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Abstract   Texture and color appearance of froth is a discreet qualitative tool for evaluating the 
performance of flotation process. The structure of a froth developed on the flotation cell has a 
significant effect on the grade and recovery of copper concentrate. In this work, image analysis and 
neural networks have been implemented to model and control the performance of such a system. The 
result reveals that these techniques can be employed to control the performance of flotation cells, 
improve the recovery of the copper concentrate and finally reduce the dependency of the performance 
on the solely observation of an operator which can be otherwise subjected to human error. 
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 نقش مهمي در ارزيابي عملكرد فرآيند         بافت ظاهري و رنگ كف بعنوان يك معرف كيفي مناسب                 چكيدهچكيدهچكيدهچكيده
گردد اثر مستقيمي در درجه بازيافت        ساختار كفي كه در سلول فلوتاسيون تشكيل مي        . كند فلوتاسيون ايفا مي  
) شبكه هاي عصبي  (سباتي  بنابراين در اين پژوهش از روش آناليز تصويري و هوش محا            . كنسانتره مس دارد  

دهد كه از اين روشها  نتايج حاصل نشان مي. بمنظور مدل سازي و كنترل فرآيند فلوتاسيون استفاده گرديده است       
 بهبود بازيافت كنسانتره مس و در نهايت كاهش اتكاء به تنها             ،توان براي كنترل و عملكرد سلول فلوتاسيون       مي

 . استفاده نمود-راي خطا باشد  كه ممكن است دا-نگاه چشمي اپراتور 
 
 

 
1. INTRODUCTION 

 
The structure of froth developed on the flotation 
cell  surface,  have a direct effect on the 
performance of such a system. However,  
evaluation of froth may not be an efficient way to 
be interpreted by only an operator observation. 
The system performance is highly dependent on 
the morphology of the surface froth, which can be 
influenced by the degree of the operator skills [1]. 
In recent years, on-line monitoring of the froth 
flotation phase has attracted the interest of 
numerous researchers [2-4]. The output of a 

machine vision system has given new research 
insight into the system that has previously been 
determined by an operator. The results of off-line 
analysis can be combined with the stored images 
and features extracted previously. This can 
contribute to more efficient interpretation of the 
system and hence upgrading the performance of 
the cell. Now a day, neural networks are widely 
recognized for their ability to interpret pattern-
based information. In the present study, an 
appropriate and robust algorithm with a 
combination of reduced noise filters, edge 
detection functions (i.e., Laplacian and Roberts) 
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and different mathematical morphology models 
(i.e., Erode and Dilate) have been adopted [5]. 
Hence, we analyzed the structure of the 
surface froth (i.e., the bubble size, bubble size 
distribution and bubble shape factor). In addition, 
interpretation of surface froth colors has been 
implemented by adopting HSL (Hue, Saturation 
and Luminance) techniques. Furthermore, neural 
networks method has been used to correlate 
between the froth characteristics and flotation 
process performance. 
 
 
 

2. EXPRIMENTAL SET-UPS AND 
PROCEDURE 

 
In order to establish some measures for the 
evaluation of the surface froth structure, the 
images coming from a video camera installed over 
the flotation cell was directed to a computer are 
used to process the data. In Sarcheshmeh copper 
pilot Plant the throughput of the ore was about 1.6 
ton/d, particle size of about 70 percent under 200 
mesh and Cu grade of input and final concentrate 
of about 1 and 28 percent, respectively. The 

collectors (R407 and Z11) and frothers (MIBC 
and A65) utilized in this case were chosen 
according to the morphology of the ore. 
     Figure 1 shows the schematic diagram of the 
cell froth. It incorporates a set of video camera, 
which can take picture both digitally and in an 
analog manner. Simultaneously, sampling from 
cell concentrate was curried out in order to 
determine the froth mineral compositions (i.e. 
CuO, Fe, Mo and Cu) and water flow rate. 
Moreover, in order to establish the grade of the 
concentrate for the copper and iron, about one 
hundred samples were taken from the over flow 
cells. Furthermore, to reduce over segmentation 
of bubble surfaces for the analysis, camera and 
the spotlight were set perpendicular to the cell. 
In order to determine the surface froth indices 
(i.e., bubble size, bubbles distribution and a set 
of criterion for the shape of bubbles), an algorithm 
was constructed. The basic parts of the analysis 
involve: pre-filtering (image enhancement), image 
segmentation and parameterization. To achieve 
and enhance a distinct brightness for the bubble 
boundaries, mathematical morphology function 
has been adopted. In addition to reduce light 
diffraction and obtain better quality pictures 

