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Abstract   This paper presents a mathematical model for designing cellular manufacturing systems 
(CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic 
demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) 
for clustering parts and machines by means of their operational and / or apparent form similarity in 
different aspects of design and production. Most previous researches carried out in CMSs have been 
embodied in static production and deterministic demand states. Due to real situations of a CM model, 
it includes a great number of variables and restrictions requiring a long period of time, memory, and 
process power in order to be solved using available software packages and current optimal methods. 
Therefore, most researchers pay attention to novel methods. One of these methods is genetic 
algorithms (GAs). GA is a class of stochastic search techniques used for solving the NP-complete 
problems, such as CMSs. In this paper, a nonlinear integer model of CMS is designed in dynamic and 
stochastic states. Then, genetic algorithm is used to solve the problem and finally computational 
results are compared to existing optimal solutions in order to validate the efficiency of the proposed 
algorithm. 
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ل رياضي قابل حل به وسيله الگوريتم ژنتيك براي طراحي سيستم توليد               اين مقاله به ارائه يك مد         چکيدهچکيدهچکيدهچکيده

مدل مورد بحث بر مبناي توليد پويا، تقاضاي احتمالي و انعطاف پذير جريان و ماشين بنا شده    . پردازد سلولي مي 
و سيستم توليد سلولي، كاربرد تكنولوژي گروهي است كه در آن قطعات و ماشينها با توجه به خواص                     . است

بيشتر تحقيقات اخير با فرض توليد ثابت و          . شوند شكل ظاهري آنها به دسته هاي مختلف تقسيم بندي مي            
در حالت عملي مساله شامل متغير ها و محدوديتهاي بسياري است كه زمان              . تقاضاي معين انجام پذيرفته است    

بنابراين تحقيقات  . دهد  اختصاص مي  و حافظه زيادي را با استفاده از نرم افزارهاي بهينه سازي فعلي به خود                
 يك  GAروش  .  قرار داده اند   )GA(جديد تمركز خود را به ارائه الگوريتمهاي نوين حل آن مانند روش ژنتيك               

در اين مقاله يك مدل      . شود  استفاده مي  NP-completeتكنيك جستجوي احتمالي است كه براي حل مسائل           
.  ارائه و با استفاده از الگوريتم ژنتيك حل شده است          CMSمساله  برنامه ريزي غير خطي عدد صحيح براي حل         

 .در نهايت جواب حاصل به منظور تعيين كارايي مدل با جواب بهينه مقايسه گرديده است
 
 

 
 

1. INTRODUCTION 
 
In most CMSs, the production is dynamic in 
practice because the variability in demand. In other 
words, the production programming cycle can be 
divided into several periods (i.e. multi-period) 
when the demand for part types is changing from 
one period to another. In this case, by assuming the 

existence of operation sequence, routing flexibility, 
machine flexibility and the ability of inter-cell 
reallocation of machines, it is possible to transform 
the traditional manufacturing systems to the cellular 
arrangement causing the reduction of production 
costs. Moreover, the part demand is variable and 
unknown in most cases. Although, this could be 
taken case of achieved by the previous experience 
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for forecasting the stochastic part demand. CMS 
model in this paper is considered for the dynamic 
case and the demand is stochastic with specific 
probability distribution for each part type in each 
period. It is called dynamic and stochastic states 
(DSS).  
     Short production life cycles, high production 
variety, unpredictable demand, and short delivery 
times have caused manufacturing systems to 
operate under dynamic and uncertain environment 
these days. Several efforts in different research 
areas such as dynamic plant layouts [3, 4], flexible 
plant layouts [2, 5], and dynamic cellular manufacturing 
[1, 4] have been proposed to deal with these 
dynamic and stochastic production requirements. 
Chen [1] developed a mathematical programming 
model for a system reconfiguration in a dynamic 
cellular manufacturing environment. Song and 
Hitomi [6] developed a methodology to design 
flexible manufacturing cells. Wicks [4] proposed a 
multi–period formation of the part family and 
machine cell (PF/MC) formation problem. Seifoddini 
[7] presented a probabilistic machine cell formation 
model to deal with the uncertainty of the product 
mix for a single period. Harhalakis et al, [8] 
presented an approach to obtain robust CMS designs 
with satisfactory performance over a certain rang 
of a demand variation. Mungwatanna [27] 
presented a CMS model by assuming routing 
flexibility in dynamic and stochastic production 
requirements. 
     Base of genetic algorithms (GAs) in natural 
evolution studies the transformation of the organism 
type for more adaptation to its environment. In 
spite of other stochastic search methods, GAs 
searches the feasible space by the set of feasibility 
solutions simultaneously in order to find optimal or 
near-optimal solutions. The procedure is carried 
out by the use of genetic operations. This paper 
develops and uses GAs for a CMS model in the 
DSS cases with the objective function to minimize 
the production costs. Finally the computation results 
are promising. The format of the paper is as 
follows: Section one, as above, introduced some of 
the models of CMS solved by GAs and reviews the 
literature on the CMS problem. The CMS model in 
DSS is described in Section 2. The procedure for 
developing GAs is discussed in six subsections of 
Section 3. The implementation of GAs for the 
CMS model is demonstrated in Section 4. Section 

