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Abstract– Three-dimensional numerical simulation of the cross-stream migration of a drop in 
simple shear flow at finite Reynolds numbers neglecting the gravity influence is presented. In this 
study the full Navier-Stokes equations are solved by a finite difference/front tracking method. A 
drop is shown to migrate to the centreline of the channel in a shear flow. In other words, the centre 
of the channel is a global attractor of trajectories of a drop, regardless of the initial position and 
velocity. The migration velocity of the drop depends on surface tension and fluid velocity. 
Increasing the Weber number and decreasing the Reynolds number decrease the time of the 
migration to the centreline. The study showed that after an initial transient period the drop leads 
the local undisturbed velocity, for all cases. While time progresses, the velocity of the drop along 
the flow direction (x) decreases, whereas the velocity of drop along the flow velocity gradient 
increases. When the x-velocity reaches the local undisturbed velocity, the slip velocity tends to 
zero, except during a short initial transient. The slip velocity is the difference between the drop 
velocity and the ambient fluid velocity at the centre of the drop for the undisturbed flow. To 
validate the present calculations, some typical results are compared with the available 
experimental and theoretical data, which confirm that the present approach is qualitatively 
reliable in predicting the drop migration.           

 
Keywords– Drop migration, shear flow, front-tracking method, finite difference method, Reynolds number, Weber 
number  
 

1. INTRODUCTION 
 

Many flows contain buoyant particles that are rigid or deformable. Polymer flows, fuel sprays and the 
motion of red blood cells are some such examples. In polymer processing, the concentration of particles 
across the channel is of great interest. The cross-stream migration of particles in a shear flow affects the 
local concentration of particles across the channel. The problem of particle motion in shear flows has 
always been of great interest. Experimentally, the phenomena have been measured (initially by Taylor) [1] 
even though the shear flows considered have been restricted in most investigations to simple shear in a 
Couette device. Karnis et al. [2] reported that neutrally buoyant particles stabilized midway between the 
centreline and the wall in a channel, closer to the wall for larger flow rates and closer to the centre for 
larger particles. Halow and Wills [3] did experiments in a concentric cylindrical Couette device. They 
observed that when the inner cylinder rotates, a particle migrates from any initial position to equilibrium at 
a small distance inside the centreline of the gap. Rallison [4] studied the time-dependent deformation and 
burst of a viscous drop in an arbitrary shear flow at zero Reynolds number. He presented a numerical 
scheme to track the two-dimensional drop shape in time. Mola et al. [5] introduced a simple model for 
prediction of pressure drop in horizontal two-phase flows. Magna and Stone [6] reported the time-
dependent interactions between two buoyancy-driven deformable drops in a low Reynolds number flow. 
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They introduced three modes for film drainage between the drops: rapid drainage, uniform drainage and 
dimple formation. As the separation distance between the two drops decreases, the mode of film drainage 
may change from rapid drainage to uniform drainage and eventually a dimple may form. Zhou and 
Pozrikidis  [7] studied the flow of periodic suspension of two-dimensional viscous drops in a closed 
channel bounded by two parallel plane walls. They found that a critical capillary number exists, below 
which the suspensions exhibit stable periodic motion, and above which the drops elongate and tend to 
coalesce, altering the topology of the initial configuration. The effects of capillary number, viscosity ratio, 
volume fraction of dispersed phase, lattice geometry, and instantaneous drop shape on the effective stress 
tensor of the suspension were also studied. Feng et al. [8] reported the results of a two-dimensional finite 
element simulation of the motion of a circular particle in a Couette and Poiseuille flow. They showed that 
a neutrally buoyant particle migrates to the centerline in a Couette flow and the stagnation pressure on the 
particle surface is particularly important in determining the direction of migration. Li, Zhou and Pozrikidis 
[9] studied the motion of two-dimensional, doubly periodic, dilute and concentrated emulsions of liquid 
drops with constant surface tension in a simple shear flow. Their numerical method is based on a boundary 
integral formulation. They showed that the shearing flow is able to stabilize a concentrated emulsion 
against the tendency of the drops to become circular and coalesce, thereby allowing for periodic evolution 
even when the volume fraction of the suspended phase might play a role similar to that of the foam. 
Loewenberg and Hinch [10] did a three-dimensional simulation of a concentrated emulsion in shear flow 
for zero-Reynolds-number and finite-capillary-numbers. Results were obtained for dispersed-phase 
volume fractions up to 30% and dispersed to continuous-phase viscosity ratios in the range of 0 to 5. They 
reported the viscosity of an emulsion is only a moderately increasing function of the dispersed-phase 
volume fraction, in contrast to suspensions of rigid particles or undeformed drops. Esmaeeli and 
Tryggvason [11] simulated the motion of two-and three-dimensional buoyant bubbles. They compared a 
finite Reynolds number two-dimensional simulation with sixteen bubbles and a Stokes flow simulation 
and reported that the finite Reynolds number array break up much faster. Their simulations showed a 
slight increase in the average rise velocity compared to a regular array. Mortazavi and Tryggvasson [12] 
studied the motion of a drop in Poiseuille flow. They simulated the motion of many drops at finite 
Reynolds numbers. Esmaeeli and Tryggvason [13] simulated the motion of two-and three-dimensional 
finite Reynolds number buoyant bubbles. It was shown that the rise in the Reynolds number is nearly 
independent of the number of bubbles, as the velocity fluctuations in the liquid (the Reynolds stresses) 
increase with the size of the system. Balabel et al. [14] introduced a numerical model based on the level 
set method for computing unsteady droplet internal flows and presented this model for linear droplet 
oscillation processes. Crowdy [15] studied the problem of a two-dimensional inviscid compressible bubble 
evolving in Stokes flow. They reported that if the ambient pressure is small enough, bubbles can expand 
significantly. In addition, they showed that a bubble evolving adiabatically is less likely to expand than an 
isothermal bubble. Yoon et al. [16] investigated, experimentally, the effect of the dispersed to continuous-
phase viscosity ratio on the flow-induced coalescence of two equal-sized drops with clean interfaces. 
Their study showed that when the viscosity ratio is greater than O(0.1), the critical capillary number 
decreases with increasing the offset only for the smallest offsets, but increases with increasing the offset 
until a critical offset is reached above which coalescence is not observed. Norman et al. [17] studied the 
neutrally buoyant particles in a low-Reynolds-number pressure-driven flow. They showed that when the 
particle density differs from that of the suspending fluid, buoyancy forces also affect particle migration. 
They reported that suspension flows become fully developed earlier than that observed for neutrally 
buoyant particles. Yang et al. [18] simulated the migration of a sphere in tube flow. They presented a 
formula for the lift force. Their formula predicted the change in the sign of the lift force. Their correlation 
formula was compared with analytical lift formula and showed that the equilibrium position moves toward 
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the wall as the Reynolds number increases at a fixed drop radius, and it moves towards the centreline as 
the radius of the drop increases at a fixed Reynolds number.  

