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Abstract– The formation of null basis for equilibrium matrix is the most important part of the 
finite element analysis when the force method is utilized. For an optimal analysis, the selected null 
basis matrices should be sparse and banded leading to sparse, banded and well-conditioned 
flexibility matrices. In this paper, an efficient algorithm is developed for the formation of null 
basis of triangular and rectangular plate bending finite element models, corresponding to highly 
sparse flexibility matrices. This is achieved by applying a modified ant colony system. An integer 
linear programming formulation is also presented to evaluate the quality of the results obtained by 
the proposed ant colony system algorithm. The efficiency of the present algorithm is illustrated 
through some examples.          
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1. INTRODUCTION 
 

The force method of structural analysis in which the member forces are used as unknowns is appealing to 
engineers since the properties of members of a structure most often depend on the member forces rather 
than joint displacements. This method was used extensively until 1960. The advent of the digital computer 
and the amenability of the displacement method for computation attracted most researchers. As a result, 
the force method and some of the advantages it offers in non-linear analysis and optimization has been 
neglected. 

Five different approaches are adopted for the force method of structural analysis which can be 
classified as 
 
1. Topological (graph theoretical) force methods 
2. Algebraic force methods 
3. Mixed algebraic-graph theoretical force methods 
4. Integrated force method 
5. Meta-heuristic force methods 
 

Topological methods have been developed by Henderson [1], Maunder [2], and Henderson and 
Maunder [3] for rigid-jointed skeletal structures using the cycle bases of their topological models. In this 
type of force method, the cycle basis of the structural model is selected using ideas from topology such as 
manifold embedding and collapsible complex embedding [3]. Graph theoretical methods suitable for 
computer programming are due to Kaveh [4-6], where the use of the Greedy algorithm has been suggested 
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for selection of the minimal cycle basis. These methods are generalized to cover different types of skeletal 
structures such as rigid-jointed frames, pin-jointed planar trusses, and ball-jointed space trusses [7]. 
Applications are extended to finite element models by Cassell [8] and Kaveh et. al. [9], Kaveh and 
Koohestani [10], and Kaveh and Nasiri [11].  

Algebraic methods have been developed by Denke [11], Robinson [12], Topçu [13] Kaneko et al. 
[14], Soyer and Topçu [15], and Kaveh and Rahami [16]. Mixed algebraic-topological methods have been 
used by Gilbert et al. [17], Coleman and Pothen [18-19], Pothen [20] and Heath et al. [21]. The integrated 
force method has been developed by Patnaik [22-23], in which member forces are used as variables; the 
equilibrium equations and the compatibility conditions are satisfied simultaneously in terms of these 
variables. Meta-heuristics algorithms have recently been applied to the force methods by Kaveh and Daei 
[24-25] and Kaveh and Malakouti [26]. 

The force method of structural analysis requires the formation of a maximal set of independent self-
equilibrating stress systems (SESs), known as a null basis [24, 25]. The elements of this basis form the 
columns of an )(Sm   matrix, 1B , known as the self-stress matrix. The main problem in the application 
of the force method is the formation of a self-stress matrix corresponding to a sparse flexibility matrix 

11 BFBG m
t , where Fm contains the flexibility matrices of the individual members of the structure in a 

block diagonal form. The graph theoretical methods for the force method are very efficient for skeletal 
structures and, in particular, for rigid-jointed frames. For a general structure, the underlying graph or 
hypergraph of a SES has not yet been completely defined, and further research is needed. Algebraic 
methods, on the other hand, are formulated in a more general form to cover different types of structures 
such as skeletal structures and finite element models (FEM). The main drawbacks of these methods are the 
large storage requirements and the higher number of operations. 

Heuristic algorithms, such as ant colony algorithms, have found many applications in optimization 
problems in the last decade. The essence of these algorithms lies in the fact that their capability to 
converge to a good solution does not depend on the specific search space to which they are applied. In this 
paper, the ant colony system (ACS) which is a variation of the ant colony optimization (ACO) is applied 
to the formation of null bases of triangular and rectangular plate bending finite element models 
corresponding to highly sparse and banded flexibility matrices. An integer linear programming 
formulation is also used to evaluate the quality of the results obtained by the proposed ACS algorithm 
[24]. The efficiency of the present method is illustrated through simple examples. 
 