5 contains the final conclusions. 
 
 
 

2. CMS MODEL IN DSS 
 
The dynamic and stochastic states (DSS) are the 
expansion of the dynamic and deterministic states 
(DDS) in which the demand of each part type in 
each period is considered as a random variable 
with specific probability distribution. In this way, 
the demand optimal value for each part type in 
each period must be determined in a specific 
confidence level minimizing the objective function. 
Thus, a confidence interval of 95% is considered 
for the demand of each part type in each period. 
Then the absolute sum of demand means deviation 
for all part types in all periods are added to 
objective function as a penalty. Finally, confidence 
interval’s lower and upper bounds is added to the 
model as a restriction. The CM model assumes the 
existence of operation sequence, routing flexibility, 
machine flexibility, and the ability of inter-cell 
relocation of machines. This model must satisfy 
the following expectations: 
 
1. Establishing parts family and machine groups 
simultaneously. 
2. Choosing a process plan for each part type with 
at least inter-cell and intra-cell material handling costs 
in each period by assuming the existence of several 
alterative process plans for each part type. 
3. Estimating the optimal demand for part types in 
such a way that it has the least difference to its 
expected value. 
4. Purchasing inter-cell relocation of machines as 
a necessity when the demand for parts is changed 
between periods. 
 
2.1. Assumptions   The assumptions of the model 
are as follows: 
1. The operating times for all part type operations 
on different machine types are known.          
2. The demand density function for each part type 
in each period is known. 
3. The capabilities and capacity of each machine 
type are known and constant over time. 
4. Investment or purchase cost per period to 
procure one machine of each type is known. 
5. Operating cost of each machine type per hour is 
known. 
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6. Parts are moved between and inside of cells in 
batches. The inter-call and intra-cell material 
handling cost per batch between and inside of cells 
is known and constant (independent of quantity of 
cells) 
7. The number of cells used must be specified in 
advance and it remains constant over time.  
8. Bounds and quantity of machines in each cell 
need to be specified in advance and they remain 
constant over time.  
9. Machine relocation from one cell to another is 
performed between periods and it requires zero 
time. 
10. The machine relocation cost of each machine 
type is known and it is independent of where 
machines are actually being relocation. 
11. Each machine type can perform one or more 
operations (machine flexibility). Likewise each 
operation can be done on one machine type with 
different times (routing flexibility). 
12. Inter-cell and intra-cell handling costs are 
constant for all moves regardless of the distance 
traveled. 
13. No inventory is considered. 
14. Setup times are not considered. 
15. Backorders are not allowed. All demand must 
be satisfied in the given period. 
16. No queuing in production is allowed. 
17. Machine breakdowns are not considered. 
18. Processing capabilities are 100% reliable (i.e. 
no rework / scrap). 
19. Batch size is constant for all productions and all 
periods. 
20. Machines are available at the state of the period 
(zero installation time). 
21. The time value of money is not considered in 
the CMS model. 
 
