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Abstract   We develop a bicriteria model for the resource allocation problem in PERT networks, in 
which the total direct costs of the project as the first objective, and the mean of project completion 
time as the second objective are minimized. The activity durations are assumed to be independent 
random variables with either exponential or Erlang distributions, in which the mean of each activity 
duration is a non-increasing function of the amount of resource allocated to it. The direct cost of each 
activity is assumed to be a non-decreasing function of the amount of resource allocated to it. Finally, 
we use the goal attainment method to solve the related bicriteria optimal control problem numerically, 
by converting this problem to a related bicriteria nonlinear programming, and obtain the optimal 
values of the resources allocated to the activities.  
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 توسعه داده شده است كه در       PERTدر اين مقاله مدل دو هدفي براي تخصيص منابع در شبكه هاي                 چکيدهچکيدهچکيدهچکيده
 آن هزينه هاي مستقيم پروژه به عنوان اولين هدف و ميانگين زمان ختم پروژه به عنوان هدف دوم كمينه                         

ميانگين . ر نظر گرفته شده است    زمان فعاليتها متغير هاي تصادفي مستقل با توزيع نمايي يا ارلنگ د             . شوند مي
هزينه مستقيم هر فعاليت    . يابد زمان هر فعاليت تابعي غير صعودي از ميزان منابعي است كه به آن تخصيص مي               

در نهايت روش   . يابد در نظر گرفته شده است       نيز تابعي غير نزولي از ميزان منابعي كه به آن اختصاص مي              
كنترل بهينه دو هدفي به كار گرفته ايم كه با تبديل مساله به يك برنامه               دستيابي هدف را براي حل عددي مساله        

 .آيند ريزي غير خطي دو هدفي، مقادير بهينه منابع تخصيصي فعاليتها به دست مي
 

 
 
 

1. INTRODUCTION 
 
Project Scheduling has been a major objective of 
most models and methods proposed to aid planning 
and management of projects. Initially, the study of 
project scheduling has been done considering just 
the duration and precedence conditions and ignoring 
the resource requirements. The most important 
method to schedule a project assuming deterministic 
durations is the well-known CPM – Critical Path 
Method. However, most durations have the random 
natures and therefore, PERT was proposed to 
determine the distribution of the total duration, T. 
     This method is based on the substitution of the 

network by the CPAD – critical path assuming that 
each activity has a fixed duration equal to its mean 
(critical path using average durations). The mean 
and the variance of the CPAD are given by the sum 
of the means and of the variances of its activities, 
respectively, and therefore these results considered 
the mean and the variance of the total duration of 
the network. 
     Unfortunately, this is an optimistic assumption 
as the real mean, E(T), is greater than or equal to 
such estimate. Thus, many authors have studied:  
1. Analytical approximations of the cumulative 
distribution function of T, F(T). Charnes, Cooper 
and Thompson [1] developed a chance–constrained 
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programming approach to PERT problems. They 
assume exponential activity durations. Martin [2] 
provides a systematic way of analyzing PERT 
networks through series–parallel reductions. Kulkarni 
and Adlakha [3] developed a continuous-time 
Markov process approach to PERT problems. 
2. Upper or lower bounds of F(T). Elmaghraby [4] 
provides lower bounds for the true, expected 
project completion time. Fulkerson [5], Clingen 
[6], Robillard [7] and Perry and Creig [8] have 
done the similar works. 
3. Monte-Carlo simulation to estimate F(T). Several 
authors have used conditional sampling to achieve 
variance reduction (see Burt and Garman [9], 
Garman [10], and Sigal, Pritsker and Solberg [11]). 
Fishman [12] achieves further variance reduction 
by using a combination of quasirandom points and 
conditional sampling to estimate the distribution 
and mean of project completion time.  
     In CPM networks, activity duration is viewed 
either as a function of cost or a function of resources 
committed to it. The well-known time-cost trade-
off problem (TCTP) in CPM network takes the 
former view. Studies on TCTP have been done 
using various kinds of cost function such as linear 
(Fulkerson [13], Kelly [14]), discrete (Demeulemeester, 
Herroelen and Elmaghraby [15]), convex (Lamberson 
and Hocking [16], Berman [17]) and concave (Falk and 
Horowitz [18]). When the cost functions are arbitrary 
(still non-increasing), a dynamic programming (DP) 
approach was suggested by Robinson [19]. A powerful 
approach for solving this problem on dynamic 
programming was presented by Elmaghraby [20]. 
     In the TCTP, the objective is to determine the 
duration of each activity in order to achieve the 
minimum total direct and indirect costs of the 
project. Tavares [21] has presented a general 
model based on the decomposition of the project 
into a sequence of stages and the optimal solution 
can be easily computed for each practical problem 
as it is shown for a real case study.  
     Laslo [22] described a stochastic extension of 
the critical path method and the time-cost trade-off 
model. He developed several ideas for formulating 
the relationship between time-cost trade-offs and 
two chance constraints for a single activity, the 
time chance constraint and the cost chance constraint. 
Golenko-Ginzburg, Gonik and Sitniakovski [23] 
developed an optimization procedure to maximize 
the probability confidence for project due-dates 

