Iranian Journal of Science & Technology, TransacBo Engineering, Vol. 32, No. B3, pp 295-304
Printed in The Islamic Republic of Iran, 2008
© Shiraz University

ACQUIRING CONTROL KNOWLEDGE FROM EXAMPLES USING
RIPPLE-DOWN RULES AND MACHINE LEARNING

H. SHIRAZI*™ AND C. A. SAMMUT?

YFaculty of Information Technology, School of ComgnuGcience and Engineering,
Malek-Ashtar University of Technology, TehranRL. of Iran
Email: shirazi@mut.ac.ir
Dept. of Artificial Intelligence, School of ComputScience and Engineering,
The University of New South Wales, Sydney, 2052 N3\istralia

Abstract— The inability of experts to articulate the knowdedrequired to solve a problem is,
arguably, the greatest challenge to building anegxpystem. The problem is made worse in
situations where the response of the expert musiobspid that there is not even a chance of a
plausiblepost hoc reconstruction of the decision processes invol¥eul.this reason, construction
of the knowledge base by example is the only ambr@vailable: Examples can be used in two
ways. They may be used as input to an inductiograra whose task is to find an abstraction of a
control strategy from the data. Examples may alsoubed to induce the expert to discern
differences between cases, thereby allowing thevledne acquisition system to construct rules
semi-automatically. The work presented in this pagemonstrates the feasibility of both
approaches. In particular, it shows that the RDRho@ology can be extended to domains where
the expertise involved is necessarily subcognitiMeis is demonstrated by the application of a
combination of ripple-down rules and machine lemgriio the task of acquiring piloting skills for
an aircraft in a flight simulator.

Keywords—Machine learning, expert systems, knowledge aiopris RDR

1. INTRODUCTION

To control a physical process by classical methdds, necessary to construct a model of the system
Unfortunately, in many physical systems, it is oftéfficult or impossible to construct an accuratedel.

Two alternative approaches to controlling physjralcesses are: using qualitative reasoning [1n@]ksy
learning from experience [3-5]. Although qualitatireasoning has shown some promise in some problem
domains [6-8];learning from experience has reckivere attention recently [9, 10]. Here, the systam
learn by emulating the behaviour of a skilled opmrahat is, learning by observing a human opeyato

it may perform trials repeatedly until a given segs criterion is met, that is, learning by triatiaerror.

Learning symbolic rules by observing a human operiatalso calledehavioral cloning [11, 12] and
has two stages. First, an operator skilled in &,t@sasked to control the system. During his or he
performance, the state of the system along wittofiegator's action, are logged to a file. In thet séage,

a learning program uses the logged informatiorotsstruct control rules.

Sammutet al, [3] demonstrated a particularly difficult applia of behavioral cloning in learning to
control an aircraft in a flight simulator. They dsa flight simulator on a Silicon Graphic compuéed
restricted the task to learning to fly a Cessna aB@ predefined flight path. Three human pilotsewe
asked to fly the aircraft thirty times through game flight plan. The accumulated file for thetthflights

“Received by the editors November 4, 2006; finaisey form January 5, 2008.
TCorresponding author

296 H. Shirazi and C. A. Sammut

for each pilot was used to create a controllerefach of the four controls available, namely, elesst
ailerons, thrust, and flaps. Quinlan's C4.5 [13vids used as the induction engine.

Although able to successfully construct an autamibpable of flying the aircraft through the regdir
flight plan, the original learning to fly experimerencountered a number of problems:

- The decision trees constructed by C4.5 were se ldvat they were unreadable.

« The autopilots were brittle. That is, they failechem a moderate amount of variation was

introduced into the simulation.

« They required a large number of examples fromridiaer.

Sammut [12] describes the measures that have la#¢en to reduce these problems in behavioral
cloning. Another alternative to improving the quoalof the autopilot is to move away from the fully
automatic approach taken by behavioral cloningtangse a semi-automatic learning tool such aseippl
down rules [15].