2.2. Design Objectives   Multiple costs must be 
considered in the design objective in an integrated 
manner. All costs involved in the design of CMSs 
must be incorporated. However, it is not possible 
to consider all costs in the model due to the 
complexity and computational time required. In 
this paper, costs are limited to those, which are 
also related to dynamic and stochastic production 
environments and the use of routing and machine 
flexibility. The objective is to minimize the sum of 
the following costs: 
1. Machine cost: The investment or purchase cost 

per period to procure machines. This cost is 
calculated based on the number of machines of 
each type used in the CMS for a specific period. 
2. Operating cost: The cost of operating machines 
for producing parts. This cost depends on the cost 
of operating each machine type per hour and the 
number of hours required for each machine type. 
3. Inter-cell and intra-cell material handling costs: 
The cost of transferring parts between and inside of 
cells when parts cannot be produced completely by 
a machine type or in a single cell. This cost is 
incurred when batches of parts have to be 
transferred between machines in a cell or between 
cells. Inter-cell moves, decreases the efficiency in 
the CMS by complicating production control and 
increasing material handling requirements and 
flow time.  
4. Machine relocation cost: The cost of relocating 
machines from one cell to another between periods. In 
dynamic and stochastic production environments, 
the best CM design for one period may not be an 
efficient design for subsequent periods. By rearranging 
the manufacturing cells, the CMS can continue 
operating efficiently as the product mix and demand 
change. However, there are some drawbacks with 
the rearrangement of manufacturing cells. Moving 
machines from cell to cell requires effort and can 
lead to the disruption of production.  
5. Deviation of mean penalty for part types 
demand: The absolute sum of deviation of mean 
for part types demand in all periods. In stochastic 
demand state, if possible, the difference between 
the estimation value of demand for each part type 
and its expected value must be the least. 
 
2.3. System and Input Parameters   The input 
parameter values must be supplied for each period 
in the planning horizon. 
1. Part types (product mix): A set of part type to 
be produced in the CMS in each period. The 
product mix varies from period to period as new 
parts are introduced and old parts are discontinued. 
2. Part types demand probability distribution: The 
specific probability distribution for each part type 
in each period, through introduction of mean and 
standard deviation of distribution by assuming that 
the parts demand probability distribution is one of 
three binomial, normal or β distributions. 
3. Operating sequence: An ordered list of operations 
that the part type must go through. 
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4. Operating time: Time required by a machine to 
perform an operation on a part type. 
5. Machine type capability: The ability of a 
machine type to perform operations. 
6. Machine type capacity: The amount of the time 
a machine of each type is available for production 
in each period. 
7. Available machines: The available machines 
are the set of machines that will be used to form 
manufacturing cells. The necessary number of each 
machine type is specified by the model. 
 
2.4. Constraints   The following constrains must 
be imposed in the model: 
1. There must be sufficient machine capacity to 
produce the specified product mix in each period. 
2. Cell size must be specified. Upper and lower 
bounds can be used instead of a specific number. 
3. The number of cells in the system must be 
specified. 
4. The confidence level for the part types probability 
demand must be specified. Managers or designers 
can specify this information. 
 
2.5. Notation   The notation of the model is presented 
as follows: 
 
2.5.1. Indices    
c index for manufacturing cells (c=1,…,C) 
m index for machine types (m=1,…,M) 
p index for part types (p=1,…,P) 
h index for time periods (h=1,…,H) 
j index for operations required by part p 

(j=1,…,Op) 
 
2.5.2. Input Parameters    
tjpm time required to perform operation j of part 

type p on machine type m.  
EDph mean of the probability distribution for part 

type p in period h. 
SDph standard deviation of the probability distribution 

for part type p in period h. 
 
     The EDph and SDph parameters are entered by 
means of three distributions as following: 
 
I - The normal distribution: by assuming in this 
case that the demand is continuous, and EDph equal 
the mean of distribution (EDph=µ) and SDph equal 
the standard deviation of distribution (SDph=δ) 

II - The binomial distribution: by assuming in this 
case that the demand is ruptured, the EDph and 
SDph parameters are countered by means of the 
probability of demand for each part p(θ) and the 
number of production for part p(n) as the 
following: 
 
EDph = nθ (1) 
 

)1(nSDph θ−θ=  (2) 
 
III – The Beta distribution: in this case, The EDph 
and SDph parameters are countered by means of the 
most optimistic value of the demand (H), the most 
possible value of the demand (M) and the most 
pessimistic value of the demand (L) for part p as 
the following: 
 

6
HM4LEDph

++=  (3) 

 

6
LHSDph

−=  (4) 

 
B batch size for inter-cell and intra-cell 

material handling 
αm purchase cost of type m machine 
βm Operating cost per hour of type m machine 
γ intercell and intra-cell material handling cost 

per batch 
δm relocation cost of type m machine  
Tm capacity of each of type m machine (hours) 
LB lower bound cell size 
UB upper bound cell size 







