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Abstract— Flight dynamics of the guided vehicle is modelled by the aid of linear and angular
equations of motions using Lagrange's approach in this paper. Governing equations of the control
system and the elastic behavior of the vehicle are added to the equations of dynamic states.
Flexibility effect is modelled using the normal modes, generalized coordinates and forces. For
validation of modified FORTRAN simulation code, the stability of specific vehicles is determined
and compared with the same results in the literature. Using this code and by solving the governing
equations for the desired flight vehicle, the aeroservoelasticity is analyzed and then the results are
compared with the rigid cases and with the flight test data. Errors induced to control system
sensors are shown in the figures. Good compatibility is achieved between the simulation and the
experimental results. Fast Fourier transformations (FFT) is used for extracting the structural
flexibility frequencies from the elastic simulation and flight test data.
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1. INTRODUCTION

Due to the geometric and configuration restrictions, it is usually necessary to install the navigation and
control systems far from the center of gravity in guided flight vehicles. The elastic behavior of these
vehicles can cause aeroservoelastic instability or deviation from the desired flight path. Control sensors
measure erroneous signals and cause the instability problems in operation of the system due to these
effects. It is necessary to improve and modify the governing models and to compensate the errors. N-
degree of freedom flight simulation must be used to consider the behavior and the trajectory of the flexible
flight vehicles. It is also necessary to derive the complex equations of motion containing the elasticity
effects.

Linearized equations of motion for spinning missiles were derived by Crimi based on Lagrange's
approach [1]. He ignored the structural damping due to over-estimation of computations. For the non-
spinning variable-mass rockets (considering the propellant consumption effect), acroelastic stability was
considered by Meirovitch and Wesley [2]. A closed-form approach was developed for determining the
static aeroelastic instability of non-spinning rockets flying in the plane without using the full-expanded
equations and only by applying the structural effectiveness coefficient by Elyada [3]. Meirovitch and
Nelson [4] combined the flight equations with the elastic ones by using Lagrange's method to consider the
stability of the spinning elastic flight vehicles. Platus considered this effect for the spinning rockets and
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proved that in some special cases, the structural damping can cause instability of the spinning missiles [5].
A semi-empirical method was developed by Schmidt for deriving the aeroelastic equations of various
flight vehicles in terms of vibration modes [6]. This method was used later for deriving the governing
equations of the spinning rockets. Haddadpour derived the equations governing the rigid and elastic
motions of an elastic flight vehicle in the presence of the control system by using Lagrange's method to
determine aeroservoelastic instability [7]. He used the modal analysis and the generalized coordinates and
forces to drive the equations of motion in the time domain and then transferred them to the Laplace
domain. He derived an analytic equation by using Routh criterion to analyze the elastic stability of the
slender flight vehicles. Pourtakdoost and Asadian derived the nonlinear equations of motion for the elastic
missiles [8]. They used the non-uniform beam model under the axial force for deriving the bending
vibration equations. Thrust effect in the boost phase of the flight on the vibrational characteristics has also
been studied. The effect of structural damping on the chaotic behavior of nonlinear panels in supersonic
flow was considered by Pourtakdoost and Fazelzadeh [9]. They considerd the nonlinear governing
equations based on Von Karman’s large deflection of isotropic flat plates with structural damping. A first
order piston theory was utilized for determining the aerodynamic panel loadings. The Galerkin approach
was used to transform the nonlinear governing equations into a set of nonlinear ordinary differential
equations. The resulting system of equations was solved through a numerical integration scheme. Chaotic
analysis was performed using several criteria, results indicate that structural damping highly influences the
panel stability boundary and limit cycle amplitude as well as the domain of the chaotic region. Local
bifurcation of the attitudinal dynamics of the torque free rigid body motion was discussed by Shirazi and
Ghaffari-Saadat [10]. Hamiltonian formalism was used to express equations of motion in this paper. To
simplify attitudinal dynamics of a rigid body, six dimensional state space was reduced to a two
dimensional one by Andoyer canonical transformation. Non-dimensional parameters of the system were
defined and the effects of change in these parameters on the structural stability and the equilibrium points
of the reduced space were discussed. The Poincaré surface of the section in the reduced phase space and
heteroclinic orbits were derived. Based on the non-dimensional parameters of the system, two and three
dimensional bifurcation diagrams were achieved. The study showed that the various types of structural
stability could be achieved for torque free rigid body attitudinal dynamics by changing the relative
magnitudes of the principal moments of inertia.