This paper describes just such an approach. We shawripple-down rules (RDR) can be used to
construct a controller for a complex dynamic systeoth as an.aircraft. This is significant in tRBR
have mostly been demonstrated for classificatisksaWe-also show that relatively compact and
understandable rules can be built without an exeessumber of ‘examples being represented by the
trainer and these rules can be quite robust. Andétagure of this system is that it allows macHesrning
methods to be mixed with RDR's, drawing on the athges of each approach.

In the following sections, we briefly describe fr@blem domain and the nature of the data availalike
give an overview of the knowledge acquisition systnd give details of the machine learning and RDR
tools used. We then report the results of the éxmert and conclude with some indications of future
research directions.

2. THE LEARNING TASK

The experimental setup for this work.is similathat described by Sammettal [3]. Each pilot is asked
to fly a Cessna 150 through a predefined flighhpla

1. Aflight starts with/the aircraft at the beginniafithe runway pointing to the North. It must
take off and fly.to an altitude of 2000 feet,

2. Then maintain a straight and level flight untiliatdnce of 32000 feet from the starting point.

3. The aircraft then. turns right to a compass headfrabout 330 and maintains that heading
until a distance of about 42000 feet.

4. Afterreachingthat distance from the starting pdime aircraft turns left until it is pointing
back towards the runway.

5. The pilot lines up on the runway,

6. descends and

7. lands.

Each stage of a flight needs its own strategy lsx#ue pilot's goals at different points in a ftigbquire
different actions. Like the original learning ty #xperiments, we divide the flight into the sameen
stages that we used to specify the flight plartHerpilots.
The source code of the flight simulator has beedifieal so that,

« the pilot can trace a flight and diagnose incdrdecisions using RDR's;

* RDR's also allow the pilot to add new rules dumnigjght;

« the display panel has been altered to display safdiional variables digitally;

« all the state variables and control settings @logged to a file.

Iranian Journal of Science & Technology, Volume 3Rumber B3 June 2008

Acquiring control knowledge from examples using... 297
3. KNOWLEDGE ACQUISITION WITH DRDR

The original motivation for embarking on reseanstbehavioral cloning arose from the observation tha
many human skills are performed subconsciouslgulth cases, it is pointless to ask an expert “hiow d
you do that?” Since that skill is not accessibldariyospection, one method for reconstructing tié s

to record its performance and analyze the datamvébhine learning tools.

The same inability to introspect motivated the dewment of ripple-down rules. However, the RDR
methodology does not seek to entirely exclude thadn from the process of building rules to emutlage
desired skill. Rather, the human is asked to erétithe performance of the rules and point out igffees
between cases when the program fails. In the dagentrolling a dynamic system, RDR's make uséef t
fact that, while the human operator is not awarthefmechanisms involved in a low-level skill, resbe
may be aware of goals and sub-goals. This knowlatige/s the operator-to'reason about cases.

Dynamic Ripple Down Rules (DRDR) implement the RBethod for controlling dynamic systems
[16]. The basic algorithm of DRDR is the same asRRIh actual implementation, DRDR stores the
knowledge base as a binary tree with a rule at eade. Each node has a rule condition and conelusio
and two branches depending on whether the rulgisfied or.not by the data being considered.

A ripple-down rule as the general form:

if condition then conclusion becausecase except

if ...
elseif ...
For example:

if aand b then c becausel except
if d then e because2
elseif f and g then h because3

This is interpreted as d andb.are true then we concludeunlessd is true. In that case, we concluele
We will refer to the entire if-then-except-elseusture as the RDR and an if-then pair as a singdée r

The numbers], 2 and3, in this example, refer to cases. RDR's are imgliementally. Each time the
RDR fails to produce the correct answer, a new, Rleng with the case that caused its creatioadied
to the RDR. Suppose an RDR fails. We compare theaase with the case associated with the last fired
rule. The differences give rise to the conditiomast twill be placed in a new rule that will distingiu the
new case from the old. If a rule's conditions wsasfied by a case when they should not have lkeeen,
new rule is added as a@iception. When a rule's conditions were not satisfied mew case when they
should have been, a new rule is added adtamative (else).