2. FORMULATION OF THE FORCE METHOD 
 
Consider a structure S which is )(S  times statically indeterminate. Then )(S  independent unknown 
forces should be selected as redundants. These unknown forces can be chosen from external reactions 
and/or internal forces of the structure. These redundants are denoted by a vector as 

t
Sqqqq },...,,{ )(21  . In order to obtain a statically determinate structure, known as the basic (released 

or primary) structure of S, the constraints corresponding to redundants are removed. Consider the joint 
loads vector as t

npppp },...,,{ 21 , where n is number of entries of the applied nodal load vector and let 
r denote the m-dimensional vector of generalized independent element forces. The equilibrium conditions 
of the structure can then be expressed as 
 

pAr                                                                        (1)  
 
where A is an n×m equilibrium matrix. The element forces can be written as 
 

qBpB 10 r                                                                 (2) 
 
where 0B  is an m×n matrix such that 0BA  is an n×n identity matrix and 1B  is an m× )(S  matrix such 
that 1BA  is an n× )(S  zero matrix. 1B  and 0B  always exist for a structure and in fact many of them 
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can be found for a structure. Each column of 1B  is known as a self-equilibrating stress system (SES) or a 
null vector. A maximal set of SESs (null vectors) is known as a statical basis (null basis). 1B  is called a 
self-equilibrating stress matrix (null basis matrix). 

Minimizing the complementary potential energy requires that r minimize the quadratic form 
 

rFr m
t

2
1

                                                                     (3) 

 
subjected to the constraint as in Eq. (1). Fm is an m×m block diagonal element flexibility matrix. Using 
Eq. (2) it can be seen that q must satisfy the following equation: 
 

pBFBqBFB m
t

m
t )()( 0111                                                        (4) 

 
where 11 BFBG m

t  is the overall flexibility matrix of the structure. Computing the redundant forces q 
from Eq. (4), r can be found using Eq. (2). The structure of G is again important and its sparsity, 
bandwidth and conditioning govern the efficiency of the force method. For the sparsity of G one can 
search for a sparse 1B  matrix which is often referred to as the sparse null basis problem [27]. 
 

3. TRIANGULAR AND RECTANGULAR PLATE BENDING ELEMENTS 
 
The element nodal forces and moments for these elements are illustrated in Fig. 1. 

  
Fig. 1. Element nodal forces and moments for triangular and rectangular elements 

 
The system of independent element forces for a rectangular finite element contains four symmetric 

moments 7531 ,,, FFFF  and four anti-symmetric moments 8642 ,,, FFFF  and a set of four forces. This 
system is shown in Fig. 2. 
 

 
Fig. 2. Independent element forces and moments for a rectangular finite element 
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The system of independent element forces for a triangular finite element can be defined as three 
symmetric moments 531 ,, FFF  and three anti-symmetric moments 642 ,, FFF . This system is illustrated in 
Fig. 3. 

These forces can be related to element nodal forces for rectangular and triangular elements by a 
912  and 69  transformation matrix, respectively [28]. 

 

 
Fig. 3. Independent element forces and moments for a triangular finite element 

  
4. MATHEMATICAL MODELING FOR OPTIMIZATION PROBLEM 

 
Since the overall flexibility matrix of the structure G is 11 BFB m

t , for the sparsity of G one should select a 
null basis corresponding to sparse B1 matrix, which is often referred to as the sparse null basis problem. 
The main objective of this paper is to find sparse self-stress matrices to simplify the solution and to ensure 
the formation of well-conditioned flexibility matrices. 

For a SES (null vector), no applied load is required, thus the equilibrium conditions can be expressed 
as 
 

01 AB                                                              (5) 
 
This equation shows that the columns of the matrix A, which is an n×m matrix with rank of n are linearly 
dependent. There are m−n = t independent columns of B1 which will satisfy this equation, thus forming a 
set of SESs as a basis. 

It must be noted that there are many sets of SESs which have independent columns and satisfy the 
above equation. However, the problem is to find a set corresponding to highly sparse B1 matrix. 