(the probability that milestones in the project will 
be completed on or before their schedule date) 
under budget constraints or to minimize the project 
budget under due-date chance constraints. Time-
cost optimization methodologies under time and 
cost chance constraints have been formulated 
and preliminary simulations optimizing budget 
allocation among project activities have been 
implemented by Laslo and Goldberg [24]. 
     Weglarz [25] studied this problem using 
optimal control theory and assuming that the 
processing speed of each activity at time t is a 
continuous, non-decreasing function of the amount 
resource allocated to the activity at that instant of 
time. This means that also time is here considered 
as a continuous variable. Unfortunately, it seems 
that this approach is not applicable to networks 
with a reasonable size (>10). The stochastic 
assumption introduces additional difficulties and 
then the experimental approach has to be adopted. 
There are also some other papers related to the 
applications of optimal control theory in stochastic 
networks, but we could not find any paper 
corresponding to the application of this issue in 
PERT networks. For example, Jordan and Ku [26] 
investigated the optimal control of two multiserver 
loss queues with two types of customers. Tseng 
and Hsiao [27] analyzed the optimal control of the 
arrival rate to a two-station network of queues for 
the objective of maximum system throughput 
under a system time-delay constraint optimality 
criterion. Shioyama [28] developed an optimal 
control problem in a queuing network system with 
two types of customers and two stages. Azaron and 
Fatemi Ghomi [29] developed a new model for 
optimal control of service rates of the service stations 
and also the arrival rates to these service stations in 
a class of Jackson networks, in which the expected 
value of shortest path of the network and also the 
total operating costs of the service stations of the 
network per period are minimized. 
     In this paper, we develop a new analytical model 
for the time-cost trade-off problem via optimal 
control theory in Markov PERT networks. It is 
assumed that the activity durations are independent 
random variables with either exponential or Erlang 
distributions. Initially, we use the method developed 
by Kulkarni and Adlakha [3] to obtain the 
distribution function of project completion time in 
Markov PERT networks. This is done through 
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solving a system of linear differential equations, 
which is obtained from a relevant continuous-time 
Markov process. 
     It is also assumed that the amount of resource 
allocated to each activity is controllable, in which 
the mean of activity duration is a non-increasing 
function of this control variable.  
     If we increase the resources allocated to the 
activities, the mean project completion time will be 
decreased, but the total direct costs of the project, 
which is a non-decreasing function of the resources 
allocated to the activities, will be increased, which 
is undesirable. Therefore, we try to solve a 
bicriteria problem, in which the first criterion is the 
minimization of the total direct costs of the project 
and the second criterion is the minimization of the 
mean project completion time (note that the project 
completion time is a random variable itself, and 
because of that we use the mean of this quantity as 
a proper criterion).  
     We can apply one of the multiple objective 
techniques to obtain the optimal values of resources 
allocated to the activities, in this bicriteria optimal 
control problem, after discretizing this continuous-
time problem and converting that one to a related 
bicriteria nonlinear programming. We use the goal 
attainment method to solve this bicriteria problem. 
     Therefore, we present a new analytical method 
for solving the time-cost trade-off problem in 
Markov PERT networks, via optimal control theory, 
Markov processes and multiple objective programming. 
This method can be applied for the management and 
control of the projects with the stochastic natures. 
     The remainder of this paper is organized in the 
following way. In section 2, an analytical method 
for obtaining the distribution function of project 
completion time in Markov PERT networks is 
presented. In section 3, we present the bicriteria 
optimal control problem. Section 4 includes some 
numerical examples, and finally we draw the 
conclusion of the paper in section 5. 
 