The initial RDR usually has the form:

if true then default conclusion becauseadefault case

That is, in the absence of any other informatitve, RDR recommends taking some default action. For
example, in a control application it may be to assweverything is normal and not make any chanfies. |
condition succeeds when it should not, then anmiare is added (i.e. a nested if-statement). Tlhes t
initial condition is always satisfied, so that whidae do nothing action is inappropriate, an exception is
added.

A ripple-down rule can also be viewed graphicallg a binary tree in which nodes are
condition/conclusion pairs and the exceptions dtedratives follow the branches of the tree.

June 2008 Iranian Jonal of Science & Technology, Volume 32, Number B3

298 H. Shirazi and C. A. Sammut

Although the basic RDR methodology has been retiaine require additional features in order to
apply ripple-down rules in this domain. These egtans form the basis of Dynamic RDR's (DRDR), and
are described next.

The pilot can pause a flight to investigate the BR®hen it is not flying according to the pilot's
wishes. When this happens information must be fearesl from the flight simulator to the knowledge
acquisition tool, where much of the informatiorpresented graphically.

a) Dealing with multiple actions

In this experiment, we required a system capablproflucing four conclusions given a simulator
state (one for each of the elevators, flaps, ailerand throttle). One way to solve this problertoisise
Multiple Classification RDR instead of simple RDR8]. However, we found it much easier to use a
system that can handle four separate knowledges lzaseurrently.

DRDR handles the four knowledge bases and outputiphe conclusions (one from each of the four
RDR's). Whenever the pilot pauses the flight toestigate the:current rules, he or she is able ¢o se
DRDR's conclusion for all action variables.

b) Creating rules by actions

When creating new rules for elevators or ailerdtris, difficultfor users to provide the exact valtor
their conclusion. It is easier for them to show terect action by moving the joystick. In the s
implementation, it is not possible to access thgstjok to obtain the control values, however, an
approximation to the joystick is provided by anaitiger controls

¢) Interaction between DRDR and LDRDR

As we shall see, the use of RDR's still requirespthot to reason about his or her actions. Althotlge
RDR methodology makes this much easier, there @fessme cases when it is easier to show the
knowledge acquisition system more examples anid iletluce the appropriate rules. Thus, DRDR has the
ability to interact with a learning.program thas@benerates ripple-down rules.

4. LEARNING RULES USING LDRDR

For fast dynamic systems, experiments have shoahiths very difficult for an expert to completely
describe his or hersstrategy and the reasons fuysthg that strategy [4, 17]. Further, the desiomist are
incomplete and. approximate and cannot be direddlystated into an automatic controller. Nevertreles
such descriptions contain general information atibatsystem and they can be used as guidelines for
constructing an automatic or semi-automatic colgrorherefore, it is attractive to attempt to nigaind
complement manually created rules by rules thae leeen automatically created from pilot performance

To automatically construct rules from the pilotshhvior, we use LDRDR [16]. The basic algorithm
for LDRDR is to search the data logged from a flighcord by record, and find those attributes taaise
an action, then create rules based on those a#siland their qualitative states. The assumptitimaisthe
qualitative state of variables changes when awmdi performed.

The main reason for introducing LDRDR [16] insteddusing one of the existing machine learning
programs was the need to deal with sequential thataddition, it was necessary to have a prograan th
was compatible with DRDR, with the ability to leamcrementally. Other machine learning algorithms
that construct ripple-down rules, for example, leidlRDR [15], are batch algorithms and are not desig
to deal with sequential data. LDRDR is specificalgsigned to work with sequential data. It takes th
current knowledge base, the behavioral tracesaapribrity list as its input. It creates rules tha¢ added

Iranian Journal of Science & Technology, Volume 3Rumber B3 June 2008

Acquiring control knowledge from examples using... 29¢

to the knowledge base to deal with cases not puslyohandled correctly. The LDRDR algorithm
constructs a controller as follows:

for eachrecord in the behavioral trace:
o Test the next record against the knowledge base;
o If the conclusion of the RDR differs from the reted trace, create a new rule to correctly
handle the new record;
o Add the new rule to the knowledge base.