Let us denote the columns of matrix B1 by Si as 
 

],...,,...,,[ 211 tg SSSSB                                                      (6) 
 
Suppose the first null vector S1 is found, then it can be normalized by the following equation: 
 

111 Se t                                                                   (7) 
 
where e1={10...0...0} is an m×1 unit vector with 1in the first entry position. The second column S2 can be 
normalized and must be independent of S1 and these conditions are expressed as 
 

1

0

22

21





Se
Se

t

t

                                                                 (8) 

 
where e2={010...0...0} is an m×1 unit vector with 1 in the second entry position. It is obvious that the 
conditions analogous to these relationships can be formed for the subsequent null vectors. 
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In this section, first the mathematical programming is employed for selecting the column S2 and then 
extended for the formation of the complete set of the SESs. The first null vector, S1, is arbitrary. Now we 
find the second null vector, S2, satisfying the following equations: 
 

1
0
0

22

21

2







Se
Se

AS

t

t                                                                     (9) 

 
or more concisely 
 









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






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2
2

2

0
0 e

S
I

A
                                                     (10) 

 
where 2

_
e ={01} is a 2×1 unit vector, with 1 in the gth position which minimizes the function Z = |S2|. 

Here, |S2| denotes the cardinality of S2 and it is equal to the number of non-zero entries of S2. 
This can be generalized for the gth null vector Sg, after all the previous null vectors up to g−1 have 

been obtained. The problem can now be stated as follows: 
Minimize the objective function of the form Z = |Sg| satisfying 

 


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S
I

A
                                                    (11) 

 
where ge

_
 = {0 0...0...1} is a g×1 unit vector, with 1 in the gth entry position. 

By performing the above series of operations, t null vectors B1 = [S1, S2, ..., Sg, ..., St] are generated 
consecutively one after another. It should be noted that for the last null vector (the tth system (t = m−n)), 
there is no choice. This is because the number of equations is equal to the number of variables, i.e. there 
are n original equations in the n×m matrix A, and m−n = t orthogonalising equations, thus forming n+t = 
m equations (with the number of variables being equal to m), leading to a unique solution for the last null 
vector. A point to notice is the numbering of the members in the structure. The importance of numbering 
pattern can be recognized by considering the additional equations used in the normalization and 
orthogonalization. Here, the ant colony system will be applied to choose the members such that the 
resulting null vectors lead to sparse B1 matrices. 
 

5. OPTIMIZATION BY ANT COLONY SYSTEMS 
 
A meta-heuristic algorithm based on the ants’ behavior was developed in the early 1990s by Dorigo and 
Gambardella [29]. This algorithm was called ant colony optimization because it was motivated by social 
behavior of ants. Ant colony system is a variation of the ACO which has proven to behave more robustly 
and provide far better results for certain problems. In this work, ACS is chosen as a suitable tool for 
finding sparse null vectors. A brief description of ACO is given in the next section when describing the 
process of adapting ACS to the problem of finding sparse null basis. This method is also applied 
extensively in structural optimization, an example of which can be found in the work of Kaveh and 
Masoudi [30]. 

The building blocks of these algorithms are cooperative agents called ants. These agents have simple 
capabilities, which make their behavior similar to real ants. Real ants are capable of finding the shortest 
path from food source to their nest or vice versa by smelling pheromones which are chemical substances 
they leave on the ground while walking. Each ant probabilistically prefers to follow a direction rich in 
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pheromone. Since pheromones evaporate and lose strength over time, the final result is that more ants tend 
to pass over the shortest path and this path is visited more often as the amount of pheromone being laid 
increases. As an illustrative example, consider the sketch shown in Fig. 4. The number of dashed lines in 
Fig. 4(c) is approximately proportional to the amount of pheromone deposited by ants. 
 

 
Fig. 4. Ant technique to find an optimum solution 

 
6. THE EFFECT OF GENERATOR SEQUENCE AND EDGE  

ORDERING ON THE SPARSITY OF NULL BASIS 
 
According to the proposed mathematical modeling, the numbering of the members affects the results of 
the selected null vectors. This can be found out by considering the additional equations which are used in 
the process of normalization and orthogonalisation. Taking 111 Se t , it is necessary to have a force equal 
to unity in the first entry of S1 vector. This entry is called the generator of S1. Since 021 Se t  and 

122 Set , the first entry in S2 vector, which is the generator of S1, must be zero, while the second entry 
must be equal to one. This second entry is known as the generator for the second column in null basis 
matrix, i.e. the second null vector S2. Therefore, for the gth null vector, Sg, the forces in the previous 
generators are zero while in its generator position it is equal to one. 

