variables from this list guarantees the production of a 
rule that will correctly interpret the new case but not the old one.   
 
c) Logging flight information 
 

For those parts of the flight where it is difficult for the pilot to diagnose a problem or suggest correct 
rules, he or she can simply show the correct action by switching to manual mode and flying the aircraft. 
During the flight, the pilot's actions, along with the flight information are logged to a data file. The flight's 
information is logged every second or when a change in a control action has been detected. These data can 
then be used to construct rules using LDRDR.  
 

6. TESTING THE SYSTEM 
 
Ideally, we would like to test Parvaz using real pilots and a more realistic flight simulator. Lack of access 
to real pilots and a higher quality flight simulator made this impossible. However, since the aim is to 
investigate the possibility of transferring an expert's knowledge into an automatic controller using Parvaz, 
any user who can use the flight simulator to fly the aircraft and land successfully can be considered to 
have some level of expertise.  

Parvaz was tested using three volunteers. Among the subjects, only one of them, the first author, was 
familiar with Parvaz, while another was familiar with a flight simulator. All subjects were postgraduate 
students in computer science. Their task was to create a set of knowledge bases using Parvaz that could 
successfully complete the previously specified flight plan.  
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Prior to the experiments, the subjects received a one hour tutorial in the use of Parvaz and attended a 
demonstration. During the demonstration, the demonstrator explained how he flew the aircraft and the 
subjects were allowed to ask questions about the flight and the flight plan. They were allowed to practice 
with the simulator until they became proficient in flying the aircraft. During the experiments the following 
data were collected:  

• the number of times that subjects interrupted the flight simulator to modify the knowledge base or 
investigate it,  

• the number of rules they created,  
• the frequency of use of DRDR and LDRDR,  
• the amount of time they spent creating rules,  
• their comments about Parvaz.  
All the subjects were successful in creating a set of rules that could fly the aircraft through the given 

flight plan. The size of the knowledge bases varied considerably from one subject to another one. One 
subject took care to create rules for any possible state of the aircraft and thus produced a large RDR. 
Another subject was only interested in building a set of rules that could fly the specific plan and so 
produced a much smaller RDR. An interesting observation during these experiments was the reuse of 
knowledge. All the subjects tried to use rules created in an earlier stage if the task was similar. This was 
especially true when creating rules for the elevators in stages three, four and five, where the rules created 
for stage two were reused and modified by some exception rules. Table 1 shows a summary of these data. 

 
 Table 1. Summary of the experiments 

 
 Subject 1 Subject 2 Subject 3 
 P D L T P D L T P D L T 

Stage 1 13 13 0 13 5 13 0 13 5 10 0 10 
Stage 2 8 10 10 20 7 14 5 19 4 8 3 11 
Stage 3 9 13 19 32 20 22 10 32 5 11 5 16 
Stage 4 8 20 19 39 7 17 5 22 3 12 0 12 
Stage 5 16 13 26 39 38 44 44 88 5 14 2 16 
Stage 6 21 20 27 47 21 19 0 19 17 19 0 19 
Stage 7 20 19 30 49 19 16 0 16 6 10 3 13 

 
            P: number of pauses, D: number of DRDR rules,  L: number of LDRDR rules,  T: Total number of rules 
   

7. CONCLUSION 
 
The work presented in this paper demonstrates the feasibility of both uses of machine learning and 
knowledge acquisition methods in learning to control a dynamic system. In particular, it shows that the 
RDR methodology can be extended to domains where the expertise involved is necessarily subcognitive. 
This is demonstrated by the application of a combination of ripple-down rules and machine learning to the 
task of acquiring piloting skills for an aircraft in a flight simulator. It also showed a solution to overcome 
the bottleneck of knowledge acquisition in some dynamic domains which involves subcognitive skills. 
 

There are several directions in which future research might be continued.  
• It was noted that the pilots in these experiments used DRDR as the primary tool for building rules, 

but when the situation under analysis becomes too complex, LDRDR was invoked. A question of 
considerable interest arises: is it possible to quantify the point at which the cross-over occurs?   

• While RDR's have proved to be effective in capturing the pilot's knowledge, ideally a real pilot 
should never see them. That is, the pilot's interaction with the knowledge acquisition system 
should be entirely within the cockpit, providing examples and comments just as an instructor 
would do, by pointing to instruments, etc.    
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The robustness of LDRDR needs to be investigated further, especially when noise, such as turbulence and 
wind drift, are introduced into the simulator.   
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