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Abstract— Application of the network equivalent concept ésternal system representation for power system
transient analysis is well known. However, the draje to utilize an equivalent network, approxindaty a
rational function, is to guarantee the passivitytef corresponding model. In this regard, speeiahniques
are required to enforce the passivity of the edaiMamodel through a post processing approach that
minimizes its impact on the original model charast&s. In this” paper, the passivity is enforcegd b
expressing the problem in terms of a convex optiion problem that guarantees the global optimiaitism.

The convex optimization problem is efficiently setv by recentlydeveloped numerical interior—point
methods. This passivity enforcement is also glablich indicates that the passivity enforcement e o
region does not lead to passivity violation in othegions.

Keywords— Optimization, globally optimal (minimum perturbaii) solutions, global passivity enforcement,
network equivalents, power system components

1. INTRODUCTION

Applications of network equivalents for the reprasgion of external systems in production gradestim
domain electromagnetic transients programs resustgnificant reduction in CPU memory and run time.
A number of methods have been proposed for thetmani®n of a network equivalent. These methods
can be categorized into time domain equivalentfeegliency domain equivalent methods. The solution i
the frequency domain is essentially aimed to idgmttional functions that approximate the admit&n
matrix of the external system seen from the boundade(s). Among various fitting methods, the Vecto
Fitting (VF) has proved  its efficiency and accurafiyr different applications [1-6]. It permits
identification of state space models directly frite measured or computed frequency responses flor bo
single and multiple input/output systems. Althoifhcan lead to a stable and precise approximatien,
corresponding model may not be passive. A stahblenbn-passive network in association with passive
networks or loads may lead to an unstable systdrerefore passivity is a required property for a elpd
although its enforcement is a difficult task.

In [7-9] the passivity violation regions are deegttvia a purely algebraic method, based on the
existence of purely imaginary eigenvalues of asgedi Hamiltonian matrices obtained from the state-
space representation of a reduced-order model.rii@ibod overcomes drawbacks of the frequency sweep
method first presented in [10], for computationtted H, norm of a transfer matrix. The perturbation or
compensation stage to enforce passivity in [7] aandisplacement of the imaginary eigenvalues ef th
Hamiltonian matrix, based on the first-order pdsaiion theory and via an iterative perturbationesaé.
However, only when the passivity violations aresofall-signal nature is the method efficient, hauing
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least impact on the system behavior. Furthermbanes not provide any guarantee of a globallyrogti
(minimum perturbation) solution. In [8], the passivcorrection (compensation) is performed at the
frequency point of maximum violation in a non-paesiegion by slightly perturbing the residue matrix
based on the first-order perturbation theory. dlg shown in [8] that if only the diagonal elenseof the
residue matrix are considered for perturbationg plassivity enforcement is global, i.e. passivity
enforcement in one region does not lead to pagsnatation in other regions.

Passivity is also enforced by introducing the péiysicriterion as a constraint equation of a least
squares problem to be solved based on a Quadraiicaming (QP) approach, using Newton’s method
[11]. The constraint equation is formed based onnegative definiteness of the Hermitian part of the
transfer function, at the frequency points of tlasgivity violation regions, as detected via fregqyen
sweep. However this method cannot guarantee gfasalivity. To overcome this drawback, the procgss i
performed in an iterative manner, although it doatsreliably ensure passivity.

In this paper, the passivity enforcement problerivimulated as a convex optimization problem and
efficiently solved based on recently developed riotgpoint methods. The<convex optimization is a
special class of mathematical optimization probl@mshich the objective and constraint functions all
convex. While the theoretical properties of conegtimization problems have been well established,
their merits for practical applications are onlyghming to emerge. The main reason is the recent
developments of powerful interior-point methods: fpeneral .convex optimization problems. These
methods can efficiently solve large size problewih thousands of variables and tens of thousafids o
constraints, within a reasonable time, using a entisnal CPU. Moreover, the solution found by these
methods is guaranteed to be tiiebal solution irrespective of the initial point (which, indeatked not
be feasible). This is in contrast to the locallyim@l solutions produced by most numerical optinita
methods.