Sibillo et al. [19] investigated the deformation and breakup of a drop in an immiscible equiviscous 
liquid undergoing unbounded shear flow. They showed that wall effects can be exploited to obtain nearly 
monodisperse emulsions in microconfined shear flow. Zhao [20] investigated the drop break up in dilute 
Newtonian emulsions in simple shear flow by using high-speed microscopy over a wide range of viscosity 
ratios, focusing on a high capillary number. He showed that the final drop size distribution intimately links 
to the drop break up mechanism, which depends on the viscosity ratio and the capillary number.  

Theoretical analysis of the lateral migration of deformable drops in a channel flow was restricted to 
the two-dimensional Stokes and potential flows. In this paper we study the migration of a drop in simple 
shear flow at finite Reynolds numbers by adding the advection terms to the governing equations. 

Section 2 contains the formulation, introduction of the governing non-dimensional parameters, and a 
short description of the numerical method. 
 

2. FORMULATION AND NUMERICAL METHOD 
 
a) Formulation 
 
The governing equations for the motion of unsteady, viscous, incompressible, immiscible two- fluid 
systems are the Navier-Stokes equations in conservative form: 
 

 
S

T dXxnuuPuu
t
u )()(.. −+∇+∇∇+−∇=∇+

∂
∂

∫ βδκσμρρ                         (1) 

 
Here u is the fluid velocity, p is the pressure, ρ is the fluid density, μ is the fluid viscosity, and σ is the 
surface tension coefficient. Also, βδ is a two- or three-dimensional delta function, respectively, for β = 2, 
and β = 3. κ is the curvature for two-dimensional flows and twice the mean curvature for three-
dimensional flows. n is a unit vector normal to the drop surface pointing outside of the drop. x is the 
position in a Eulerian coordinate and X is the position of the front in Lagrangian coordinate.  