 

Image Analysis System
Video Camera 

Flotation Cell 

 
 

Figure 1. Schematic diagram of image capturing of the cell surface froth. 
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(a)                                   
 

 
 

(b)                                 
 

 
 

(c)                                     
 

 
 

(d)                                  
 

 
 

Figure 2. Block diagram image analysis: (a) original image, (b) segmented image, (c) morphology prediction of bubbles. 
and (d) overlapping of original and predicted images. 
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for pre-processing, different filters have been 
utilized [6]. Therefore, homogenous light 
distribution has been applied on the bubble 
surfaces and boundaries, which could prevent 
image over segmentation. To detect bubble 
boundaries, a combination of edge detection 
function and mathematical morphology function 
has been adopted. Finally, different indices for the 
surface froth texture (i.e., bubble size, size 
distribution and the degree of sphericity) have 
been selected. In Figure 2, a sequence of block 
diagrams image analysis with its effects on the 
surface froth images have been demonstrated. To 
analyze colors, color distribution histogram with 
respect HSL reference (Hue, Saturation and 
Luminance) must be plotted. From these figures, 
the mean and standard deviation of the color can 
be estimated. A typical color distribution of the 
image (H component) has been exhibited in 
Figure 3. 

3. RESULTS AND DISCUSSION 
 

The surface froth color conveys information about 
the mineral species and concentration in surface 
froth. Therefore, representation of color can be 
shown in terms of RGB (Red, Green and Blue) or 
HSL (Hue, Saturation and Luminance) reference. 
Since in RGB reference, all the three components 
are needed simultaneously and in HSL reference 
only H component is required to specify the color. 
Therefore, adopting RGB has no polarities over 
HS color reference. Hence, this HS distinction has 
led to its usage in most image processing 
applications [5]. For HSL color histogram, 
different parameters can be estimated (i.e., mean 
color component with the standard deviation). 
Amongst them, parameters relating to H 
components show a good agreement with the 
grade of the concentration of copper and can be 
utilized for identifying the colors. Figure 4a shows 
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(a)                                                                                                 (b) 
 
 

Figure 3. Histogram diagrams of H component for: (a) low grade bubble image copper concentrate and (b) high grade. 
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(c)                                                                                                   (d) 
 
 

Figure 4. (a) Relationship between the copper grade and H color component, (b) variation of copper grade 
with the surface froth bubble size, (c) variation of solid mass flow rates with the  surface froth bubble size 

and (d) variation of solid mass flow rates with the degree of the sphericity of the froth bubble size. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

126 - Vol. 17, No. 2, July 2004 IJE Transactions B: Applications 

the relationship between the mean color 
component and its standard deviation with the 
grade of copper concentrate. In the case where the 
grade of copper concentrate was high, the surface 
froth was almost uniformly distributed with the 
minerals. Hence, as shown in the above figure, the 
standard deviation of color is relatively low. On 
the contrast, in the case where the grade of the 
surface froth concentrate was low, the value of 
standard deviation would be relatively higher. 
This is caused by the ore particles of the froth, 
which was not uniformly distributed. This 
phenomenon will be enhanced if the ore particle is 
reduced on the bubble surfaces (due to reduction 
of the light reflection from the surface froth). This 

phenomenon can be visualized as peaks (in the 
above figures) and are appeared at approximately 
200-255 gray levels. 
     In the case where the froth sulfide enriched 
with calcopyrite, location of color peaks occurs at 
approximately 35-43 gray levels and can alter 
depending on the amount of pyrite and copper in 
the froth. However, in the case of calcocite ores, 
this location is still further reduced to 
approximately 17-22 gray level. In addition, if the 
surface froth is low both in grade and particle size, 
the extension of the range of peaks occurrence 
will be increased accordingly. 
     Bubble mean size and its sphericity in coupled 
with its distribution can be implemented in 
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Figure 5. (a) A 6:4:1 structure of neural networks for modeling surface froth characteristics from the copper grade or 
its mass flow rates and (b) a 6:4:2 structure of neural networks for modeling surface froth characteristics from the 

copper grade and its mass flow rates. 
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(a)                                                                    (b) 
 

 
Figure 6. Predicted performance of copper grade for a 6:4:1 trained neural networks for: 

(a) training data and (b) test data. 
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Figure 7. Predicted performance of mass flow rates for a 6:4:1 trained neural networks for: 
(a) training data and (b) test data. 
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(a)                                                                            (b) 
 