2. PROBLEM FORMULATION
a) I nput-output transfer function matrix

A linear time-invariant (LTI) multi-port system cdre converted into the conventional state-space
form as:

x(t) = AX(t) + Bu(t)

y(t) = Cx(t)+ Du(t)

where, x(t) 00" : the state vectony, y 00 P: input and output vectora, 00™", BOO0™P, cog ™™
and D 0O P*P, The number of ports and the dynamic order of the approximateticiurazep andn ,
respectively. Poles and residues of the system are detstrbly matriceA and C, respectively. The
input-output transfer function matrix of the system can be obtéined(1) as:

(1)

Y(s)=c(si-A)"tB+D )
wheresis the Laplace operator.

b) Rational approximation via vector fitting (VF)

In the frequency domain, the linear time-invariant (LTI) systé (2) can be represented by a rational
pole-residue model as

Y(s):ZN: R +D+sE 3)
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This model can be obtained by various approaches, e.yedtr Fitting (VF). Conceptually, VF is a
pole relocation technique where the poles are improved basedit@nadive process. This is achieved by
repeatedly solving a sequence of linear problem until conneegie achieved. The VF formulation avoids
ill-conditioning problems, and the formulation is given by simipéetions (instead of polynomials). In
[12], this approach is recognized as a reformulation of the SavattKoerner (SK) iteration [13]. The
orthonormal vector fitting technique, introduced in [14], improves nuakestability of VF by using
orthonormal rational functions. This leads to better conditioned equati@issignificantly reduce
numerical sensitivity to the choice of starting poles, and edtlte number of iterations, which in turn
reduces the overall computation time.

c) Definition of passivity

Passivity may be loosely defined as the inability of a giwestesn to generate energy. The precise
definition of passivity requires that the transfer matrpresenting the system admittance be positive real.
This condition requires that the Hermitian part of thendfer matrix be. nonnegative definite on the
imaginary axisij.e.,

i) =S lio+ v i o @

where ” denotes complex conjugate transpose. Condition (4) can be verifiemsoying that all its
eigenvalues are nonnegative at any frequency:

A(iwz0 Oajw)Di(c(je)now (5)

The direct application of the definition (5) for testing sy, however, requires a frequency sweep since
this condition needs to be checked at all frequencies. Thesre@dgtich a test, therefore, depend on the
accurate sampling of the frequency axis, which is notvéalkriask. For this reason, purely algebraic
passivity tests are highly desirable and will be described tiore¢.

3. CONVEX OPTIMIZATION
a) Optimization methods

The goal of this section is to highlight the potential nsesitthe position of convex optimization methods
with respect torother optimization methods.

1) The main general-purpose classical optimization methods inchieepest Descent, Quadratic
Programming (QP), Sequential Quadratic Programming (SQBgrabhge Multiplier (Kuhn-Tucker
Conditions), and Gradient Projection methods (Generalized Réd@reelient (GRG) methods). The main
feature associated with these methods is their capabilithatdle a wide variety of problems; the only
requirement is that the performance measures, along with onererderivatives, should be computed.
The main limitation of the classical optimization methodsthat they converge to locally optimal
solutions.

2)Knowledge-Based optimization methods have also been widely uspdvier system applications.
The main techniques in this category include Genetic AlgostiGA), Fuzzy Systems, Particle Swarm
Optimization (PSO), and Tabu Search (TS). A survey of thesaskie optimization techniques with
applications to power systems can be found in [15]. A sdigatire of these methods is that they require
only a few limitations on the type of problem, specificatiomsl performance measures. In this respect,
knowledge based methods are noticeably more flexible than ttsécelasptimization methods since they
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do not require the calculation of derivatives. The main dralvio a knowledge-based method is that it
provides a local, not global, optimal solution.

3) The most widely known global optimization methods are branctbandd and Simulated Annealing
(SA). The main drawback of these methods is that theg s@mificant CPU time for a realistic size
problem, as is the case for power system optimization problems

A convex optimization problem is a special optimization probl@enmwhich the objective and
constraint functions are all convex. In this respect, thergdieature of interior-point methods is their (i)
significant efficiency to solve convex optimization problerasd (ii) capability to obtain the global
optimum, irrespective of the starting point of the optima@afprocess. The initial point does not need to
be a feasible point.

b) Convexity and its properties

A setC is convex if the line segment between any two poinSlies inC, i.e. for anyx;, X, 1C
and any & with 0<6d<1 we havedk, +(1-6)x, JC. A function f is.convex on a convex set if
f(x+(1-8)y)< & (x)+@-8)f(y).