The equations of motion for an elastic flight vehicle are derived based on Lagrange's approach and
generalized forces and coordinates in the present work. Modal analysis, slender body theory and classical
approaches are used for the structural, aerodynamics and control system analysis, respectively. The
prepared flight simulation code is executed for the cases presented in the literature after linearization of
the equations. Finally, the simulation code is executed for the desired specific flight vehicle to determine
the flexibility effect on the control system and the flight path and then the results are compared with the
flight test data.

2. LAGRANGE'S EQUATIONS

General form of the Lagrange's equation for the generalized coordinates and forces is as follows:

QI

d(@TJ oT oU oD
——t—+—=
oq, 0q, 0q, (1)

di\ g,

where T is the kinetic energy, U is the potential energy, D is the Rayleigh dissipation damping function
and q; is ith generalized coordinate. Lagrange's equations in body-fixed coordinates are as follows [1]:
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In the above equations, (u,v,w) are linear velocity, (p,q.r) are angular velocity, (M, My, M,) are

moment and (Fx, Fy, F,) are force components in the body coordinate axis. Displacement of each element
of the vehicle in terms of the normal vibration modes are as follows [11]:

0=36,,(0)

n 4
5y = Z(pi(x) n,(t)

5,230,060

where @,(x)is the ith normal bending mode shape and 7,(f) and £, () are the corresponding
generalized coordinates. Also, @,(x) is the ith torsional vibration mode and y,(¢) is the corresponding
generalized coordinates. By considering the vehicle as a beam and using bending and torsional vibration

differential equations [12], the displacement of each element of the vehicle in accordance with Fig. 1 will
be as follows:

e.=0

X

. Q)
e,=0,-20,=Y (o,n,-26,7,)

i=1
e,=0,+y0,=> (9.5, +¥0,7,)

i=1

where 0 _, 5y, 0. are the position vector components of the displaced point after bending and e , ey , ¢,
are the position vector components of the displaced point after torsion.

(R
v
Z

Z v O,

Fig. 1. Section of elastic vehicle in body fixed coordinates
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3. KINETIC AND POTENTIAL ENERGIES AND DAMPING FUNCTION

In Fig. 2, relations between the position vectors of each point are as follows:

|

where Eand R are the position vectors of the vehicle center of gravity and each point of the deformed
body in the inertial coordinates respectively. 7, and 7 are the position vectors of each point of the vehicle
before and after deformation in the body coordinates respectively. Kinetic energy due to the rigid and
elastic motions is as follows:

(6)

N

-k
=,

Q) Ny

+
+

—l ﬁ @ _l 2 l 2 2 l 2 l 5 q2+r2 n N l n )
T_zjm dr|,” dt ,d —sz,.V,+21(r +q )+21xp +2[p = j;J,y,+2;le+
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22M (07482407 (S 40+ (a6, —rn ) =2p (16~ ) )
i=1

where I, and I are the vehicle moments of inertia about the longitudinal and the lateral axis respectively.
M; and J; are the generalized masses correspondent to the i" bending and torsional modes. Potential

energy is computed as follows:

2 2 2
1 %3, 0% 1 e 1 NRTPAYEL <
. : 2 @D S M D (P +2 )= Ty ®)
U ZLEfl[axz] +(8x2”dx+2£m[ ]dx 21_221 Jof (07 +67) 2,2:. VY

Ox

where EI is the bending and GJ is the torsional stiffness of the vehicle respectively. Rayleigh dissipation
function will be achieved in terms of the generalized force and coordinates [12]:

D= %Z 2,0,M, (i + gf)+%i2oi\vimf ®
i i=l

where 4, and v, are the ith bending and torsional modal dampings respectively. Generalized forces in the
right-hand side of the Lagrange's equations are as follows:

0, = [ f,(x.0p,(x)dx

O = [ /.(x.0)o,(x)dkx
0, = [ m(x.06,(x)dx

(10)

where m, (x,7) is the distributed longitudinal moment, f, (x,7)and f,(x,¢) are the distributed side and
lift aerodynamic forces respectively. After determination of the kinetic energy, potential energy, Rayleigh
dissipation function and generalized forces, extraction of the equations will be presented in the next
section.