 

Figure 8. Predicted performance of copper grade for a 6:4:2 trained neural networks for: 
(a) training data and (b) test data. 
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Figure 9. Predicted performance of mass flow rates for a 6:4:2 trained neural networks for: 
(a) training data and (b) test data. 
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manifestation of bubble image structures. 
The variation of these parameters with the 
performance of the cell at the peripheries of 
specified location (i.e., 18 percent copper 
concentrate) can be observed in Figures 4b-4d. 
Altering the conditions (e.g., throughput of 
frother, collector and the aeration rate) can 
cause two different regions in terms of bubble 
size and grade of the concentrate. Generally 
speaking, an increase in the amount of frother 
tends to remain the size of the bubbles 
unwavering. Hence, causing the bubble become 
more spherical in shape (i.e., bubble circularity 
factor tends to 1). On the other hand, an 
increase in the amount of collector can 
gradually increase the bubble size and the grade 
of the concentrate [7]. However, additional 
increase in the collector input amount would 
reduce the grade of concentration and the 
tendency of bubble to grow bigger. Other 
workers also observed these trends [8]. It is also 
of interest to note that, in this region, as the 
amount of collector increases, the bubbles tends 
to become more spherical in shape [7]. In 
addition, an increase in the amount of the 
frother will give the same trend as the above 
case but with a higher value. Furthermore, 
variation of the aeration rate and frother will 
have almost the same effect on the bubble sizes. 
But its effect on the degree of sphericity of the 
bubbles will be higher. 
 
 
 

4. NEURAL NETWORKS MODELING 
 
In recent years, neural networks are widely 
recognized and attracted particular interests 
for its ability to interpret pattern based 
information and ill-posed problems. In this 
work a feed forward network with a hidden 
layer have been employed by adopting 
Zigmoid transfer function (tangent hyperbolic). 
Furthermore, in order to assess the results, two 
different architectures have been considered for 
modeling and their outcomes have compared. 
 
Case 1   A 6:4:1 architecture for input-output 
pattern has been considered. Input will include 
color and surface froth structure which 

embodies mean bubble size,  bubble size 
distribution, bubble circularity factor, mean 
color and its distribution where the output can 
be either the grade or the mass flow rate (Figure 
5a). 
 
Case 2   A 6:5:2 architecture for input-output 
pattern have been adopted. In this case, the 
output cell performance parameters can also 
incorporates the grade and the mass flow rate of 
the solid (Figure 5b). In order to train the 
networks, about 70 percent of input-output data 
was selected in a random manner and the rest of 
the data were used to test and validate the 
outcome and assess the errors resulted from it. 
Moreover, it is usually advantageous to predict 
the network outcome by adopting linear 
regression between the network output and the 
target and hence estimating the coefficient of 
correlation for it. Therefore, it was possible to 
explain the deviation of the network outcome 
from the target. If this coefficient is one, it 
indicates a good fitness and low noise between 
the data sets. Figures 6 to 9 exhibit the extent 
of the susceptibility of the nets in map 
learning from the input-output patterns of the 
two above cases. From these figures, coefficient 
correlations of 0.95 and higher were obtained 
which shows an acceptable fitness through an 
appropriate training and test of the nets. 
However, the coefficient correlation that is 
obtained from the linear regression modeling 
was about 0.54, which exhibits its inadequacy 
as compared to the nets. It is also evident from 
the results obtained from the above two cases 
that with a simple alteration in the architecture 
of the nets; we can increase the flexibility and 
the extent of the susceptibility of the solution 
of a complicated and ill-posed problems. 
Therefore, it is possible to adopt nets for 
modeling for similar cases with a high degree of 
precision. 
 
 
 

5. CONCLUSION 
 

The results obtained from the image analysis 
technique and cell concentration flow, reveals 
that there exist a coherent relationship between 
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froth characteristics and cell performance. The 
research also exhibit that froth with small 
bubble has lower solid mass flow rate in 
contrast to a larger one. It was also concluded 
that froth color could be assessed by component 
of hue color histogram. In addition, it shows 
that a high-grade froth exhibits a sharper hue 
color histogram. The results obtained from nets 
modeling demonstrate that a feed forward net 
with a hidden layer can enable us to predict 
cell performance from froth characteristics 
with high degree of precision. Therefore, a 
combination of image analysis techniques and 
nets can be applied as a powerful tool to 
analyze and control the performance of a 
flotation cell. 
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