=
otherwise0

mtypemachineon
donebecanppartofjoperationif1

a jpm  

 
2.5.3. Decision Variables    
Nmch  number of machines of type m used in cell c 

during period h 







otherwise0
hperiodinccellinmtypemachineon

doneisptypepartofjoperationif1
X jpmch  

K+
mch number of machines of type m added in cell 

c during period h 
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K-
mch number of machines of type m removed 

from cell c during period h 
XDph number of demand for part type p in period 

h 
Vmh number of type m machine existing in store 

(remainder cell) in period h 
     When the number of periods is more than two 
periods, it is possible that some of the machines are 
not used in middle periods (for example, machine 
m is used in periods 1,3 and not used in period 2). 
Thus, for avoidance of crowding of the machines 
in cells (and excess of machines from over upper 
bound cell size (UB)), it is necessary that the idle 
machines be removed to a figurative store or 
remainder cell (the relocation cost of machines 
form/to store not to take into account). Thus, the 
introduced variable Vmh is used as a memory. It 
means, when a machine type in a period is needed, 
the first one is searched in memory and if not 
founded, it must be purchased. The Vmh variable 
is countered as following: 
 







 −+= ∑∑

=

+

=

−
−

C

1c
mch

C

1c
mch)1h(mmh KKV  ,  0maxV  

 (5) 
 
As a result, the following constraints must be 
added to the model: 
 

0Vmh ≥  (6) 
 

hm,   KKVV
C

1c
mch

C

1c
mch)1h(mmh ∀−+≥ ∑∑

=

+

=

−
−  (7) 

 
2.6. Mathematical Formulation   The mathematical 
formulation for the design of CMSs is developed 
such that part families and machines groups are 
formed simultaneously. The simultaneous machine–
part grouping strategy generally yields better 
results than those of sequential strategies (part 
grouping and then machine grouping or reversal 
process), since all the decisions are made at the 
same time. However, it can be more complicated to 
be modeled and results in a large mathematical 
formation, which requires a substantial amount of 
time to be solved. Using the above notation, the 
objective function and constraints are as 
follows: 

∑∑∑∑∑

∑

∑∑ ∑

= = = = =

−
=

−

= = =

β+










 +





−





 +α=

H

1h

C

1c

M

1m

P

1p

Op

1j
mjpmchjpmph

)1h(mc

C

1c
)1h(mc

H

1h

M

1m
mh

C

1c
mchm

xtXD

VN

VNZmin

 

 (8) 
 

h p,j,     1xa
C

1c

M

1m
jpmchjpm ∀=∑∑

= =

 (I) 

 

h mc,   NTxtXD mchm

P

1p

Op

1j
jpmchjpmph ∀≤∑∑

= =
 (II) 

 

h c,    LBKKN
M

1m
mch

M

1m
mch

M

1m
mch ∀≥−+ ∑∑∑

=

−

=

+

=

(III) 

 

h c,    UBKKN
M

1m
mch

M

1m
mch

M

1m
mch ∀≤−+ ∑∑∑

=

−

=

+

=

(IV) 

 
h  c,m,         NKKN mchmchmch)1h(mc ∀=−+ −+

− (V) 
 

h m,   KKVV
C

1c
mch

C

1c
mch)1h(mmh ∀−+≥ ∑∑

=

+

=

−
−  (VI) 

 

( ) hm,   VVKR )1h(mmh

C

1c
mchmh ∀−+≤ −

=

+∑  (VII) 

 

( ) hm,   VVKR mh)1h(m

C

1c
mchmh ∀−+≤ −

=

−∑  (VIII) 

 
hp,   SD96.1EDXD phphph ∀−≥  (IX) 

 
h p,   SD96.1EDXD phphph ∀+≤  (X) 

 

Integer  and  0XD,R,V,K,K,N

  ,   1or   0x

phmhmhmchmchmch

jpmch

≥

=
−+

 