A convex optimization problem (or a convex program) is the magaition of a convex function over
a convex set. It can be shown that any local minimum of a gofuetion is a global minimum. The
affine functionsa” X + b, wherea, x are vectors antlis a scalar;quadratic functior®Rx (provided that
R is a symmetric positive semi-definite matrix), and noohsectors ¥|| (which include the Euclidean
norm, the absolute value, and the maximum value'of a set ofreé&mare samples of convex functions.

An upper bound on a convex function yields a convex.setf functionf is convex anda0 R, then
{x]| f(x) <a} is convex. A lower bound on a convexfunction is not a convex corstigeneral.

¢) Interior point methods

Originally IPMs were proposed by von Neumann [16], Hoffman €tl&l. and Frisch [18] based on
the logarithmic barrier method at almost the same timetia presented the famous simplex method.
However the main initiation in_the application of IPMs isoreled under the name of Karmarkar [19],
who came up with a novel IPM based on nonlinear projective trandforraghat were able to solve
large-scale linear programs (LP) up to 50 times faster thansimplex method. IPMs are usually
classified into: i)projective methods [19-21] based on Karmarkar's original algorithmaffine-scaling
methodq22] obtained as simplifications of projective methods, angiiinal-dualmethods [23, 24] that
have emerged as the most useful methods. The major primal-ciihbds are considered asith-
following methods.[23]potential-reductiommethods [25], anthfeasible-interior-pointmethods [26].

Among the different IPMs appearing in the literature [27], ithfeasible-primal-dual log barrier
methods are considered and referred to as the most effecése@nsolving large-scale problems [24].
The name infeasible-interior-point primal-dual is due to dlgorithm generating iterations which are
interior, with respect to the inequality constraints, but do noessarily satisfy the equality constraints.

A general framework for solving nonlinear convex optimization mnwisl using interior point
methods has been described in [23] and [28, 29]. The work presen8] extends the theory of linear
programming interior-point methods to nonlinear convex optimizgtimblems using the convergence
theory of Newton's method for self-concordant functions. In thisosewe briefly explain interior-point
methods for solving convex optimization problems that include ingguealnstraints as follows:

minimize fo(x)
subjectto f, (x) <0, i=1...,m (6)
Ax=b
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pxn

wherefo,..., f,: R, - Rare convex and twice continuously differentiable, AftdR """ with a rank ofA

= p < n. Interior-point methods solve problem (6) by applying Newton’thotweto a sequence of equality
constrained problems. We consider a particular interior-pdgdrithm which is called thebarrier
method The first step is to rewrite (6), making the inedyalonstraints implicit in the objective function,
as follows:

i e fO(X) + Zin:]ll —(fi (X)) (7)
subjectto Ax=Db

wherel_ : R - R isthe indicator function for real, non-positive

| (u):{o us<o

- 00 u>0

The basic idea of the barrier method is to approximate thesitadifunctionl. by a functiong.g.

I(u)=-(t)log(-u), domi’=-R,. ®)

wheret >0 is a parameter that sets the accuracy criterion forappeoximation. Similar td _, I_is
also a convex and non-decreasing function, and (according totlention) takes on the value ®f for
u>0. Unlikel _, however, | _is differentiable and closed; i.e. it increasesodoas U approaches 0.
Substituting |_ for I_in (7) results in:

minimize fo(x)+zinll—(]/t)log(— f,(x))

subject toAx = b, (9)

Function

Ax)=->" log(- ;(x)) (10)

with dom @ = {XD R”| f; (X) <Q,i= J.,...,m}, called thelogarithmic barrier or log barrier for (9). If
parametet is large, it is difficult to minimize functiof, + (:I/t)¢ using Newton’s method. The reason is
that its Hessian varies rapidly‘in the vicinity of the bounddrthe feasible set. This can be circumvented
by solving asequencef problems, formulated in the same form as (9), by increapagmetet (and
therefore the accuracy of the approximation) at each stepstartthg each new minimization process
from the solution‘corresponding to that valuet abtained from the previous solution. If the objective
function is multiplied byt, the equivalent problem can be considered as:

minimize tfo(x)+ ¢(x)
subjectto Ax = b (12)

which provides the same results. For O, XD('[) can be defined as the solution of (11). The central path
associated with (11) is defined as a set of pod%s), t >0, which are called theentral points Points

on the central path are characterized by the following nageasd sufficient conditionsxD(t) is strictly
feasiblei.e. satisfies