As an example, consider a finite element model as shown in Fig. 5. This model is divided into 8 
rectangular elements and its degree of static indeterminacy is equal to 27.  

The numbering of the edges of the interface graph corresponding to the rectangular elements is 
shown in the discretized structure in Fig. 6, Refs. [31-32]. 

First, every set of four edges of interface graph, corresponding to two elements of the FEM with 
common edges, contains two SESs with two non-zero entries. The set of four edges corresponding to the 
common edges of the two elements i and j (i < j) has two edges im  and  in  (m < n), and jr  and js  (r < s). 
The two SESs with two edges obtained from this set and consequently two null vectors can be extracted. 
A null vector with non-zero entries (1,1) at rows (m,r) and another null vector with non-zero entries (1,1) 
at rows (n,s) are formed. It is obvious that these null vectors will be among the columns of a minimal null 
basis matrix, because there are just two non-zero entries in the corresponding null vectors. 
 

 
Fig. 5. A finite element model with 8 elements and 27 degrees of static indeterminacy 
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Fig. 6. The interface graph and the pattern for numbering of its edges 

 
Since for the remaining null vectors, the forces in the previous generators should be zero, after 

removal of the generating edges of all the double edges from the interface graph, the remaining null 
vectors should be selected from the remaining interface graph. 

After deleting these generators, the degree of statical indeterminacy for the remaining interface graph 
will be obtained as follows: 
 

111627 DSI  
 

This means that 11 SESs should be extracted from the remaining subgraph. After generating these 
null vectors, the previously selected null vectors should be added to them and all vectors must be gathered 
in a single matrix. 

First, the set of generators is chosen as 
 

 2336116835405925344417   
 
In this case, the null vectors corresponding to this sequence of generators have 175 non-zero entries. The 
members of these 11 null vectors are illustrated in the following matrix: 
 


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

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

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







}2724232019141096521){11(
}5545424136333224231465){10(

}181514111096521){9(
}72696863605654515042413332){8(

}545352494836353198743){7(
}6362615655544948454241403936313024231514){6(

}72696863605956554241){5(
}7170696860595653525150494845434241
363533323130272625242318149876543){4(

}54535249483635343130){3(
}7170696862615955545150454443424140393332){2(

}454443403926252423201918171615141110{)1(

M  

 
For example, the interface subgraph corresponding to the first selected null vector (first row of above 
matrix) is illustrated in Fig. 7. 
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Fig. 7. The interface subgraph corresponding to the first selected null vector 

 
In this figure, the bold line shows the corresponding generator. 

In order to show the effect of choosing different sets of generators, the sequence of generators in the 
second attempt is changed to 
 

 31263723956106816532   
 
In this sequence of selection, the null vectors have all together 161 non-zero entries. Obviously, this 
system is sparser than the previous null basis, resulting in a more sparse flexibility matrix. Therefore, in 
the next section each sequence of edges as generators is considered as a tour for ant travel, and the best ant 
search for the generators is the one leading to the sparsest possible null basis. An efficient algorithm based 
on the ant colony system is presented in the following section for finding an optimum solution. 
 

7. ACS ALGORITHM FOR THE FORMATION OF SPARSE NULL BASIS 
 
In order to apply the ACO algorithm to a specific problem, it is necessary to represent it as a set of 
different paths for ants to travel. In the problem of finding sparse null basis, different sequence of 
generators is considered as a tour for an ant to travel, therefore the cooperative ant agents search to find 
the best generator sequence resulting in a sparse null basis. Since both the edge numbering and its order in 
the generator sequence are important, the pheromone amount is specified by two indices ( ij ), where the 
index i is the generator order in the set of generators, and the index j shows the edge number. As an 
example, 25  shows the amount of pheromone for selection of the edge number 5 as the 2nd generator in 
the generators set. In our algorithm, first m artificial ants are initially positioned on m edges of elements as 
primary generators, and then ACS algorithm is applied as follows: 