Both immiscible fluids are taken to be incompressible, so the divergence of the velocity field is zero: 
 

  0. =∇ u                                                                            (2) 
 
Equations of state for the density and the viscosity are: 
 

 0=
Dt
D ρ  ,   0=

Dt
D μ                                                                  (3) 

 
These equations show that the density and the viscosity of each fluid remain constant.  

Unlike the velocity that is taken to be continuous, the pressure jumps across the interface. Continuity 
of stresses at the fluid boundary shows that the normal stresses are balanced by surface tension. The force 
due to surface tension is 

 knF σ=Δ                                                                           (4) 
 
The two governing non-dimensional numbers of the flow are the Reynolds number and the Weber 
number. The Reynolds number is defined in different ways: A bulk Reynolds number is defined based on 
the shear rate and channel height. A particle Reynolds number is defined based on the shear rate and drop 
radius: 
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Here       is the density of ambient fluid,       is the viscosity of the ambient fluid, a is the initial radius of 
the drop, H is the height of the channel and G is the shear rate. Shear rate is 
 

 
H

uuG bt −=                                                                         (6) 

 
where tu and bu are the velocity of top and bottom walls, respectively.   

In this work, the ratios of the drop density and viscosity to that of the ambient fluid are considered as 
one.   
 
b) Numerical method 
 

Various methods have been used to simulate the two-phase flows. These methods include the marker-
and-cell (MAC) method, the volume-of-fluid (VOF) method, and the level set method. In general, the 
interface representation can be explicit (moving mesh) or implicit (fixed mesh) or a combination of both. 
The front-tracking method is a combination of the fixed and moving mesh method. Although an interface 
grid tracks the interface, the flow is solved on a fixed grid. The interface conditions are satisfied by 
smoothing the interface discontinuities and interpolating interface forces from the interface grid to the 
fixed grid. In this method, the governing equations are solved for the whole flow field. Front capturing has 
two difficulties. The first is a sharp boundary between the fluids, and the second is accurate computation 
of surface tension. Different attempts have been made in overcoming these problems. 

For the simulations presented here, the method developed by Unverdi and Tryggvason [21] is used. 
They simulated the motion of buoyant bubbles in a periodic domain. Equations (2-1), (2-2), and (2-3) are 
solved in a rectangular three-dimensional domain with a finite difference method. The spatial 
differentiation is calculated by second order finite difference on a staggered Eulerian grid. We use an 
explicit second-order time integration method. Combining the incompressibility condition and momentum 
equations results in a non-separable elliptic equation for the pressure. Due to the similarity in density 
between the drop and the ambient fluid, a fast Poisson solver (FISHPACK) solves the pressure equation. 

In the three-dimensional flow, the average surface curvature is 
 

 nnn ×∇×= )(κ                                                        (7) 
 
Then, the force on each element surface is 
 

 ∫∫∫ ×=×∇×==
S

S
A

A
A

A ndtndnndF σσκσδ
σσ

σ )(                                 (8) 

 
The integration is over the boundary of each element representing the front. t and n are the tangent and the 
normal vector to each element, respectively. 
 

3. RESULTS 
 
We now consider the cross-stream migration of a drop in a simple shear flow. The diameter of the drop is 
a, and the height of the channel is H = 10/3 a so that ξ = a/H = 0.3. ξ is the geometric ratio. The top wall in 
z-direction is moving at velocity U and the bottom wall is stationary. The boundary conditions are 
periodic in the x- and y-direction and rigid, top and bottom walls in the z-direction (Fig. 1).  

Perturbation theories of viscous or inertial type are valid for small particle Reynolds numbers, i.e. 

pRe << 2ξ  (Ho and Leal [22]). This condition is not satisfied in our study. For the calculations in this 
paper, we use bRe  as equal to 5, 10, and 15. So that pRe becomes 0.1125, 0.225, and 0.3375, respectively, 
and these values are greater than 2ξ  = 0.09. 
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Fig. 1. Migration of a drop in a simple shear flow between no-slip walls  
 
Since the computational resources are directly proportional to the size of the stationary grid, we must 

find a compromise between the numbers of grid points required to resolve a drop. Figure 2 shows the 
migration of a three-dimensional drop at bRe = 10 and We  = 0.0675 that is computed on 66×34×66, 
48×26×48, and 34×18×34 grids. Time is normalized by the shear rate G. Resolution test yields almost 
similar results. Since run time depends directly on the size of the grid, we have selected the coarse grid for 
our simulations. 