The condition part of a new rule is constructedelxamining those variables that change most in
correspondence with changes in control actions. bet&vioural trace includes all the informationt tha
pilot would normally see in the aircraft instrum&ntDRDR tries to relate the pilot's actions torwes in
the instrument readings, and thereby predicts wlotibns are required depending on the state of the
instruments.

The logged data usually contains information froiffecent stages. This data is usually noisy and
contains many redundant records. Pre-processimam@e the logs for.the learning program. This ideku
segmenting the logged data, discretising contrilegs eliminating-spurious values and creating isgpa
inputs for each control action.

After pre-processing, each of the data files ardettisting RDR's for a particular control actior &
the LDRDR algorithm. LDRDR also uses a priorityt,lishich we discuss later. The output of LDRDR is
an extension of the original RDR to cover caseth@input data that were not covered by the orlgina
RDR. The new RDR is converted into C if-statemdytsecursively traversing the RDR and creating one
if-statement for each rule. An if-statement's ctinds.are the conjunctions of all true conditiongthie
RDR from the root to the rule. Rules will be exetlsequentially. If any of the rules is executexhtiol
will jump to the end of the list to guarantee agnconclusion from the tree. If none of the ruiess, the
last rule, which is the default rule, will be exesul

a) Data collection and preparation

For those parts of the flight where'it is difficéittr the pilot to diagnose a problem or suggestewr
rules, he or she can simply. show the correct adiiposwitching to manual mode and flying the aircraf
During the flight, the pilot's actions, along withe state of the simulation are logged to a d#¢a Tihe
state information is logged every second or whehamge to a control action has been detected.

There is always a delay between a stimulus andporese. Ideally we would like to record the pilot's
action and the event that actually provoked th@maciThe problem is how can we know when that was?
This is not a trivial issue, because human readtior is not a constant, varying from person tcsper
Moreover, the reaction time of a person varies ddpg on the task. If the task is performed frediyen
and becomes familiar, the response time is shtmter for situations which are new for the human. In
addition to these problems, pilots usually antitépthe future location of the aircraft and prepare
response for that state. In this experiment, fahgnwSammutet al [12], we decided to use a response time
of one second in each stage of the flight. We miettempted to model the pilot's predictive bebrav

As with DRDR, different sets of rules are createddach stage. In each stage, different knowledge
bases are created for each action. Therefore, yvadght knowledge bases have to be created for a
complete flight (4 control action, 7 flight stages)

The first stage of pre-processing is to segment#ia into the stages where they were recorded. To
make the segmentation of logged data easy, a neibuse has been added at the beginning of the
recorded data to show the record's stage humbeedBaen this attribute, the filtering program segtaen
the recorded data.

June 2008 Iranian Jonal of Science & Technology, Volume 32, Number B3

300 H. Shirazi and C. A. Sammut

The Cessna aircraft's control system consists of fooveable control surfaces (elevator, flaps,
ailerons, and rudder) plus the throttle. The valokethe control variables are continuous. Howetee,
learning algorithm can only deal with discrete slaalues. To solve this problem, a pre-processosésl
to sub-divide the variable settings into intervidiat can be given discrete labels. The range foh ea
partition is chosen by analyzing the frequency bé& toccurrence of the values. The method of
discretisation follows Sammut et al. [12].

b) Constructing new rules

After performing the pre-processing just describesth of the data files and the existing RDR for a
particular control action are used to extend theRRBing the LDRDR algorithm. LDRDR also uses a
priority list. This is a list of attributes whichreasorted based on their importance relative toattten.
There is a priority list for each control actiorhelpriority lists are described in the next secifomore
detail.

