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Abstract Application of the computer simulation for solving the incompressible flow problems
motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible
Euler equations can be applied for wide range of engineering applications. For the steady state
problems, the equation of continuity can be simultaneously solved with the equations of motion in a
coupled manner using the Artificial Compressibility Technique. This technique helps coupling the
pressure and the velocity fields during the explicit computation procedure of the incompressible flow
problems and therefore speeds of the convergence of the solution. The discrete form of the two-
dimensional flow equations are formulated using the Cell Vertex Finite Volume Method for triangular
unstructured meshes. Using triangular unstructured meshes provides great flexibility for modeling the
flow in geometrically complex domains. Some numerical techniques adopted for the unstructured
meshes are used to stabilize and accelerate the explicit solution procedure without degradation of
accuracy. In order to verify the accuracy of the numerical model, computed results are compared with
the analytical solutions of potential flow problems.

Key Words  Steady Incompressible Inviscid Flow, Artificial Compressibility Technique, Finite
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1. INTRODUCTION

The availability of high performance digital
computers and development of efficient
numerical models techniques have accelerated
the use of Computational Fluid Dynamics. The
control over properties and behavior of fluid
flow and relative parameters are the advantages
offered by CFD which make it suitable for the
simulation of the applied problems. Consequently,
the computer simulation of complicated flow
cases has become one of the challenging areas
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of the research works. In this respect, many
attempts have been made to develop several
efficient and accurate numerical methods
suitable for the complex solution domain.
The assumption of incompressibility is valid for
common civil and environmental engineering
problems. For the most civil engineering
flow problems, the boundary layer is confined to
thin regions close to the solid surfaces. Since these
regions are negligible comparing to the main
domain of interest, the effect of viscous stresses
can be omitted in the equations of the motion. The
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resulted set of equations, which is known as
the incompressible form of the Euler equations,
provides considerable simplicity in the absence of
second order spatial derivative terms. This
simplification of the governing equations
provides the ease of the solution procedures, and
consequently, saves the computational efforts.

For the incompressible flow condition,
the time derivative of the density vanishes
from the continuity equation. If the boundary
layer thickness is negligible in the flow
domain, the inviscid form of the equations of
motion can be used in desired dimensions.
These set of equations which consists of time-
independent velocity and the time-dependent
equations of motion, mathematically represent
the behavior of fluid flow. For steady state
problems, adding a pseudo time derivative
of pressure to the continuity equation removes the
troublesome problem of coupling pressure-
independent equation of continuity to the
pressure-dependent equations motion. This method
has been widely applied, mostly with the use of
explicit schemes. The computational procedure is
to choose the pressure field such that continuity is
satisfied at each time-step. This procedure
normally requires a relaxation scheme iterating
on pressure until the divergence free condition is
reasonably realized. The method using Artificial
Compressibility was initially proposed by:.Chorin
to achieve an efficient computation.. Note that,
when the solution converges to'the steady state
condition, the pseudo time derivative tends to zero
and the result of computations results in the
incompressible flow solution [1].

In present work, the Cell’ Vertex Finite
Volume Method is used to derive the discrete
formulas of thewgoverning equations on
triangular unstructured meshes. The problem of
growing up numerical errors, which usually
disturbs the explicit solution of the formulations
are overcome by adding artificial dissipation terms
suitable for the unstructured meshes. These extra
terms are used to damp out the unwanted errors
and stabilize the numerical solution procedure
while preserving the accuracy of the solution. In
order to increase the computational efficiency,
some numerical technique such as Runge-Kutta
multi-stage time stepping, residual smoothing
and the edge-base algorithm are applied.
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In this paper, the accuracy of the described
algorithm for the solution of the inviscid
incompressible flow equations is assessed by
simulation of some simple test cases for which the
analytical solution of the wvelocity and
pressure field can be obtained by application
of the potential function. The results are
demonstrated using comparison of velocity and
pressure fields. The agreements of the computed
and exact solutions encourages for further
developments of the model.

2. ARTIFICIAL COMPRESSIBILITY
TECHNIQUE

For/the flow with high Reynolds number, the
boundary layer is thin and limited to a thin layer
close to solid walls. In such cases, the effects of
viscosity are ignorable in the major part of the flow
field. The assumption of inviscid behavior of the
fluid flow is acceptable for the regions outside the
boundary layer.

In the subsonic flow problems (Mach<0.3),
since the density is constant, the fluid flow
is considered incompressible. Considering the
isothermal condition for the flow problem, the
equations of continuity and motions represent
the mathematical model equations of the
incompressible flow, which is known as the
incompressible Euler equations.