     The objective function given to 8 is a nonlinear 
integer function. It minimize the total sum of the 
machine purchase cost, the operating cost, the 
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inter-cell and intra-cell material handling costs, the 
machine relocation cost and the absolute sum of 
the demand deviation from mean for part types 
over the planning horizon. The first term represents 
the cost of all machines required in the CMS. The 
machine purchase or investment cost is obtained 
by the difference between sum of the number of 
machines of each type in all cells and their number 
in store in current and pervious periods in relation 
to their respective costs. The second term is the 
cost of operating machines; It is the sum of the 
operating cost of the number of hours of each 
machine type. The third term is the inter-cell and 
intra-cell material handling costs. The total of this 
cost is obtained using the number of inter-cell and 
intra-cell transfer for each part type and the cost of 
transferring a batch of each part type. The next cost 
is the machine relocation cost. It is the sum of the 
cost of the number of machined relocated (Rmh). 
The number of machined relocated (Rmh) is 
obtained by term 10 .The last term is the penalty of 
demand deviation from mean for all part types. 
This cost is obtained by the absolute sum of the 
deviation of demand mean for all part types over 
the planning horizon.  
     Constrain I ensures that each part operation is 
assigned to one machine and one cell. Constrain II 
ensures that machine capacities are not exceeded 
and can satisfy the demand. Constrains III and IV 
specify the lower and upper bounds of cells. 
Constrain V ensures that the number of machines 
in the current period is equal to the number of 
machines in the previous, plus the number of 
machines being moved in and minus the number of 
machines being moved out. In order words, they 
ensure conservation of machines over the horizon. 
Constrain VI by term of 6 ensures that the number 
of machines in the store in the current period is 
equal to the number of machines in the store in the 
previous, plus the number of machines being 
moved out of cells and minus the number of 
machines being added to cells. Constrains VII and 
VIII by term of 10 ensure that the number of 
machines relocation is equal to minimum value 
between the number of machines being added to 
cells and the number of machines being moved out 
of cells, irrespective of the relocations from or to 
the store. Constrains IX and X ensure that the 
optimal demand for part types are not exceeded 
from the confidence interval’s lower and upper 

bounds in level 95%. 
 
 
 
3. A GENETIC ALGORITHM FOR SOLVING 

THE CMS MODEL IN DSS 
 
Holland and his associates at the university of 
Michigan developed genetic algorithms (GAs) 
initially in the 1960s and 1970s. The first full and 
systematic (and mainly theoretical) treatment was 
contained in Holland’s book [9]. Goldberg gave an 
interesting survey of some practical work carried 
out in this era [10]. Among these early applications 
of GAs were those developed by Bagley for a 
game–playing program [11], by Rosenberg in 
simulating biological process [12], by Cavicchio 
for solving pattern–recognition problems [13], by 
Goldberg and Lingle; Grefenstette; Van Gucht; and 
Whitley et al. for TSP problems [14], [15], [16], 
[17], by Rinooy Kan; Reeves; Ackley for Sequencing 
and Scheduling problem [18], [19], [20], [21], by 
Dawis for Graph coloring problems [22] by Goldberg 
and Smith for solving a Knapsack problem [23], 
[24] and by Joines and Culbreth and King for CMS 
[25], [26]. 
     In this section, a genetic algorithm is introduced 
for solving the described CMS model in Section 2. 
In designing GAs, six principle factors must be 
considered as explained below: 
 
3.1. Solution Coding (Chromosome Structure)   
A chromosome or feasible solution proportional to 
the described CMS model must consist of the 
following genes in each period: 
1. The gene related to the assignment of part 
operation to machine is named Matrix [Xij] where; 
i = 1, 2, …, P, j = 1, 2, …, r; P = the number of 
part types and r is defined in term of 11; Opi = the 
number of operations of part i). The alleles are 
limited to 0, 1, 2, …, M (M = the number of 
machines). For example, the term of X12 = 4 means 
that the operation 2 of part 1 is assigned to 
machine 4 (if a214 = 1). 
 

{ }ip
1i OpMAXr ==  (11) 

 
2. The gene related to the assignment of the part 
operation to cell is named Matrix [Yij]. The alleles 
are limited to 0, 1, 2, …, C (C = the number of 
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cells). For example, the term of Y12 = 3 is means 
that the operation 2 of part 1 is assigned to cell 3. 
3. The gene related to the number of machines 
being available in each cell is named Matrix [Nmc] 
where; c = 1, 2, …, C and m = 1, 2, …, M. The 
alleles are limited to 0, 1, … . For example, the 
term of N52 = 1 is means that the number of 
machine 5 in cell 2 is equal to 1. By considering 
constrains III and IV in the model, the term of 12 
must be established. 
 

hc,       UBNLB
M

1m
mch ∀≤≤ ∑

=

 (12) 