4. ELASTIC DEFORMATIONS

Using the virtual works, kinetic and potential energies and putting them in the Lagrange's equations and
defining n, , ¢

i

and y, as the generalized coordinates, we will have:
. . : . 1
i, + 20,00, = 2p8, + (02 = p* =1, +(ar - p)S, = Gty (o dx (1)

Iranian Journal of Science & Technology, Volume 33, Number BS October 2009


www.SID.ir

Aeroservoelastic behavior of supersonic... 429

éi +2Hi('0iéi +2pn; +((Di2 -p’ —qZ)Ci +(qr+p)ni :ML Isz(th)‘Pi(X)dX (12)
2 2
o200y, +[w? —p-4 ;r in :JLJ.Lm(x,t)Oi(x)dx (13)

Fig. 2. Inertial and body fixed coordinates

5. ANGULAR VELOCITY EQUATIONS

Lagrange's equations for the moments shown in relation 2 are written in the body fixed coordinate system.
Putting the kinetic energy equation into those relations and assuming 7, =/, =/ results in:

([x +Zn:‘]i7i2 +Zn:M,-(77i2 +§i2)jp+2(zn:*]i7i7i +zn:Mz(44 +177, ))P
in1 i1 i=1

i=1

- wflic~ém)+lan—r ot -rn)=u, (14)
(1 -1, +§M,.§f +;in214yi2]q + pr([x -1 +ZM,.§3 +;i]i;/fj
+(pg- f)g McCn, + 2q§ MEC - 2r§ M, + qg Jyi =M, (15)
[1 ~1,+ ZM;U;Z +i%7f) + pq(l -1~ ZM;U;Z —;i%ﬁ]
—(pr+ q)i Mpnc, + 2ri Mun, - Zqi Mcén, + ri Jyy, =M. (16)
= = = =

where 7, =mx, is due to the displacement of instantancous center of gravity relative to the origin of the
body fixed coordinate.

6. ANGLE OF ATTACK EQUATIONS
Similarly for the angles of attack, putting the kinetic energy equation into the relation 3 results in:

m(u +gw— rv) =F,

an

m(v +ru — pw)= F,,

m(w+ pv—qu)=F,

ezb

The forces in the right-hand side of these equations are derived in the body fixed coordinate system.
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7. EXTERNAL MOMENTS

Moments in the right-hand side of the equations 14 to 16 are the summation of the external moments due
to the aerodynamic lift, control and thrust forces. Moment equations are derived as follows:

m_ n

M, == [ (L, (50) L, (5,) [ 5, [P #9000, (3, ) T, 40 (18)

M, =—j xL, (x )ou(x ¢ )dx +§xkaa (x,, )o(x,, ) +FTZ;C (1)9,(x,) —FTergg(t)(pl’.(xT)
+Fijlgi<t)(pi(xl,)+M; (19)
M, == [ xLy(x)B(x t)dx —gxkaB(xwk)B(xwk,t)—ann,(t) ¢, (x,)
~Fnty 3,00 57)~F 30, 00,5, ) M (20

where x,, is the distance of k" row of wings, xpand x, are the distance of drag and thrust resultant
forces acting points from the center of mass respectively. r, is the area element distance from the root
on each wing of the k" row. M¢, M yand M are the control moments.