 
 
2. DISTRIBUTION FUNCTION OF PROJECT 

COMPLETION TIME IN MARKOV PERT 
NETWORKS 

 
In this section, we present an analytical method to 
obtain the distribution function of project completion 

time in PERT networks, or in fact the distribution 
function of longest path from the source to the sink 
node of a directed acyclic stochastic network, in 
which the arc lengths or activity durations are 
mutually independent random variables with either 
exponential or Erlang distributions. To do that, we 
develop the method of Kulkarni and Adlakha [3]. 
     Let G = (V,A) be a PERT network with set of 
nodes { }m21 v,...,v,vV =  and set of activities 

{ }n21 a,...,a,aA = . Duration of activity Aa ∈  is 
a random variable with either exponential 
distribution with the parameter aλ , or Erlang 
distribution with the parameters ( aλ , an ). 
     We know an exponential density function is a 
special case of Erlang density function with an =1, 
and consequently a random variable with Erlang 
density function and the parameters ( aλ , an ) can 
be decomposed to an  series of exponentially 
random variables with the parameter aλ . 
     First, we transform the original PERT network 
into a new one, in which all activity durations have 
exponential distributions. To do that, we transform 
each Erlang activity with the parameters ( aλ , an ) 
to an  series of exponential activities with the 

parameter aλ . Now, Let )A,V(G ''' =  be the 

transformed network, in which 'V  represents the 
set of nodes and 'A  represents the set of arcs of 
the transformed network. The source and sink 
nodes are denoted by s and t, respectively. For 

'Aa ∈ , let )a(α  be the starting node of arc a, and 
)(aβ  be the ending node of arc a. 

     In the case of general PERT networks, we can 
approximate the general distributions of activity 
durations by the appropriate Erlang distributions, 
which is a special class of PH distribution, by 
matching the first two moments. 
 
Definition 1 
 

{ }v)a(:Aa)v(I =β∈=    )Vv( ∈  (1) 
 

{ }v)a(:Aa)v(O =α∈=    )Vv( ∈  (2) 
 
I(v) is the set of arcs ending at node v, and O(v) is 
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the set of arcs starting at node v. 
 
Definition 2   If X ⊂ V such that s∈X and 
t∈ X =V-X, then an (s,t) cut is defined as: 
 

}X)a(,X)a(:Aa{)X,X( ∈β∈α∈=  (3) 
 
An (s,t) cut X,X( ) is called a uniformly directed 

cut (UDC) if )X,X(  is empty. 
 