The algorithm extends RDR as follows:

Inputs: current knowledge base; behavioural traces; aipyilist.
for eachattribute in the priority list:
1. Compare the attribute's previous qualitative stetl its next qualitative state. If there is a
change (e.g. it was increasing and becomes sté#aely)
2. Create a test for the attribute. The test is basethe attribute's current value and its previous
qualitative state. The test always has the form:
attributeop. value
Whereop is ">=" if the previous direction was increasinmgd'<=" if it was decreasingValue'
is the value in the current record. The new tesipiglied to the cornerstone case associated with
the last rule that was satisfied to make sure ¢keis true for the current case but excludes the
cornerstone case.
3. Add the test into a condition list.
4. Attributes in the priority list are ordered by ammerical score. Increment the attribute's
priority.
5. If the number of tests in the condition list reaclaeuser defined maximum, scan the rest of
the attributes.and simply update their prioritiegtheir qualitative state has changed.
end loop

If the condition list is not'empty, create a ruledaadd it to the RDR. The conclusion of the rule
comes from the action recorded in the trace. Thieentirecord becomes the rule's cornerstone céme. T
rule will be added:as an exception to the last iuthe RDR if that rule is evaluated true (truarmsh). It
is added as an alternative if false (else).

The output of LDRDR is an extension of the origiR®R to cover cases in the input data that were
not covered by the original RDR.

) The priority list

A human expert usually only considers a small nunobeariables at any time [15]. To emulate this
behaviour, LDRDR limits the number of conditions pele. To avoid missing important conditions in
rule generation, LDRDR creates a priority list the actions. The expert can provide the prioriy ¢ir
LDRDR can use its default priority list. If LDRDReates the priority list, the priority of all atitites will
be initialized to zero at the beginning of learnitighe expert decides to enter his or her oworjgi list,
he or she can specify a set of attributes thatlveiltested first and the rest of the attributesbvéldecided
by LDRDR. The expert also has the opportunity teea list of attributes in order and let LDRDR aj=i
the list automatically.

Iranian Journal of Science & Technology, Volume 3Rumber B3 June 2008

Acquiring control knowledge from examples using... 301

There is a priority list for each control actiorh€be lists can be transferred from one stage tithano
During learning, the priority list is updated autminally by considering attributes that contribaiere in
rule generation (except for the attributes thatakpert decides are to be tested fir§t)e priority of an
attribute increments by one each time LDRDR notebange in its qualitative state. This list iwals
sorted by priority.

LDRDR chooses attributes from the top of the Wdter choosing the attribute, LDRDR looks at the
logged data to decide whether there is a changeeigualitative state of that attribute or not. Htteibute
will be included in one of the tests in the neweriflthere is a change in its qualitative statasfnocess
continues until LDRDR creates the maximum numbetests allowed or reaches the end of the priority
list.

5. CONSTRUCTING AN AUTOPILOT WITH PARVAZ

If autopilot rules can be built by induction fronxaenples why do .you need any other method of
knowledge acquisition? Although better suited tah5 for building control rules for dynamic systems
LDRDR still suffers from the problem that the rulibst it synthesises can be more complex than they
need to be. As we mentioned earlier, the main reésoinvoking LDRDR is when the pilot finds it too
difficult to reason about his actions, usually ituations that require rapid responses.

The manual knowledge acquisition part of this'ays(ERDR) is effective when it is possible for the
pilot to articulate rules related to his or herfpenance. These rules tend to be general in nandeif
they are not complete in themselves, they are afs#iul as constrains on the learning system. Tihes,
complexity of the rules is reduced.