8. EXTERNAL FORCES

Forces in the right-hand side of 17 are the summation of the aerodynamic lift, control and thrust forces.
Force equations are derived as follows:

F;xh = Flllc + FAx + Frc (21)
Feyb = _I Lﬁ(x)ﬂ(xz )dx — Z Lﬂw ﬂ(xwk ,l)+ ijz n,(t)o; (xz')+ FAXZ 17.(t)o; (xu) + Ftc (22)
=1 i=1 i=1
Fop == [ Li@a@0de=Y Ly, alv, 1)+ F.Y £, 0)()+ F Y £00) () +E (23)
k=1 i=1 i=1

9. AEROELASTIC DEFLECTIONS

Considering equations 10 and using the Egs. (21) to (23), the elastic deflections are derived as follows:

[ mx06,(0dr =-336,(x,, )L L., 0, )+ Lo, G )l [+ 7,06, (0))da,, (24)

k=1 i=1

[ £,G00,)dv =~ [ L0)BG.00, e =D Y L (x,. )0, )

L WAOTACHTCH RN WAOTACHIACH 25)
[ £.e00,dv=-[ L, at.no,@d - Y 3 L,(x, .1)o,x, )+
F, z g, (0] (x'/' )(Pi (x'/‘)+ FAXZ ¢,09; (x/))(Pi (x/)) (26)

10. SUMMARY OF EQUATIONS

Expansion of a(x, 1) , B(x.1) over the length of the vehicle and also expansion of a(xwk ,t), ,B(xwk,t) at the
installing position of the wings are as follows:
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Assuming L, (x) = L;(x), the following parameters are defined:

[ L., (0dx = [ L, ()0, (x)dx =1

[ %L, (1), ()dx = [ xL,(x)g, (x)dx = I

[ L0 ()= [ L,(x)g](x)dx =14 (28)
[ %L, ()9} (0)dx = [ XL, (x)g] (x)dx = 1

[ L0} @)= [ L,(0)9] (x)dx =1}

[ L, ()9, (000; (x)dx = [ L, (), ()9} (x)ex = I

In order to track the path of the vehicle, the translational equations of the motion of the vehicle must
be transferred from body fixed coordinate system to the inertial coordinate system by using a transfer
function. Transferring of F, to F, is as follows:

F,=C.lF, (29)

Using the Euler parameters, one can write for C}, as follows:

a’*+b*+c*-d’ 2(bc — ad) 2(ac + bd)
C} =| 2(ad + be) a’>-b>+c*-d? 2(cd — ab) (30)
2(db — ac) 2(ab + cd) a’>-b>-c*+d’
where a,b,c and d are the Euler parameters (quaternions).
By using the above definitions for driving the forces in the inertial coordinates we will have:
Fvexb=F‘Ax—‘r_F‘II!c_i_Fv)rC (31)

Fou = 3005 =5 00K + 33 0L, (5, Joils, )~ 233 0,0, (5, oo, )+ 3m 001, ),
i=1 i= 1 i=l

1
k=1 i=1 Uiz

+Z77i(t)(P;(xL>)FAx+FAy+F;'y_rJTl+ch (32)
i=1

F, = 24@)1; - %Zc: OF+3 3¢ OL, ol )- L3508, (5 o (s, )+ Z 09! (x, )F,

k=1 i=1 k=1 i=1
+Z§i(t)(P;(xl))FA,\'+FAz+Fl'z+qJ'I'1+cm (33)
=
Exl Fexl) FGx
F, |=Cy| F,, |+| Fs, (34)
le Fez/z FGz

October 2009 Iranian Journal of Science & Technology, Volume 33, Number BS


www.SID.ir

432 M. Fathi et al.

Finally, the governing state differential equations will be as follows:

X(t) =Vy
Y@y =V, (3
Z(t) =V,

(36)

p(0) = {M M+ Y L 00, )} /lx

k=1 i=1

. in 1 i” .
q(t): |:MA):+(1_1x_lm)pr+M'l'), F +xch;b 14Z§L(t)+;122 é’z(t)_
i=1 i=1

33 L Jolle, Jo0 0 3 1 o, o, 03 €000 (1) - 37)

k=1 i=l U k=1 =

i;(t)(p;(xT)xTFTx +Z§1(t)(pi(xD)FAx:|/(1 _lm)
r'(r)={MA..+(1x—1+1m)pq+MT..—rFJ2+x Fyy+1, Zn,(t) 71 Zm(t)+
iix"‘"kllﬁ\""k (x k) 1( M)U(t)_i > i ( /()(Pl(xwk )’?i(t)_znx(t)(px(xT)FTx_F