Definition 3   A pair (E,F) of subsets of A is called 
an admissible 2-partition of a UDC D if DFE =∪  

φ=∩ FE , and F))a((I ⊄β  for any Fa ∈ . 
     We assume that the project modeled by network 
G starts at time zero and ends at a random time T. 
During the project execution, each activity can be 
in one of the following states: 
(i) Active: an activity ‘a’ is active at time ‘t’ 

if it is being executed at time ‘t’. 
(ii) Dormant: an activity ‘a’ is dormant at time 

‘t’ if it has finished but there is at least one 
unfinished activity in ))a((I β  at time ‘t’. 
If an activity ‘a’ is dormant at time ‘t’, 
then its successor activities in ))a((O β  

cannot begin. 
(iii) Idle: an activity ‘a’ is idle at time ‘t’ if it is 

neither active nor dormant at time ‘t’. 
 
Definition 4 
 
Y(t)={a∈A: a is active at time t} (4) 
 
Z(t)={a∈A: a is dormant at time t} (5) 
 
X(t)={Y(t),Z(t)} (6) 
 
Let S denote the set of all admissible 2-partitions 
of all UDCs of the network, and let )}.,{(SS φφ∪=  
It can be proved that {X(t), t≥ 0} is a continuous-
time Markov process with sate space .S  The 
infinitesimal generator matrix of this process is 
denoted by )}]'F,'E(),F,E{(q[Q =  (E,F) and 

)'F,'E( S∈  where 
 














==λ−
β−=

β∪−=∪⊂β∈
λ

∪=−=∪⊄β∈λ
=

∑
∈

otherwise

F'F,E'Eif
));a((IF'F

)),a((O})a{E('E},a{F))a((I,Eaif
};a{F'F},a{E'E},a{F))a((I,Eaif

)}'F,'E(),F,E{(q

Ea
a

a

a

0

 

 (7) 
 
(See Kulkarni and Adlakha [3] for the details of 
proof). 
     It can be concluded that {X(t),t ≥ 0} is a 
finite-state absorbing continuous-time Markov 
process with single absorbing state ),( φφ , since 

.0)},(),,{(q =φφφφ  It can also be concluded 
that all sates in S are transient and moreover that 
it is possible to number the states in S  so that 
under this order the Q matrix is upper triangular. 
We assume that the states are numbered 1, 2, 

TABLE 1. State Space for the Example Network. 

1. (1,2) 5. (1,4*,6) 9. (3*,4,6) 13. (3,4*,6*) 17. ),( φφ  
2. (2,3) 6. (1,4,6*) 10. (3,4*,6) 14. (5,6)  
3. (2,3*) 7. (1,4*,6*) 11. (3,4,6*) 15. (5*,6)  
4. (1,4,6) 8. (3,4,6) 12. (3*,4,6*) 16. (5,6*)  

 

 
 
Figure 1. The example network. 
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…, N = S . State 1 is the initial state, namely, 

);),v(O( 1 φ  and state N is the absorbing state, 
namely ),( φφ . 
     Let T represent the length of the longest path in 
the network, or the project completion time. It is 
clear that T = min {t > 0: X(t) = N/X(0) = 1}. Thus 
T is the time until {X(t), t≥ 0} gets absorbed in the 
final state starting from state 1.  
     Before proceeding, we illustrate the material by 
an example. Consider the network shown in Figure 
1. Table 1 presents the state space for this network. 
We use a superscript star to denote a dormant 
activity. All others are active. 
     Chapman-Kolmogorov backward or forward 
equations can be applied to compute F(t)=P{T≤ t} 
or the distribution function of project completion 
time in the Markov PERT network. Using the 
backward algorithm, we define: 
 
Pi(t) = P{X(t) = N/X(0) = i}     i = 1, 2, …, N (8) 
 
Therefore, F(t) = P1(t). 
     The system of differential equations for the vector 
P(t) = [P1(t), P2(t), …, PN(t)]T is given by: 
 
P'(t) = Q.P(t) 
 
P(0) = [0,0,…,1]T 
 (9) 
 
where P(t) represents the state vector of the system 
and Q is the infinitesimal generator matrix of the 
stochastic process {X(t), t ≥  0}. By taking advantage 
of the upper triangular nature of Q, the differential 
Equations 9 can be easily solved. 
     Now, let explain how the system of differential 
equations with constant coefficients 9 is solved. 
Let M be the modal matrix of Q. That is, M is the 
N×N matrix whose N columns are the eigenvectors 
of Q. Let )N(),...,2(),1( λλλ  be the eigenvalues 
of Q, which are the diagonal elements of Q owning 
to its upper triangular nature. We can compute P(t), 
and finally F(t)=P1(t) from Equation 10. 
 