Due to negligible variation in the density,
there is no time derivative term in the
continuity equation. This matter presents some
numerical difficulties for the coupled solution
of the continuity equation (zero velocity
divergence) together with some time dependent
equations (the equations with pressure and
velocity components as the dependent variables).
For the steady state incompressible problems,
the Artificial Compressibility technique helps
to overcome this numerical solution problem
[1]. In this technique, a time derivative of the
pressure, which is derived from an equation
similarity to the equation of state of the
compressible gases, is added to the continuity
equation. This transient term, which relates the
pressure field to the velocity field, vanishes
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when the solution procedure converges to the
steady state condition.

The conservative vector form of the governing
equations in Cartesian coordinates can be written
as:

oW  JF 0dG
ot ( ox  dy ) )
where:
p/(p,B?)
W =
v
u
F =|u"+plp,
uv
v
G =|uv
vi+pl/p,

W represents the conserved variables.and F and G
are vectors of convective fluxes of Wiin x and y
directions, respectively. The components u and v
of velocity and pressure p are three dependent

variables by considering p, as the constant

density. The parameter 3 is.introduced using

the analogy to the speed of sound in equation
of state of compressible flow, by application of
the Artificial Compressibility technique [1].

In the above equations, the first row represents
the incompressible continuity equation modified
according to the Artificial Compressibility
technique. The second and third rows correspond
to the equations of motion in x and y directions,
respectively.

The system of equations governing the
motion of an incompressible flow is of the
elliptic type. In elliptic formulation, pressure
waves propagate with infinite speed. However,
the system of modified equations given by the
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modified continuity equation and equations
of motion is of the hyperbolic type. Thus, in the
present formulation, waves of finite speed are
introduced. The magnitude of the wave speed
depends on the parameter 3. Therefore, the

success of the present method depends on
the value of B that must be used for fast

convergence to steady-state solutions, and
whether the incompressibility is really achieved
within desired accuracy by the use of above
equations. These important points are analyzed in
the literature [2].

The use of the Artificial Compressibility
technique results in a system of hyperbolic-
type equations of motion. Waves of finite
speed are introduced into the incompressible
flow field as a medium to distribute the pressure.
For a truly incompressible flow, the wave speed is
infinite, whereas the speed of propagation of
these pseudo waves depends on the magnitude
of the pseudo compressibility. Ideally, the value
of the pseudo compressibility is to be chosen
so that the speed of the introduced waves
approaches that of the incompressible flow.
This, however, introduces a problem of
contaminating the accuracy of the numerical
algorithm, as well as affecting the stability
property. On the other and, if the Artificial
Compressibility parameter is chosen such that
these waves travel too slowly, then the
variation of the pressure field accompanying
these waves is very slow. Therefore, a
method of controlling the speed of pressure
waves is a key to the success of this approach.
The theory for the method of Artificial
Compressibility technique is presented in the
literature [2].

Some algorithms have used constant value
of Artificial Compressibility parameter and
some workers have developed sophisticated
algorithms for solving mixed incompressible and
compressible problems [3]. However, the value
of the parameter may be considered as a function
of local velocity using following formula
proposed [4].

B =Maximum (B, or CU|) )

min

In order to prevent numerical difficulties in the

Vol. 17, No. 2, June 2004 - 111


www.SID.ir

‘0‘0’0‘0‘0

Figure 1. A control volume formed by the triangles sharing a node.

region of very small velocities (i.e., in the vicinity
2

of stagnation pints), the parameter p_ . 1is
considered in the range of 0.1 to 0.3, and optimum
C is suggested between 1 and 5 [5].

Note that the above equation of continuity
differs from the continuity equation for.a real
compressible flow by the absence of the
convective term for the pressure:; The absence of
this term in the present formulation is an essential
feature of this method. Starting from an arbitrary
initial condition, the numerical scheme must be
chosen such that the solution of above equations of
continuity and motion for fixed boundary
conditions converges to a steady state as the
computation progress. As the steady state is
approached, the effect of the pseudo compressibility
diminishes, resulting in an incompressible
solution.

The method of the artificial compressibility
can also be used to solve unsteady problems.
For this propose, by considering additional
pressure transient term in the modified continuity
equation using the previous pressure field.
Before advancing in time, the pressure must be
iterated until a divergence free velocity field
is obtained within a desired accuracy. The
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approach in solving a time-accurate problem
has absorbed considerable attentions [6-8]. In
present paper, the primary interest is in
developing a method of obtaining steady-state
solutions.

3- NUMERICAL METHOD

The governing equations can be changed to
discrete form for the unstructured meshes by the
application of Cell Vertex (overlapping) scheme
of the Finite Volume Method. This method
ends up with the following formulation [9]:

N ides _ —
VI/[)H-I :I/I/[” _g.Z(FAy_GAx)Z (3)
k=1

i

where W, represents conserved variables at the
center of control volume Q; (Figure 1). F' and G
are the mean values of fluxes on the control
volume boundary sides. Here, superscripts n
and n+/ show nth and the n+1/th time stages. At is
the time step (proportional to the minimum mesh
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spacing) applied between time stages n and n+1. In
present study, a three-stage Runge-Kutta scheme is
used for stabilizing the computational process by
damping high frequency errors, which this in turn,
relaxes CFL condition [10].