U k=1 i-1

i n,(t)o, (xv')x'/'F/'(x) - Z UGN (xl))FAx:|/(I - Im)

n

{ a,l +Zg(z)1 ——Z;(z)] +1 4 iZLM (x, )eron, 0, (x, )+

k=1 i=1

&)=

I

>3 Lo, (5, )o, <x><p<x>4<r>—fZZLm(w)cpl( KO0+ LY Y L o ()

k=1 i=1 k=1 i=1 k=1 i=1 (38)

£ ¢,00, 0, )0'(x, ) +Z 100, (xp o' (xy )F} ~2p,0,4,0-2p1 ()= (07 = p* ), (1)

i, (1) = { Bl +Zf7(t)11—f277(t)1 - ;;Lﬂm(u‘)ﬂw,(w,)

D WINCRTIOTICTACESD 3 WIS G LN NOFES 3 WAy G
+Z;n,(t>mf(xrh +Zn 09, (x, )o; xn)FAx} 2,05, - 2p¢ ()~ (@7 ~ p* 0, (1)
7.0=7 {MAJ;;LW 02 (x, )y(r)} 20,0, 70w} - p* (1)
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alr) = —% [6) p(1) + (D)) + d(D)r (1))
by = - % [a))p(1) + cOr(6) — d(D)g(0)] (39)

) = % [a(0)g(6) = b0y (6) +d (1) p(1)]

d(r) = % [a(e)r@) +b()q (1)~ (1) p(1)]

The above mentioned equations define the elastic vehicle motions and by solving them with a fourth
order Runge-Kutta method, forces, moments, elastic deformations, angular and linear velocities of the
vehicle will be determined in the time domain.

11. CONTROL SYSTEM MODELING

For determinig the interactions of structural flexibility, acrodynamics, control system and flight dynamics,
it is necessary to add the model of the control system to the aeroelastic one. In this specific vehicle, there
are three control channels. Channels one and two are from the tracking type. Channel three is from the
regulatory type. Channels 1 and 2 have two control loops.

The internal loop is for stabilizing the vehicle about the lateral axes. The outer one is for keeping it on
the desired trajectory. In this vehicle, the lateral acceleration commands are the control variables named
C1 and C2 respectively. Figure 3 indicates the vehicle body fixed coordinates and the positive directions
of the commands. C1 and C2 commands are executed by channels I and II. Channel III is responsible for
preventing the vehicle from rolling.

Fig. 3. Fin numbering, axis and command directions in body
fixed coordinates (Aft view of vehicle)

12. CHANNELS I AND II (PITCH AND YAW)

Control loops for these channels are shown in Fig. 4. In each internal stabilizing loop, there is one rate
gyro for measuring the vehicle angular velocities about y or z body fixed axes. Each outer loop has a
linear accelerometer which measures the vehicle acceleration in the y or z directions. The transfer
functions of the accelerometers and the rate gyros are given in Tables 1 and 2.

Lrcelerome ter

Fig. 4. Closed-Loop control system for channels I and II
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Table 1. Transfer functions of accelerometers

Item

Accelerometers

Transfer function

o,
g
s* +20,8,5s+0]

Table 2. Transfer functions of rate gyros

Item

Rate gyros

Transfer function

|

o;
s* +2m,c,5+ 0>

Control loop for channel III is shown in Fig. 5. This channel is simpler than the channels I and I,
because it's only function is to stabilize the roll of the vehicle. The transfer function of the free gyro is
presented in Table 3 and for the actuator in Table 4.

i, =0
M Gein

-

Actuator

-

Limiter

34
o

Transmussion

Raio " Vehicle

g,

Fiee Gyro

Fig. 5. Closed-Loop control system for channel I1I

Table 3. Transfer function of free gyro

Item

Free gyro

Transfer function

o 1
! 1+t;s

Table 4. Transfer function of actuator

Item

Actuator

Transfer function

g( S+27,, j
“ (S+pl)(s+p2)

13. VALIDATION OF THE CODE

It was necessary to verify the generated code by simulating the flight dynamics of the two cases given in
Ref. 5. The required parameters of these vehicles were derived from the data presented in the reference.
Dynamic pressures equivalent to the static aeroelastic instabilities are determined by executing the
modified flight simulation code and the results are tabulated in Table 5 in comparison with the results of
Ref. 5. The results of this simulation are also shown in Figs. 6 and 7.