P(t) = M teΛ )0(PM 1−  (10) 
 
where teΛ  is the diagonal matrix with ith diagonal 
element ...t)i(1 +λ+ (see Luenberger [30] for the 

details), in this form 
 





















=

λ

λ

λ

Λ

t)N(

t)2(

t)1(

t

e..0
....
..e0
0.0e

e  (11) 

 
 
 

3. BICRITERIA OPTIMAL CONTROL 
PROBLEM 

 
In this section, we develop an analytical model to 
optimally control the resources allocated to the 
activities in the Markov PERT networks. It is 
assumed that the activity durations are independent 
random variables with either exponential or Erlang 
distributions, in which the mean of each activity 
duration is a non-increasing function of the amount 
of resource allocated to it. We may decrease the 
total direct costs of the project, by decreasing the 
resources allocated to the activities. However, 
clearly it causes the mean project completion time 
to be increased. Consequently, an appropriate 
trade-off between the total direct costs, and the 
project completion time is required. 
     To achieve the above-mentioned goals, we develop 
a bicriteria optimal control model, in which the 
first objective is the minimization of the total direct 
costs, and the second objective is the minimization 
of the mean project completion time. We use the 
goal attainment method, which is one of the multi 
objective techniques with priori articulation of 
preference information given, to solve the problem 
and obtain the optimal values of the resources 
allocated to the activities after discretizing this 
continuous-time problem and converting that one 
to a related bicriteria nonlinear programming. 
     The mean of activity duration Aa ∈ , which is 

equal to 
a

an
λ  ( an =1 for exponential and an >1 

for Erlang distribution), is assumed to be a non-
increasing function )x(g aa  of the amount of 
resource xa allocated to it. Let Ua represent the 
amount of resource available to allocate to the 
activity a, and La represent the minimum amount 
of resource required to achieve the activity a. It is 
also assumed that the mean of activity duration a 
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cannot be smaller than a specific value ca, even if 
we allocate it the maximum amount of resource or 
Ua. 
     The direct cost of activity Aa ∈  is assumed to 
be a non-decreasing function )x(d aa  of the 
amount of resource xa allocated to it. Therefore, the 
total direct costs of the project would be equal to 

∑
∈Aa

aa )x(d . The mean of project completion time 

would be equal to: 
 

∫
∞

−=
0 1 dt))t(P1()T(E  (12) 

 
where P1(t) is computed from Equation 9. 
     Taking into account the above assumptions, the 
infinitesimal generator matrix, Q, is not constant, but it 
is a function of the vector [ ]T

n21 ,...,, λλλ=λ . 
Therefore, the system of differential equations for 
the vector P(t)=[P1(t),P2(t),…,PN(t)]T is given by: 
 
P'(t) = Q(λ ).P(t) 
Pi(0) = 0     i = 1,2,…,N-1 (13) 
 
PN(t) = 1 
Theorem 1   Assuming [ ]T

n21 x,...,x,xX =  as 
the control vector, the appropriate bicriteria optimal 
control problem would be 
 
Min f1(X,λ )=∑

∈Aa
aa )x(d  (14a) 

 

Min f2(X,λ )= ∫
∞

−
0 1 dt))t(P1(  (14b) 

 
s.t. 
 