ACt)=b,  f(x'(t)<o i=1..m
and there exist¥ [J R” such that:
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0 = t0f, (x"(t))+ DAx“(t)) + ATV
(12)

~

=0, (x (1)) + gmmfi (x(t)) + ATv

From (12), an important property of the central path can be deas/&lows: Every central point yields a
dual feasible point, and hence a lower bound exists on the optitoal of p”as:

At)=- L . i=1..m VD(t)=% (13)

It can be shown that the pai(t),v"(t) is a dual feasible pair. Hence dual functig(ﬂiu(t),vm(t))
is finite, and

g0 °) = 1 () + 24701, (o) +v ) (ax ) -b)

= fo(xD(t))—i:1 t

This indicates that the duality gap is associated witft) and.the dual feasible pair(t), v™(t) is
simply m/t Therefore, we have

(14)

15)  f,(<(t)- p” < myt

ie., XD('[) is not larger tharm/t-(sub-optimal solution). This confirms the intuitive ideatthe(t)
converges to an optimal point &s- oo . This also suggests a very straightforward method for replvi
(11) with a guaranteed pre-specified accugcBy assuming = m/&, the equality constrained problem
can be solved by a Newton’s method, as

minimize  (m/e)f,(x) + ¢(x)
Subjectto Ax=0b (16)

whereXD(t) is computed for.a sequence of increasing valugsuttil t = m/e, which guarantees that-

suboptimal solution of the original problem is achieved. Thwpgsed algorithm for application to the
method is as follows;

Given:strictly feasiblex, t:=t® >0, g >1, tolerances >0

Repeat:
1. Setting the central path.

Computgm(t) by minimizingtf, + ¢, subject to Ax = b, anstarting at x.
2. Updatec:= x(t).
3. Stopping criterion. quif M/t < e&.

4. Increase t as follows:
t=pt, (u>1).

The highlights related to the choice af and t‘© have been discussed in [30]. Primal-dual interior-
point methods are often more efficient than the barrier methpdciely when high accuracy is required,
since they can exhibit a better convergence rate than tiyamethods [24, 31].

The well-known BPMPD solver version 2.21.1 [32] is arcidifit implementation of the infeasible-
interior-point primal-dual method for solving QP problems. BEMP21.1, consisting of approximately
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15 thousand C source lines of code, is a highly sophisticated and-gablain solver. It has been
developed by C. Meszaros [33] and recently implemented in MATPRV2E] via a MATLAB MEX
interface. BPMPD is based on Methrotra's predictor-corr¢g8&rand has been equipped with warm-start
producer and sparse techniqueke values foru andt©® are internally selected by the solver. In this
paper, the passivity enforcement problem is first formulatedQuadratic ProgrammindQP) problem,
and then it is solved by an efficient implementation of isitda-interior-point primal-dual method,
through the BPMPD solver.

4. PASSIVITY ENFORCEMENT PROBLEM

In this section, the passivity enforcement problem is formulageal @onvex optimization problem and
solved by using interior-point methods. As described in aedtiC, the passivity criterion implies that
eigenvalues of the real part of the admittance matere positive for all frequencies:

eig(Re{i Ry +D+sE) >0 a7

~s-a

m

This criterion can be enforced by perturbing the model parantstarsninimizes its impact on the
original modelj.e.[11]

AY :ZN:SA_R; +AD.[10 (18)
eig(Re{y + ZN_: SA_R; +AD}) >0 (19)

This leads to the following convex optimization problems guadratic form of [11]

minimize AX'A . A, AX
subjectto B, Ax<c (20)

or in alinear form of
minimize A, AX
subjectto By Ax<c (21)

where vectorincludes magnitudes of eigenvalues of the real pa¥t af all frequency points, anl
includes coefficients of residues (elementsRpfand constant terms (elements @f at all frequency
points. Bss[11] can be computed only at frequency points where passivitgtions are detected via a
frequency sweep. This method cannot guarantee global passivity Bijade to be evaluated at all
frequency points within the approximation range. However, passhotgtions may appeavutsidethe
fitting range. This drawback can be overcome by accuraéetitat of passivity violation regions via the
pure algebraic method described in section V. If the region(passivity violation is(are) outside the
fitting range, the inequality constraint can also be exédnd those frequency points. Thus, the global
passivity is ensured. This approach may result in a lamge mioblem, however, it can be efficiently
solved by interior-point methods. Therefore the following atbariis proposed to enforce the global
passivity.