Knowledge acquisition begins by applying some senples created manually by DRDR or by using
LDRDR to logged information. In both cases, rules be tested by running the simulation in autopilot
mode. During the flight, if the aircraft does notléw the expected path, the pilot is able to patise
flight and trace the rules that have been execotede currently being executed. The pilot is @bte to
modify existing rules that seem incorrect:by addieg rules. In this case, the previous and custitis
of the aircraft, plus all the simulations stateiafales, will be presented to the pilot. Also, detrules
under execution for each"control action will bearpd.

If the pilot decides to.create rules using LDRDR,dn she must fly the aircraft and record datasThi
task can be repeated as many. times as the pildswafter logging data, the log files are prepreses
and passed to LDRDR

The above procedure is repeated until a set ofesstal clones has been created. In our experiments,
knowledge bases.are created one stage at a tinehakb the advantage that rules constructed for one
stage can be transferred and adapted for otheesstuus reducing some of the effort required iarla
stages. The priority lists can also be transfefreth one stage to another or new priority lists &en
created for each new stage.

After every modification of the RDR (manually ortamatically), the flight simulation is run in
autopilot mode to test the new RDR. To do this,abée of the original autopilot is replaced by Ri2R
(translated into C). A C function is also incorgedhinto the flight simulator to determine the et
stage of the flight and when to change stages.apipeopriate set of rules for each stage is thesctad
from four independent if-statements in each stagevyery control action [3].

a) Analyzing rules

Information about the knowledge structure in thstey is presented graphically to assist the pilot i
understanding the current state of the knowledge.bBhe pilot may view the RDR either in text foam

June 2008 Iranian Jonal of Science & Technology, Volume 32, Number B3

302 H. Shirazi and C. A. Sammut

rules or graphically as a tree structure drawnt@nrhonitor. The tree may be traversed by moving the
mouse over the tree.

1. Drawing the trees and interpreting them as if-tien rules: Drawing the RDR's makes it easy for the
pilot to examine the rules from the root to eactendrhis option also provides the pilot with a ifieglfor
the size of the RDR and the number of refinemenés he or she has made so far. However, just by
looking at the RDR, it is difficult to get a del view of the knowledge bases or their complexity.

DRDR has the option to convert the RDR into a deniéist of if-then rules. In this case, each node
of a RDR will be displayed as a rule. This inclu@#ishe satisfied conditions from the root to thatle.
In our experiments we found this option very usébulusers when they needed to create new ruldesRu
are stored as C if-then statements. A macro, "THE2S'been added for readability.

2. Navigating through the tree and investigating ries: To investigate the rules for each control action
or to create a new rule for an action, the usert imarge knowledge not only about the state of thera,

but also about the rules. However, displaying tlesr or drawing the RDR.does not provide sufficient
information for the user to understand what hapbapd so _far or why the rules do not work properly.
DRDR has to provide more information to make thetert useful to'the user.

DRDR makes it possible for the pilot to investigaseh node by entering its number. In this cage, th
current status of the aircraft plus the conditisasisfying the lastirule are presented. Also, theclusion
reached and all the satisfied conditions are reda the pilot. The rule's number plus the nundfets
parent and children are also available. The pil@iso able to see the information about all tineskes.

b) Creating new rules

After evaluating the existing rules, if the pilatds a conclusion is wrong or there is no inteigiien
for the current situation then he or she is‘abladd new rules. To help, the system provides aofist
differences between the current state of the flagid the state of the simulation associated wi¢hlaist
condition that was satisfied. Choosing one or mamgables from this list guarantees the productiba
rule that will correctly interpret the new case hat the old one.

¢) Logging flight information

For those parts of the flight where it is difficéittr the pilot to diagnose a problem or suggestewr
rules, he or she can simply.show the correct adiiposwitching to manual mode and flying the aircraf
During the flight, the pilot's actions, along witte flight information are logged to a data fild€eTflight's
information is logged every second or when a chamgecontrol action has been detected. Thesecdata
then be used to construct rules using LDRDR.