 
4. The gene related to the number of machines 
being moved in each cell or the number of 
machines being moved out is named Matrix [Kmc]. 
The alleles are limited to … , -2, -1, 0, 1, 2, … . 
For example, the term of K52 = 1 means that the 
number of machine 5 that is moved to cell 2 is 
equal to 1 and the term of K52 = -1 means that the 
number of machine 5 that is moved out cell of 2 is 
equal to 1. 
5. The gene related to the estimated demand for 
part type is named Vector [Di]. The alleles are 
limited to the lower and upper bounds of confidence 
interval for the part demand. For example, the term 
of D6 = 580 means that the amount of demand for 
part 6 is equal to 580. 
     In general by combining four matrices and one 
vector described above, the chromosome structure 
in each period is obtained as Figures 1 or 2. It is 
clear that each chromosome or feasible solution 
consists of the H structure as shown in Figure 1 or 
2, where H is the number of periods. 

3.2. Generation of initial population   A 
sequential strategy is used for obtaining the 
initial population. In this strategy, the numbers 
of LB machines are first assigned to each cell 
randomly. Then the operations related to each 
part type are assigned to machines existing in 
cells randomly by means of ajpm values. As 
required, the new machines are assigned to 
cells or relocated between them. If possible, 
each operation must be assigned to the cell 
that the pervious operation being assigned. 
For transforming an infeasible solution to 
feasible one, a new procedure called “Filter” 
is introduced. The solutions, which cannot 
transform to feasible ones, must be eliminated. 
For avoiding the monotony or lack of the variety 
in generations, each new solution is compared 
with another solutions produced recently in 
respect to its similarity. If the similarity between 
the new solution and another solution is less than 
the specific value, it is accepted, otherwise it 
will be eliminated. The similarity between 
two solutions (chromosomes) is defined as 
follows: 
 

)M,P(Max)Cr(2
Ba

S ij
ij ×+×

−
=  (13) 

 
where aij is the number of genes consisting of the 
same allele in chromosome i and chromosome 
j. The B variable is called the diagonal value. 
This variable is equal to the number of genes that 
always consists of zero allele in both 
chromosomes, due to the lack of the demand for 
some part types or shortage of the number of 
operations of some part type as compared with r 
value (see term of 11) or the barren genes are 
obtained from different between P and M. The B 
variable is obtained form term of 14. The term of 

)M,P(Max)Cr(2 ×+×  demonstrates the area 
of the chromosome structure. 
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Figure 1. Chromosome macros copy structure. 
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Figure 2. Chromosome microscopy structure. 
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3.3. Fitness Evaluation with Objective Function 
The fitness is a criterion for the quality measurement 
of a chromosome or feasible solution. By considering 
the explained CMS model, an offspring or new 
solution is accepted when its objective function 
value is minimum as compared with their parents. 
Thus, the fitness function is the same objective 
function presented in the CMS model. 
 
3.4. Mating Pool Selection Strategy   For 
creating the new generation, it is necessity that 
some of the chromosomes with the latest fitness in 
the current generation are selected for recombining 
or creating chromosomes related to the new generation. 
In this case, a normalized fitness strategy is used in 
which the fitness of current generation chromosomes 
are first normalized according to term of 15. Then 
the chromosomes, that their normalized fitness are 
less or equal to zero, are selected as a mating 
pool. 
 

K1,2,...,i ;    
f

Z i
i =

δ
µ−

=  (15) 

 
where, Zi is the normalized fitness of chromosome 
i and fi is the fitness of chromosome i. µ is the 
mean of chromosomes fitness and δ is a standard 
deviation of chromosomes fitness in the current 
generation. 
 
3.5. Improved GA Operators   In this paper, 
the chromosome structure is formed as a matrix. 
Thus, the GA linear operators cannot be used to a 
matrix type as a traditional form. These operators 
must be improved proportional to the matrix type. 
Therefore by attention to the nature of the matrix, 
for each of three operators called crossover, 
mutation, and inversion is considered as four cases 
named columnar, linear, diametric, and districted. 
In each repeat, one of operations is exercised over 
one of the matrices [X] or [Y] and/or [N] related to 
the current chromosome as one of four cases above 
randomly then the matrix [K] that is up to date by 
means of matrix [N]. The cases of columnar, 
linear, diametric, and districted are described as 

follows: 
 

1. Exercising of operation as columnar   In this 
case, two numbers are first selected randomly in 
the relevant matrix row limits. Then the operation 
is exercised over obtained columns. 
 