« Detect the passivity violation regions (section V).

« Set up the convex optimization problem.

* Solve the convex optimization problem via intepomt methods.
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*Check the passivity violation (section V). If the$d are passivity violation regions, repeat the
process.

5. CHARACTERIZATION OF PASSIVITY VIOLATIONS

With respect to the proposed algorithm of the previous sectiongeg to precisely identify the passivity

violation regions. Hence, in this section we introduce @lgualgebraic method based on Hamiltonian
matrices associated with the state-space realizaftos. technique was first presented in [10] and then
used in [8, 9]. Let us first recall the definitions of tHamiltonian matrices for hybrid cases (with

emphasis ofY form for network equivalent applications)

V=g et [_ar Jea o)

(22)
_(A+BQ™'C BQ'B’
- ( _CTQ—lc —AT - CTQ—lBTj
whereQ = (2d -D- DT).
N; is a Hamiltonian matrix, indicating that
D _{ 0 Ij
J 7 Ny;J=-N; whereJ =
-1 0
and " denotes transposeN s depends on scalar parameterwhich is related to the spectrum of
frequency-dependent eigenvaluesrofind expressed by the following theorem.
Theorem: AssumeA has no imaginary eigenvaluéss not a singular value c(iD +DT’ )/2 anda, OR.
Then, 6 is an eigenvalue o6(ja) if and only if (N5 — je,!) is singular[10].
A passivity test can be readily designed by using the @rigwel 6 =0 and hence

Ny-o = (A‘ 8D +D")"C BD+D")'B j (23)

~c'(p+D")J'c -A"+CT(D+D)'B

On the other hand, pure.imaginary eigenvaluel obrrespond to the exact locations where the real
part of the symmetric admittance matrix becomes singtlitae.main feature of this technique, based on
the Hamiltonian matrix, is that it is independent of frequency.

6. COMPUTED RESULTS

In this section a practical example will be presentedeimahstrate the accuracy and efficiency of the
interior-point methods to solve the passivity enforcement prolidemulated as a convex optimization
problem.

Example: In this example the proposed method is examined on a samplbuistrinetwork where the
passivity enforcement of the terminal admittance matkithe system is searched. The network data is
provided in [36]. The distribution system has two 3-phase buses shovnahyg B in Fig. 1. The 6x6
admittance matriy is calculated for this system in a frequency range of up t&k#@0 To increase the
calculation efficiency, all elements ¥fare fitted with a common pole set.
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Fig. 1. Power system distribution system
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Fig. 2. Fitting of magnitudes by VF

In this fitting process, 50 complex pair poles are selecteteinitial poles. Figures 2 and 3 show the
fitted magnitudes and phase angles of the elements of thed&xieance matrixY through an improved
versionof VF [36].

Figure 4 shows the frequency spectra of the six eigenvalues of ithitaade matrix. As shown in
Fig. 4, passivity violations occur at about 3 kHz. By using Hamian matrix theory the non-passive
region is detected to be between [29.237, 29.736] kHz. Figumeviésspassivity enforcement via interior-
point methods. The global passivity is enforced by the firsdtitsn. This example has been examined via
the quadprog routine. The results of this study which corresfmpdssivity enforcement show that the
adopted IPM method can provide the same degree of accuraey &8 @chieved by an active method,
however, the IPM method performs the computation more thanywerds faster.
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Fig. 5. Passivity enforcement via interior=pointthwls; solid curves: original model characteristlsfore
passivity enforcement), doted curves: model charatics after perturbation

7. CONCLUSION

This paper demonstrates that optimization can be useshforce the passivity of rational functions
employed to approximate a power network (or components) equivdleatmethod yields a globally
optimal solution with -minimum perturbation and a high degree fafieficy. The efficiency is achieved
based on the utilization of the recently developed interior-pogthaals. In the application of this method,
first the Hamiltonian matrix theory, which is a purely algebraiethod, is employed to find the passivity
violation regions. Then the global passivity is ensured by exteritimgnequality constraint, used in a
convex optimization problem, to all the frequency points in tbguency range of approximation.
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