Figure 3 shows the streamlines in the middle section in y-direction at bRe = 10 and We  = 0.0675, 
computed on a 34×18×34 grid. The drop diameter is 0.3 times the size of the periodic domain, and 
therefore we have about 10 grid points per drop diameter in the x- and z-direction. The streamlines 
sketched are based on the difference between the velocity of each point and the velocity of the drop centre. 
This figure shows a rotation of drop that is one of the factors responsible for the drop migration. The basic 
mechanism of the migration is discussed later. 
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Fig. 2. Lateral migration of a drop in a simple shear flow at bRe = 10 and We  = 0.0675 

 
Figure 4 shows the lateral migration of drops in a simple shear flow at different initial positions. The 
numerical results which can be compared to our simulations are the ones by Feng et al., who simulated the 
migration of a rigid particle at bRe = 40 in a simple shear flow and obtained similar results. It is seen that 
the drop always migrates to the centre of the channel, regardless of the initial position. In other words, the 
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centre of the channel is a global attractor of the trajectories of a drop. The perturbation solutions also 
predict that the centre is a stable equilibrium position (Feng et al.). The effects of the surface tension and 
the velocity are discussed later. 
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 Fig. 3. The shape of the streamlines in the middle section in y-direction at bRe = 10  

and We  = 0.0675, computed on a 34× 18× 34 grid 

0 100 200 300 400

t*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z
/H

Z = 0.8
= 0.7
= 0.5
= 0.3

Feng et al., = 0.75
Feng et al., = 0.25

  
Fig. 4. Comparison of the Lateral migration of a drop in a simple shear flow predicted by our simulations 

 and the numerical results of Feng et al. (1994). In our simulation, bRe = 10 and  
We  = 0.0675. In the simulations of Feng et al.,  bRe = 40, ξ = 0.125 

 
Experimental results which can be compared to our simulations are the results obtained by Halow and 

Willis. Because of the difference in geometry, we are unable to construct a characteristic time to compare 
the speed of migration in both studies. So we have plotted the drop trajectories in Fig. 5 versus 

pRe/*t predicted in our simulation compared to those observed by Halow and Willis in a cylindrical 
Couette device.  

To investigate the drop shape evolution, a scalar measure of the drop deformation (the Taylor 
deformation) by D = (l-b)/(l+b) is calculated, where l, b are the major and minor semi-axes of the drop 
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(defined by the largest and smallest distances of the surface from the centre of the drop). The deformation 
of a drop is an increasing function of the Weber number. In other words, the deformation decreases with 
the increasing magnitude of the surface tension. Figure 6 shows the shape of a drop in a simple shear flow 
at a fixed Reynolds number bRe = 10, which includes: initial time (6-a), We  = 0.09 (6-b) and We  = 0.27 (6-
c). In Figs. 6-b, and c, the non-dimensional time is t* = 9. In Fig. 7, we have plotted the deformation (D) 
versus dimensionless time. It can be seen that the deformation increases with increasing time and rapidly 
reaches the steady value. 
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Fig. 5. Drop trajectories predicted in our simulation compared to those observed by Halow and  

Wills (1970) in a cylinderical Couette device. In the computation, 
 pRe = 0.225. In the expriment, pRe =1.601, ξ = 0.179 
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Fig. 6. Shape of a drop at (a) 0* =t , (b) bRe = 10, We  = 0.09 , 9* =t , (c) bRe = 10, We  = 0.27 , 9* =t  

 
Figure 8 shows the lateral migration of a drop at constant bRe = 10 at two different values of Weber 

numbers: We  = 0.0675 and We  = 0.135. The x-velocity increases with increasing surface tension and the 
required time for drop migration to the centreline decreases.  