The explicit solution of above formulation
on the equally spaced grids presents the behavior
of the central differencing schemes. These schemes
do not provide any dissipation mechanism that
would compensate the absence of damping nature
of physical viscosity near the high gradient
regions. In order to damp unwanted numerical
oscillations associated with the explicit solution of
the above algebraic equation a fourth order (Bi-
Harmonic) numerical dissipation term is added
to the convective term, ) =3 " (Fay-GAv),
[11].

The numerical dissipation term,
DW,) = gz:; A (VW -VW,)» is formed by using
the Laplacian operator, Vzmzzz;‘dlx«\(m_m). The
Laplacian operator at every node i, is computed
using the variables ¥ at two end nodes of all v,
edges (meeting node ).

Here, lk is the minimum of 1¥., the scaling
factors of the edges associated with the end
nodes j of the edge k. This formulation .is
adopted using the local maximum value of the
spectral radii Jacobian matrix of the governing

equations and the size of thesmesh spacing
as [9]:

N,
A/ZE{‘”/(AJ//( _vaxk‘ (4)
=

(U Ay, —v, Ax, )P+ BP(AXZ +AYE) )

Similar to the most numerical formulations, this
formulation is somehow mesh-dependent. For
obtaining the accurate results, the minimization of
the coefficient € is the key point in the application
of the numerical dissipation term on the specific
mesh (1/256< e <3/256).

The revised final algebraic formula can be
written in the following form [9].

CFL At
Q.

1

W=y - [COW)-D(W,)] (5
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The quantities W at each node is modified
at every time step by adding a residual term
of R(W,)=At[C(W,)—D(W,)]/€Q, which is
computed using the quantities W at the nodes of
boundary sides of the control volume Q;
(Figure 1). Hence, the edges are referred to all
over the computation procedure. Therefore, it
would be convenient to use the edge-base data
structure for definition of unstructured meshes.
It has been shown that using the edge-base
computational algorithm reduces the number
of addressing to the memory, and therefore,
provides considerable saving in computational
CPU time [12].

4. BOUNDARY CONDITIONS

The implementation of the flow and solid wall
boundary conditions are adopted for the
unstructured meshes. For incompressible flow,
at the inflow boundaries free stream, values of
u and v are imposed and p are extrapolated
from inside domain nodes, and at the outflow
boundaries free stream, p is imposed and u and
v are extrapolated from inside domain nodes.
The sign of the dot product of the computed
velocity vector and normal vector of the flow
boundary curve at computational nodes is used
for distinguishing between the in-flow from
the out-flow boundary.

Since the flow is considered inviscid, at the
solid wall nodes, the component of velocity
vector normal to the solid wall boundary
edges are set to zero and the tangential
slipping velocities are imposed by a technique
which suits unstructured meshes [9].

5. DOMAIN DISCRETIZATION

The solution domains are discretized using
unstructured triangular mesh. This method
of domain discretization facilitates geometric
modeling of the flow fields with complex
irregularities in boundaries. The irregular
triangular mesh was produced using Deluaney
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b. Unstructured triangular mesh

Figure 2. Computational domain above the flat plate.

Triangulation technique. Such a mesh generation
method allows local refinement of triangular
elements by using source points and lines. The
use of unstructured mesh for domain discretization
provides the ability of mesh refinement/ near
the important region of the flow field; where
high gradient of the flow parameters exists. In
addition it provides the ability“to usercoarser
mesh spacing at positions where the gradients
of the flow parameters have small. magnitudes.
This increases the speed of numerical computation
[13].

6. VERIFICATION OF ACCURACY

The accuracy of the developed incompressible
inviscid flow solver is examined by solving
some cases with available analytical solutions.
The analytical solution is obtained from
potential flow theory by using conformal
mapping technique [14]. For numerical
simulation of the case, unit free stream
velocity and pressure is imposed at inflow and
outflow boundaries, respectively and at the
solid wall nodes slipping velocity are
considered.
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The test case is the incompressible inviscid
flow facing a free slip wall (Figure 2). The
computations are performed on an unstructured
mesh containing 1483 grid points, 2665
triangular elements and 4147 faces (Figure
2.b).

The comparison of computed velocity
components with the exact solution in three
sections (are shown in Figure 2.a) present the
accuracy of the developed model (Figures 3.a,
3.c and 3.e). The computed pressure fields
along the same sections are plotted against the
analytical solutions (Figures 3.b, 3.d and 3.1).