1.1E+06

1E+06

400000

— - — - qURIgasltels)

4 EB rtie valizla)

£00000

700000
E 600000
<F s00000
400000
200000
200000
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Timefsec)

Fig. 6. Divergence dynamic pressure for vehicle A
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o
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4,,{Elastic Vehicle)
— - — -~ 4 (Rigid Vehicle)

05

P T T T T [V T T [ M A A
g 3

15

25

Time(sec)

Fig. 7. Divergence dynamic pressure for vehicle B

14. RESULTS

Structural flexibility of the vehicle at the sensor positions causes measuring extra angular velocities and
lateral accelerations. For considering these effects, it seemed necessary to analyze the time variations of
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the angular velocities and lateral accelerations resulting from the modified flight simulation. Validation of
the modified code before applying to the desired flight vehicle was necessary. Modified flight simulation
code was executed for the cases presented in Ref. 5 and good compatibility was achieved which proved
the validity of the prepared code. First bending and torsional mode shapes and their related frequencies
were determined using fem code as input to the simulation program. Also, slope curve of bending mode
shape was inputed to the program using the prepared fem code. For executing the FEM code, it was
necessary to determine the distributed properties of the desired vehicle. These distributed properties are
shown in Figs. 8a and 8b. The curves derived from the code are shown in the Figs. 9a to 9c. Initial values
of the time dependant elastic deflection functions are presented in Table 6. The first bending and torsional
mode frequencies and damping coefficient are presented in Table 7. The simulation results for elastic and
rigid vehicles are plotted and compared with the flight test data. Time histories of the angular velocities
for these three states and for one channel are shown in Fig. 10a. These three curves are quite compatible
but the fluctuations due to structural flexibility are obvious in the elastic simulation and flight test data.
Part of these curves are shown in Fig. 10b for better judgment. Time histories of the lateral accelerations
for the 2™ channel are presented in Fig. 11a. The above mentioned explanations are valid for these
accelerations too. Part of these curves are also shown in Fig. 11-b for better comparison. Fluctuation
frequency of simulated roll rate matches the resulted torsional modal analysis frequency. Time histories
of the roll angle and roll rate are presented in Fig. 12. Simulation program was executed for the elastic and
rigid cases to present the flexibility effects on the desired flight path deviation. The results are shown in
Fig. 13. Fast Fourier Transformations (FFT) on the data of the 2™ channel's rate gyro and accelerometer
are shown in Figs. 14a and 14b for extracting the structural flexibility frequencies from elastic simulation
and flight test data.

Table 5. Comparison table for dynamic pressures
equivalent to aeroelastic instabilities

Vehicle q div (N/ m’ ) Reference
Test Case A 1.149¢6 Elyada
Test Case B 6.576€5 Elyada
Test Case A 1.013¢6 Present Work
Test Case B 6.700e5 Present Work

Table 6. Initial value of parameters
for time functions

Parameter Initial value
Mo 0.2

Mo 1.0

Co 0.2

¢, 1.0

Yo 0.0005

Yo 0.0

Table 7. First bending and torsional mode shape frequencies
and their damping coefficients

Item | v n o(rad/s) | wy(rad/s)

Value | 0.05| 0.05 90 1639
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Fig. 11a. Lateral acceleration of Channel II
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15. CONCLUSION

Elastic equations of motion for a flexible flight vehicle were added to the equations of rigid body motion
and control system states. Validation of the generated flight simulation code were approved by solving
these equations and applying them to the special cases presented in Ref. 5 and comparing with the flight
test data. In the next step the code was executed for the specific vehicle under consideration and the results
were presented in the tables and figures. As seen from the angular velocity and the lateral acceleration
curves, there is acceptable coincidence between simulation and modal analysis oscillation frequencies. It
is shown that the structural flexibility can cause a considerable deviation from the desired flight path in
two planes. These deviations were derived and shown for their importance.
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