Our simulations show that after an initial transient, the drop leads the local ambient fluid velocity for 
all runs. Initially, drop has a greater velocity than the undisturbed velocity. Figure 9 shows the slip 
velocity is normalized by the wall velocity U at bRe = 5, 10, and 15 and We  = 0.0675. The slip velocity is 
the difference between the drop velocity and the ambient fluid velocity at the centre of the drop for the 
undisturbed flow. The slip velocity plots agree qualitatively with the simulations of Halow and Willis, and 
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Feng et al. Hallow and Willis calculated the slip velocity by the Lorentz reflection method which is 
applicable only to Stokes flows. Curves presented by Feng et al. have small wiggles that result from the 
numerical method. They reported that the difference between their results is a measure of the inaccuracy 
of the simulation method. Curves plotted in Fig. 9 show similar results for the three values of bRe . 
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Fig. 7. Drop deformation at bRe = 10 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8. Lateral migration of a drop in a simple shear flow at bRe = 10, 
 We  = 0.0675 and We  = 0.135 

 
Based on these theories, the particle rotates with the local angular velocity of the flow field to within a 

small correction. This is a well-known result in Stokes flow (Feng et al.). Although experiments, theories 
and direct numerical simulations are in general agreement, the physical mechanisms of the lateral 
migration are unknown. We know three factors are possibly the cause of migration: 1. The wall repulsion 
(lubrication effect): Wall repulsion forces a drop away from a nearby wall to the centre of the channel 
(Feng et al.). 2. Perturbation effects: If the slip velocity leads the fluid, a drop will move into the slower 
stream and if the drop lags the fluid, the drop will move into the faster flow. The counterclockwise 
rotation of a drop may produce a lift force from both walls to the centre of the channel (Magnus type of 
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lift). Yang et al. reported that the slip angular velocity is the circulation for the free particle and it is shown 
to change its sign with the lift.  3. Force due to the deformation of the drop.  
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Fig. 9. Velocity of drops migrating in a simple shear flow at  We  = 0.0675  

(Dimensionless time of Feng et al. results = t*/5) 
 

Figure 10 and 11 show the x- and z-velocities of the centre of the drop normalized by the wall 
velocity U at bRe = 5, 10, and 15 and We  = 0.0675. When the x-velocity reaches the local undisturbed 
velocity, the slip velocity tends to zero. Curves plotted in these figures show that as time progresses, x-
velocity decreases and z-velocity increases. In other words, the drop moves toward the centreline. 
In Fig. 12, we plotted the curves of the lateral migration of a drop at bRe = 5, 10, and 15 and We  = 0.0675. 
Based on the curves of Figs. 10 and 11, it is predicted that the required time for the drop to reach 
equilibrium position increases as the Reynolds number increases at a fixed Weber number. This can be 
seen in Fig. 12.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 10. x- velocity of drops migrating in a simple shear flow at We  = 0.0675 

 

Archive of SID

www.SID.ir

www.SID.ir


M. Bayareh and S. Mortazavi 
 

Iranian Journal of Science & Technology, Volume 33, Number B5                                                                            October 2009 

450 

0 50 100 150 200 250 300 350
t*

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

z
-V

el
oc

ity
/U

Re = 5, We = 0.0675, Z = 0.8
Re =10, We = 0.0675, Z = 0.8
Re = 15, We = 0.0675, Z = 0.8

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 11. z-velocity of drops migrating in a simple shear flow at We  = 0.0675 

0 100 200 300 400

t*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z
/H

Re = 5
= 10
= 15

 
Fig. 12. Lateral migration of a drop in a simple shear flow at  We  = 0.0675 

 
4. CONCLUSION 

 
We have presented three-dimensional numerical simulations of the lateral migration of a single drop in a 
simple shear flow in a periodic domain. The full Navier-Stokes are solved by a finite difference/front 
tracking method. Most of the simulations for the lateral migration of deformable drops in a channel were 
restricted to the two-dimensional Stokes and potential flows. In this paper, we studied the migration of a 
drop in simple shear flow at finite Reynolds numbers by adding the advection terms to the governing 
equations 

For the lateral migration of a drop in a Couette flow, the centreline of the channel is a stable 
equilibrium position. The deformation of  a drop is an increasing function of  the Weber number and the 
drop migrates faster to the centreline at higher Weber numbers. The x-velocity due to shear force increases 
with increasing surface tension and the required time for drop migration to the centreline decreases. Our 
simulations show that, after an initial transient, the drop leads the local ambient fluid velocity for all cases. 
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As time progresses, x-velocity decreases and z-velocity increases. When the x-velocity reaches the local 
undisturbed velocity, the slip velocity tends to zero, except during a short initial transient..   

Our simulations agree qualitatively with simulations of Halow and Willis, Feng et al. and Yang et al.  
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