The computed results of the verification
case proof the accurate performance of the
algorithm to compute the flow facing a flat
plate without any numerical conflict of velocity
components. Despite of irregular distribution
of grid spacing in the unstructured triangular
mesh, symmetric turning flow is computed
without application of numerical symmetric
splitter wall and the stagnation point is formed
in the flow field at the vicinity of the plate
centre.

The computed results demonstrate the
accuracy of the algorithm to compute the flow
fields experiencing both stagnant and turning
conditions. No unwanted circulations circulation
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disturbs the solution in the vicinity of stagnation
and turning points.

7. APPLICATION CASES

The performance of the developed solver is
examined by solving incompressible inviscid
flow around NACAO0012 aerofoil for which
both experimental measurements and analytical
solutions are available [15,16]. Here, the flow
solver is applied to solve two conditions of 0
and 2 degrees angles of free stream velocity.
The analytical solution is obtained using conformal
mapping technique in potential flow theory [16].
The computations are performed on a fully
unstructured mesh (Figure 4).

Unit free stream velocity and pressure is
imposed at inflow and outflow boundaries
of computational mesh. Slipping velocity
is considered at the solid wall nodes by
setting zero normal component of computed
velocity.

The free stream flow parameters (Outflow
pressure and inflow velocity) are set at everv
computational node as initial conditions’ Th:
typical convergence of the flow parim ‘ers
toward the steady state condition is demon: ratcu
in terms of logarithm of root mcan squizc: of
pressure and velocity components. he smooth
convergence behavior proofsicovpli ~ the velocity
and pressure fields by the artific 2l com, ressibility
technique in conjunctict wit. .the applied
numerical dissipation t.*ms ¢1d local time
stepping (Figure 5).

For free stream v locity with 0 degree
angle of inci¢>uci.the computed pressure
field around the ae7ofo1r performs symmetric
conditions (Figur. 6-a). Despite of irregular
distribution of grid spacing in the unstructured
triangular mesh, symmetric results are obtained
without application of numerical symmetric
splitter wall and the stagnation point is formed
in the flow field at the aerofoil front. The
comparison of the computed results and
analytical solutions in terms of coefficient of
pressure (C,) on the aerofoil boundaries
presents the accuracy of the developed
numerical model (Figure 6-b).
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Y.gure 5. Typical convergence behavior (flow computation
around NACAO0012 aerofoil).

For the case of free stream velocity with
2 degrees of incidence, the computed pressure
fields around the aerofoil section is plotted
to obtain pressure contour lines (Figures 7-a).
Expected difference between computed pressures
on the aerofoil surface can be clearly
observed. The computed coefficients of
pressure on the aerofoil boundaries nicely
match with the analytical solutions (Figures
7.b).

From the computed results, it can be
stated that complicated physical conditions
around a geometrically complex object can
accurately modeled using the presented
algorithm.

8. DISCUSSION

The Artificial Compressibility technique
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Figure 6. Plot of the computed pressure contours (a) and
comparison of computed and analytical C, (b) Flow around
NACAO0012 aerofoil with oo = 0 angle of free stream velocity.

is used to overcome the numerical problem
associated with the coupled solution of the
equations of continuity and motion for the
incompressible inviscid flow problems. The results
of the Cell Vertex Finite Volume solution of
chosen bench mark tests on unstructured meshes
present promising agreements with theoretical
solutions. Hence, adding a pressure time derivative
term to the continuity equation successfully
couples the pressure and velocity fields for
speeding up the convergence behavior of
the explicit solution procedure without any

IJE Transactions A: Basics

0.9
1.0 , ‘ 1,0
: -
| 0T
W/ Z==lIN
& 51
NN L
1.0 A, '
.0
(@)
1 —

- Prior
0.8r - Present |
06
0.4)

02l
(:P 0 II* A
-0z} %3
04y o
-0.6} f _
-0.8} t ¢
oz o 0z 04 06 0% ) 1.2
X/Chorde
(b)

Figure 7. Plot of the computed pressure contours (a) and
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degradation in the accuracy of the results. Such an
efficient algorithm for computation of both
velocity and pressure fields on certain Cartesian
unstructured mesh facilitates three-dimensional
numerical modeling of the incompressible inviscid
flow problems.

9. NOMENCLATURE
t Computational time
X,y Cartesian coordinates
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p
u,v
w
F;x
Gy
P,
ﬁz

cw)

Pressure

Cartesian velocity components
Conserved quantity

direction flux

direction flux

Density

Artificial Compressibility parameter

Convective operator

D(W) Numerical dissipation operator

V’W  Laplacian operator

V*W Biharmonic operator

Q Control volume

£ Tunable parameter

A Maximum eignvalue of the Jacobian
G Coefficient of pressure
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