6. TESTING THE SYSTEM

Ideally, we would like to test Parvaz using redbisi and a more realistic flight simulator. Lackamfcess
to real pilots and a higher quality flight simulatmade this impossible. However, since the aimois t
investigate the possibility of transferring an exjseknowledge into an automatic controller usimgvaz,
any user who can use the flight simulator to flg #ircraft and land successfully can be considared
have some level of expertise.

Parvaz was tested using three volunteers. Amonguhbgcts, only one of them, the first author, was
familiar with Parvaz, while another was familiartivia flight simulator. All subjects were postgratua
students in computer science. Their task was tatera set of knowledge bases using Parvaz thad coul
successfully complete the previously specifiedhfliglan.

Iranian Journal of Science & Technology, Volume 3Rumber B3 June 2008

Acquiring control knowledge from examples using... 30z

Prior to the experiments, the subjects receivedeatmur tutorial in the use of Parvaz and atteraded
demonstration. During the demonstration, the demnatws explained how he flew the aircraft and the
subjects were allowed to ask questions about igletfand the flight plan. They were allowed to pice
with the simulator until they became proficienffliying the aircraft. During the experiments theldaling
data were collected:

- the number of times that subjects interrupted ligatfsimulator to modify the knowledge base or

investigate it,

- the number of rules they created,

- the frequency of use of DRDR and LDRDR,

- the amount of time they spent creating rules,

- their comments about Parvaz.

All the subjects were successful in creating aoetles that could fly the aircraft through theen
flight plan. The size of the knowledge bases vadedsiderably from one subject to another one. One
subject took care to create rules for any posshbdée of the aircraft and thus produced a large RDR
Another subject was only interested in buildingea of rulessthat could fly the specific plan and so
produced a much smaller RDR. An interesting obdemaduring-these experiments was the reuse of
knowledge. All the subjects tried to use rules te@an an earlier stage if the task was similaisas
especially true when creating rules for the elensaiio stages three; four and five, where the rateated
for stage two were reused and modified by somepiarerules. Table 1 shows a summary of these data.

Table 1. Summary of the experiments

Subject : Subject . Subject .

P D L T P D L T P|DJ| L T
Stage . | 13 | 13 0 13| 5 | 13| O 13 5 |1C| O 10
Stage 2 8 10] 10/« ‘20 7 14 1 19 4 |8 3 11
Stage . 9 13 | 19 | 32 | 20| 22 | 10 | 32 5 |11| 5 16
Stage - 8 2C| 19939 | 7 | 17 | 5 22 3 12| 0 12
Stage 5 16 13<.26 39 38 44 44 88 5 |14 |2 16
Stage! | 21 | 26+ 27| 47 | 21 | 19| O 18 | 17 19| O 19
Stage | 20|19 | 30 | 49| 19 | 16 | O 16 6 |1C| 3 13

P: number of pauses, D:.number of DRDR rulespumber of LDRDR rules, T: Total number of rules

7. CONCLUSION

The work presented in this paper demonstrates ehsilfility of both uses of machine learning and
knowledge acquisition_methods in learning to cdn&ralynamic system. In particular, it shows that th
RDR methodology can be extended to domains wherexpertise involved is necessarily subcognitive.
This is demonstrated by the application of a comiam of ripple-down rules and machine learninghi®
task of acquiring piloting skills for an aircraft a flight simulator. It also showed a solutiornoteercome
the bottleneck of knowledge acquisition in someatyit domains which involves subcognitive skills.

There are several directions in which future regdeanight be continued.

- It was noted that thgilots in these experiments used DRDR as the primaryfawdjuilding rules,
but when the situation under analysis becomes domptex, LDRDR was invoked. A question of
considerable interest arises: is it possible tatifyathe point at which the cross-over occurs?

« While RDR's have proved to be effective in captyrihe pilot's knowledge, ideally a real pilot
should never see them. That is, the pilot's intemacwith the knowledge acquisition system
should be entirelywithin the cockpit, providing examples and comments just as an icisiru
would do, by pointing to instruments, etc.