An ant k chooses the rth generator by applying the rule of the following equation: 
 



 

 

otherwiseJ
qqif

j rururLu k 0)( ).(maxarg 
                                      (12) 

 
Where q is a random number uniformly distributed in [0..1], 0q is a parameter 10 0  q , and J is a 
random variable selected according to the probability distribution given in the following equation: 
 










 


otherwise

rLSif
P

k

rLu
ruru

rsrs
k

rs
k

0

)(

)(








                                            (13) 
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)(rLk  is the set of generators that remain, to be chosen by ant k as the rth generator and rs  is the 
amount of pheromone deposited on the generator number s as a candidate for being the rth generator. It is 
assumed that there is an equal amount of pheromone 0 , deposited initially on each generator. rs  is the 
corresponding heuristic value which remains constant throughout the iterations and, unlike pheromone 
amount, is not modified. Moreover,   is a parameter for controlling the relative importance between   
and .  

After an ant chooses one edge as a generator, the local updating rule on that chosen generator is 
performed in order to shuffle the solution and prevent focusing on a specific solution. The local updating 
rule modifies the amount of pheromone by 
 

0)1(   rsrs                                                          (14) 
 
where 10    is a parameter for adjusting the pheromone previously deposited on rs . 

Once all the ants complete their own tours, the pheromone will be updated for all the edges according 
to the global updating rule. This pheromone updating is intended to allocate a greater amount of 
pheromone to shorter tours. The rule is given by the following equation: 
 

rsrsrs   )1(                                                      (15) 
 
where 
 



 




otherwise
tourbestglobalsrifDgb

rs 0
),()( 1

                                    (16) 

 
Here, gbD  is the sparsity coefficient of the globally best tour (number of non-zero elements in the selected 
null basis) and 0 <   < 1 is the pheromone decay parameter. The best ant tries to find the sparse null 
basis. 

As an example, consider a finite element model as shown in Fig. 8. This model is divided into 11 
rectangular elements. The degree of static indeterminacy of this model is equal to 42 
( 423203119  ). 
 

        
Fig. 8. A finite element model with 11 elements and 42 degree of static indeterminacy 

 
The interface graph corresponding to this FEM is illustrated in Fig. 9. 

 

 
Fig. 9. The interface graph corresponding to the considered FEM 
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After generating the 13 null vectors corresponding to sets of four edges in the interface graph and 
removing the generators, the remaining interface subgraph is obtained (Fig. 10). The degree of 
indeterminacy for this subgraph is equal to 16 ( 1613242  ). 
 

  
Fig. 10. The remaining interface graph after the removal of the generators 

 
The number of the remaining edges in the interface subgraph is equal to 73 ( 73132119  ). 

Thus, ACS algorithms should select 16 edges as generators among these 73 edges. The null basis matrix 
which is obtained by this sequence of generators has minimum number of non-zero entries. 

The best tour which is obtained by ants is 
 

)182434
3944555675606989370869698(




 

 
The interface subgraphs corresponding to this sequence of generators are illustrated in Fig. 11. In this 
figure, the bold lines show the generators. 

The total number of non-zero entries of the null basis matrix is 224, having the pattern as shown in 
Fig. 12a. In this figure, the comparison between this method, graph-theoretical approach and the algebraic 
method are illustrated. 

It should be noted that the ACS algorithm can improve the results for problems which have one or 
more cut-outs. In other words, in the problems which have no cut-outs, ACS and graph-theory approaches 
result in the identical null basis matrix. 

Due to the nature of the present method (ACS algorithm), its computational time is quite high for 
large examples. Therefore, in the following section, a new combined method is described. 
 

8. GRAPH THEORY FOR DECREASING COMPUTATIONAL  
TIME OF THE ACS ALGORITHM 

 
In the previous section, ACS algorithm has been described and by solving an example, it has been 
concluded that for plates with one or more cut-outs, ACS algorithm concludes in good results in 
comparison to the other methods. However, the computational time of ACS algorithm becomes very high 
for large scale examples. In order to decrease the computational time, graph theory can be used and an 
approach consisting of the ACS and graph theory will be introduced. 