2. Exercising of operation as linear   In this case, 
two numbers are first selected randomly in the 
relevant matrix columnar limits. Then the 
operation is exercised over obtained rows. 
 

3. Exercising of operation as diametric   In this 
case, two numbers in the relevant matrix columnar 
or row limits and one of the directions of primary 
or secondary are selected randomly. Then the 
operation is exercised over obtained diameters. 
 

4. Exercising of operation as described   In this 
case, two numbers in the relevant matrix columnar 
limits and also two numbers in relevant matrix row 
limits are selected randomly. Then the operation is 
exercised over obtained district. 
 
3.5.1. Arithmetic Crossover Operators   
Arithmetic crossover operators [25] and [26] products 
two complimentary linear combinations of the 
parents, where r = U (0,1). 
 

a-1b , 1a0 ;     
aPbPC
bPaPC

212

211 =≤≤




+=
+=  (16) 

 
where, C1 and C2 are offspring of P1 and P2. To 
achieve the necessary integer representation of the 
variables, the following equation is performed. 
 

 
 





≤+

>+
=+

ijijijij

ijijijij
ijij P][[P] if       ]P[bP][a

P][[P] if      ]P[b]P[a
]P[b]P[a  

 

 (17) 
 
3.6. Stopping Criterion   For stopping 
the algorithm, the following criterions are 
considered. 
 

1- Number of generations   In this case, the 
algorithm terminates if the number of generations 
is exceeding of the specific number. 
 

2- Time interval   In this case, the algorithm 
terminates if the different between now time and 
the time of achievement to best solution is 
exceeding of the specific time interval. 
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4. COMPUTATIONAL RESULTS 
 
The presented model in DSS is solved by the 
following assumptions: 

 3C and 2H ; 3PO ; 10M ; 12P ==≤≥≥  
 

including 2412 linear variables, 1352 nonlinear 
variables, 234 linear constrain and 63 nonlinear 

TABLE 1. Comparison of GA Solution to Optimal Solution in DDS. 

         Costs 
 
 
Approach  

Objective 
function 

Equipment 
or 

Purchasing 
cost 

Operating 
cost 

Material 
handling 

cost 

Relocation 
cost Time 

Different 
(percentage) 

Dimension 
of   test 
problem 

Lingo6 34972 8686 14828 11458 0 00:02:18 0 % 
GA 35203 8686 15605 10913 0 00:07:18 0.6 % 

8×6     
H=2,C=3 

Lingo6 45772 7745 25970 12056 0 00:07:10 0 % 
GA 45772 7745 25970 12056 0 00:16:01 0 % 

10×8    
H=2,C=3 

Lingo6 35071 8022 14734 12314 0 00:03:15 0 %  
GA 35279 8022 14240 13018 0 00:25:09 0.6 % 

11×8   
H=2,C=3 

Lingo6 35945 8706 15787 11452 0 01:15:59 0 %  
GA(K=100) 36645 8706 16059 11880 0 00:23:14 1.9 % 
GA(K=200) 36373 8706 15787 11880 0 00:13:05 1.1 %  

11×9   
H=2,C=3 

Lingo6 83889 13239 48663 21986 0 04:58:51 0 %  
GA 84662 13239 48663 22720 0 00:00:00 0.8 % 

12×10 
H=3,C=3 

 
 

TABLE 2. Comparison of GA Solution to Optimal Solution in DSS. 

        Costs 
 
 
Approach 

Objective 
Function 

Purchase 
cost 

Operating 
Cost 

Material 
handling 

cost 

Relocation 
cost 

Sum of 
M.D 

demand  
Time 

Standard 
deviation 

Different 
(percentage) 

Dimension 
of   test 
problem 

Lingo6 23530 5240 11031 7156 0 102 00:10:17 - 0% 
GA 25087 6280 11031 7560 0 1 00:00:59 - 6.6% 

5×4  
H=2,C=2 

Lingo-LB 43123 5564 19452 18123 0 - - 5716 0% 
GA 43706 53780 18405 19200 0 432 00:04:21 - 16% 

6×5 
C=2,H=2 

Lingo-LB 50512 12200 29226 9086 0 - - 1698 0% 
GA 49473 12200 27815 9320 0 138 00:01:14 - 1% 

8×6 
H=2,C=3 

Lingo-LB 44452 9986 19073 15393 0 - - 3443 0% 
GA 28027 9420 19647 18640 0 319 00:25:31 - 17% 

9×7 
H=3,C=3 

Lingo-LB 33971 8650 2702 12619 0 - - 581 0% 
GA 34241 8650 12572 12960 0 60 00:18:14 - 2% 

11×8 
H=3,C=3 

 
 

TABLE 3. The GA Solution for a Typical Problem (20×15) with H=3, C=3 in DSS. 