June 2008 Iranian Jonal of Science & Technology, Volume 32, Number B3

304 H. Shirazi and C. A. Sammut

The robustness of LDRDR needs to be investigatetidy especially when noise, such as turbulende an
wind drift, are introduced into the simulator.

REFERENCES

1. Bratko, I. & Succ, D. (2004). Learning qualitativeodels.Al Magazine, Vol. 24, No. 4, pp. 107 —119.
Srdoc, A., Bratko I. & Sluga, A. (2007). Machinataing applied to quality management-A study irpgiepair
domain Computersin Industry, Vol. 58, No. 5, pp. 464-473.

3. Sammut, C., Hurst, S., Kedzier, D. & Michie, D. 929. Learning to fly. In D. Sleeman & P. Edwardsl (&
Proceedings of the Ninth Inter national Conference on Machine Learning, Aberdeen: Morgan Kaufmann.

4. Urbancic, T., & Bratko, I. (1994). Reconstructingnhan skill with machine learning. In A. Cohn (Ed.),
Proceedings of the 11th European Conference on Artificial Intelligence, John Wiley & Sons.

5. Kadous, M. W. & Sammut, C. (2005). Classificatioh multivariate time series and structured data gisin
constructive inductiorMachine Learning, Vol. 58, pp. 179-216.

6. Monzina, M., Zabkar, J. & Bratko, I. (2007). Arguntebased machine learningrtificial Intelligence, Vol.
171, No. 10-15, pp. 922-937.

7. Succ D. & Bratko (2000). Problem decomposition lbehavioral cleningLecture Notes in Computer Science,
Vol. 1810, pp. 382 — 391.

8. Yik, T. F. & Sammut, C. (2007). Trial-and-error tamg of a biped‘gait constrained by qualitativasening. In
M. Srinivasan & M. Dunbabin (EdsAustralasian Conference on Robotics and Automation, Brisbane.

9. Sammut, C., Kadous, W. & Sheh, R. (2007). Learimglrive over rough terrain. In K. Furukawa (Ed.),
International Symposium on Skill Science, Tokyo.

10. Bratko, I. & Succ, D. (2002). Using machine leaghtn understand operator's skilkecture Notes in Computer
Science, Vol. 2358, pp. 812 — 823.

11. Kadous, W., Sammut C. & Sheh, R. (2006). Autonomoargersal of rough terrain using behavioural ahgni
The 3rd International Conference on Autonomous Robots and Agents.

12. Sammut, C. (1996). Automatic.construction of reactcontrol systems using symbolic machine learning.
Knowledge Engineering Review.

13. Quinlan, J. R. (1993)4.5: Programsfor machine learning. San Mateo, CA: Morgan Kaufmann.

14. Mulholland, M., Hibbert;:D. B.;, Haddad, P. R. & Sawut, C. (1994)The application of the C4.5 classifier to
building an expert system for ion chromatography. Chemometrics and Intelligent Laboratory Systems.

15. Gaines, B. R. & Compton; P. (1992). Induction gfpie-down rulesProceeding of the 5th Australian Joint
Conference on Artificial Intelligence, Hobert, Tasmania.

16. Shiraz, G. M. & Sammut, C. (1999Qombining knowledge acquisition and machine leagriancontrol dynamic
systemsThe Fifteenth International Joint Conference on Artificial Intelligence (1JCAI-97), Nagoya, Japan.

17. Potts, D. & Sammut, C. (2005). Incremental learrdfiginear model treesMachine Learning, Vol. 6, No. 1-3,
pp. 5-48.

18. Dazeley, R. & Kang, B. (2003). Weighted MCRDR: darg information about relationships between
classifications in mcrdrThe 16th Australian Joint Conference on Artificial Intelligence (Al03). 2003. Perth,
Australia: Springer-Verlag, Berlin Heidelberg NeworK.

Iranian Journal of Science & Technology, Volume 3Rumber B3 June 2008