In this hybrid method, the null vectors corresponding to the cycles of generalized associate digraph 
will be formed via graph theory and for each cut-out, an ACS algorithm should be used for formation of 
three null vectors. In other words, after removing the generators corresponding to null vectors which are 
achieved by graph theory method, ACS can extract three remaining null vectors for each cut-out. 

As an example, for the FEM illustrated in Fig. 9, by using graph theory and ACS simultaneously, the 
null basis matrix is obtained having 254 non-zero entries, with the pattern as shown in Fig. 12d. 
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The null basis matrix obtained in this section has more non-zero entries than the pure ACS (previous 
section), but the computational time for this method is decreased for large examples. In addition, the null 
basis matrices, which are calculated by using the graph theory and ACS simultaneously, are sparser than 
the results of the pure graph theory method. 

 

 
 

Fig. 11. The interface subgraphs corresponding to the selected sparse null vectors 
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Fig. 12. Pattern of the null basis matrix resulted by, a) the best ant, b) graph-theoretical method, c) LU factorization 

method and d) using graph theory and ACS simultaneously 
 

9. NUMERICAL RESULTS 
 
In this section, the performance of the proposed algorithm is illustrated by solving some examples. All of 
the models are assumed to be supported in a statically determinate fashion. The null basis matrices for 
each model are calculated using the LU factorization [31] approach, Kaveh-Massoudi [32] graph 
theoretical method, and the present method. The results are compared for their sparsity. These algorithms 
are coded by MATLAB. 
 
Example 1. In this example, a FEM with rectangular plate bending element and containing an opening is 
considered, as shown in Fig. 13. 

 
Fig. 13. A rectangular FEM with an opening and its numbering 
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Pattern of the null basis matrix for three methods and the comparison of the results are shown in Fig. 
14. The sparsity, computational time and norm of AB1 matrix are compared with LU factorization and 
graph theoretical method, Table 1. 
 

 
Fig. 14. Pattern of the null basis matrix resulted by, a) LU factorization method, b) graph-theoretical  

method and c) the present method 
 

Table 1. Comparison of the sparsity, computational time and accuracy of the present algorithm  
versus LU factorization and graph-theoretical method 

 

 Number of non-zero 
entries(nz) TimeLU

Time
 froAB |||| 1  

LU factorization 6631 1 5.37e-12 
Graph-theoretical 1513 0.6123 4.81e-14 

Present algorithm (hybrid method) 1499 8.4074 2.22e-16 
 
Example 2.  In this example, a FEM with triangular plate bending element which contains an opening is 
considered, as shown in Fig. 15. Pattern of the null basis matrix for three methods and the comparison of 
the results are shown in Fig. 16. The sparsity, computational time and norm of AB1 matrix are compared 
with LU factorization and graph theoretical method, Table 2. 
 

 
Fig. 15. A triangular FEM with an opening 
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10. CONCLUSION 
 
In this paper, an ant colony system is developed for the formation of sparse null basis leading to sparse 
self-stress matrices, and correspondingly highly sparse flexibility matrices for triangular and rectangular 
plate bending finite element models. 

The quality of the present method is compared to the LU factorization method and graph-theoretical 
method is shown by some examples. Since LU factorization is the primary step of the Turn-back and 
REDUC algorithms, naturally the present method is more efficient than these methods. 

 
Fig. 16. Pattern of the null basis matrix resulted from, a) LU factorization method,  

b) graph-theoretical method and c) the present method 
 

Table 2. Comparison of the sparsity, computational time and accuracy of the present algorithm  
versus LU factorization and graph-theoretical method 

 

 Number of non-zero 
entries(nz) TimeLU

Time
 froAB |||| 1  

LU factorization 9224 1 3.12e-13 
Graph-theoretical 1600 0.7534 8.52e-14 

Present algorithm (hybrid method) 1572 10.3421 3.59e-14 
 

The time for the formation of the null basis matrices is, in general, higher compared to the graph 
theoretical methods, however since the meta-heuristics are rapidly progressing and becoming more and 
more efficient, one hopes such algorithms will become superior in the very near future. 
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