                                                 Period     
Costs  Period 1 Period 2 Period 3 

Sum of costs per period  98603 71815 94520 
Time 00:00:00 Total cost 264938 

Sum of costs per period  95290 71094 86972 
Time 00:44:08 Total cost 253356 

Sum of costs per period  88504 66933 82248 
Time 02:00:38 Total cost 242685 

 

www.SID.ir

www.SID.ir


Arc
hi

ve
 o

f S
ID

154 - Vol. 17, No. 2, June 2004 IJE Transactions A: Basics 

constrains through a PC–Pentium III 1.1 Gz 
and Lingo 6 software. As a result, for comparing 
the GA solution with the optimal solution, five 
test problems in dynamic-deterministic states 
and five test problems in dynamic-stochastic 
states are solved in dimensions less than the 
assumptions above by the GA program and 
Lingo, Then the obtained results have been 
compared as shown in Tables 1 and 2. Assuming 
Beta distribution conditions, lower bound (LB) 
solution is used; because the model in DSS is 
extremely nonlinear. By considering the validity of 
the GA program in high dimensions, a typical 
test problem is solved by GA assuming 

; 15M ; 20P ==   3C and ;3H ; 3PO ===  
where the demand of part types is according to 
Beta distribution, as illustrated in Table 3. In 
high dimensions, the rate of convergence for 
the algorithm and the computational time to 
best solution is carried out. All above test 
problems have been generated randomly by a 
computer within the specific limits. 
     By having considered the proposed CM model, 
the GA program is able to find and report the near-
optimal and promising solutions in a good reasonable 
time. This indicates the success of the proposed 
algorithm. In general, the obtained results can be 

divided into the following parts: 

1. In DDS with low dimension, the different mean 
between the GA solution and the optimal solution 
is +0.62% where the GA program finds the near-
optimal solution in a less computational time than 
the optimal algorithm.  

2. In DSS and low dimensions, the different 
mean between the GA solution and the optimal 
solution is +8.52% where the GA program finds 
the near-optimal solution in a less computational 
time than the optimal algorithm. Because of 
using the lower bound (LB) solution, the time 
measurement for the optimal solution is 
impossible. The reason is that the model in DSS 
is extremely nonlinear and the achievement time of 
finding the optimal solution is certainly more than 
the GA solution. 

3. In DDS and DSS with high dimensions, solving 
the model by PC is practically impossible in terms 
of time consuming. However, the GA program 
reports some acceptable solutions in logical time. 
The convergence rate of the GA program (based on 
objective cost and process time) for problem 
20×15 in DSS is shown in Figure 3 by means of 
two different population sizes. When the size of 
population (K) increases from 100 to 200, the 

 
Figure 3. The rate of GA convergence for problem 20 × 15 in DSS by means of two different size of population. 
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convergence rate and the objective function value 
are improved. Of course, this manner is not always 
truthful. 

4. According to the GA program, the optimal 
number of cells is specified automatically. Whereas, 
in the proposed model, the number of cells must be 
specified and fixed from the outset. For example in 
Figure 4, no part type is assigned to cell 3. Thus, 
the number of cells will be reduced to two cells by 
moving machines M8 and M6 to cell 1. 

5. Because of using the simultaneous machine–
part grouping strategy and the definition of 
Xjpmch variable, one of drawback points of the 
proposed model is to consider intra-cell material 
handling cost. For avoiding this drawback, the 
Xjpmch variable must be broken into two Xjpch 
and Yjpmh variables. However, this procedure 
forces the model being a nonlinear one extremely. 
Whereas, the above procedure is not difficult 
for the GA approach. In other words, the proposed 
GA approach can ignore intra-cell material 
handling cost. 
 
 
 

5. CONCLUSION 
 
The GA program finds and reports the near optimal 
and lower bound solutions in shorter time interval, 
on the average, rather than their optimal solutions 
in all test problems using both DDS and DSS. The 
solutions obtained by the GA program are getting 
more credit and justification for real-world 
condition. In general, improving the GA principle 
presented by six factors will increase the 
probability of achievement to optimal solution. 
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