P'(t) = Q(λ ).P(t) (14c) 
 
Pi(0) = 0     i = 1, 2, …, N-1 (14d) 
 
PN(t) = 1 (14e) 
 

a

a
a c

n≤λ               Aa ∈  (14f) 

 

)x(g
n

aa

a
a ≤λ       Aa ∈  (14g) 

aa Ux ≤        Aa ∈  (14h) 
 

aa Lx ≥         Aa ∈  (14i) 
 
P(t), λ 0≥  (14j) 
 
Proof   The objective Function 14a is the sum of 
direct costs of all activities, or the total direct costs 
of the project. The objective Function 14b is the 
mean of project completion time, as indicated. The 
constraints 14c, 14d and 14e determine the 
dynamic of this continuous-time system. Taking 
into account the constraints 14f and 14g, If we 
allocate xa to the activity Aa ∈ , and )x(g aa  does 
not become smaller than ca, then aλ  gets its 

maximum value and becomes equal to )x(g
n

aa

a , 

or the mean of activity duration a becomes equal to 
)x(g aa , because the second objective, or the 

mean project completion time, will be satisfied, 
and if )x(g aa  becomes smaller than ca, then 
because of the same reason, aλ  gets its maximum 

value and becomes equal to 
a

a
c

n , or the mean of 

activity duration a becomes equal to ca. Constraints 
14h result from the capacity limitation on the 
resources, and the minimum amount of resource 
required to achieve each activity is insured by 
constraints 14i.  
     This continuous-time problem is so complicated 
to solve by analytical methods, and therefore we 
try to solve it numerically. To do that, we discretize 
this continuous-time system and convert the optimal 
control problem into an equivalent nonlinear 
programming. In other words, we transform the 
differential equations to the equivalent difference 
equations as well as transform the integral term 
into equivalent summation term. To follow this 
approach, the time interval is divided into K equal 
portions with length t∆ . If t∆  is sufficiently 
small, it can be assumed that P(t) varies only in 
times 0, t∆ , …, (K-1) t∆ . It should be noticed that 
the accuracy of the discrete-time model is 
guaranteed by using a small value for t∆ , and a 
great value for K. Assuming P(k t∆ ) or the kth 
value of P as P(k), the appropriate bicriteria 
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nonlinear programming can be obtained from 
Corollary 1. 
 
Corollary 1   The appropriate bicriteria nonlinear 
programming would be 
 
Min f1(X,λ ) = ∑

∈Aa
aa )x(d  (15a) 

 

Min f2(X,λ ) = ( )∑
=

∆−
K

0k
1 t)k(P1  (15b) 

 
s.t. 
 
P(k+1) = P(k)+Q(λ ).P(k) t∆   k = 0, 1, .., K-1 (15c) 
 
Pi(0) = 0     i = 1,2,…,N-1 (15d) 
 
PN(k) = 1         k = 0,1,…,K (15e) 
 

a

a
a c

n≤λ             Aa ∈  (15f) 

 

)x(g
n

aa

a
a ≤λ     Aa ∈  (15g) 

 
aa Ux ≤                  Aa ∈  (15h) 

 
aa Lx ≥                   Aa ∈  (15i) 

 
Pi(k)≤ 1     i = 1,2,…,N-1 , k = 1,2,…,K (15j) 
 
P(k), λ 0≥  (15k) 
 
Proof   The integral term in 14b, is easily 
transformed into the equivalent summation term 
15b, by considering P(k) instead of P(k t∆ ). The 
differential Equations 14c, 14d and 14e are also 
easily transformed into the equivalent difference 
Equations 15c, 15d and 15e, with the same reason. 
Since each Pi(k), for i = 1, 2,…,N-1 , k = 1,2,…,K 
is a distribution function, then the constraints 15j 
should be also included in this nonlinear programming. 
     For solving this multiple objective programming, 
we use the goal attainment method, which is one of 
the multi objective techniques with priori articulation 
of preference information given. This method is a 

variation of the goal programming. The method 
requires a goal vector, b, and a vector of weight w 
relating to the relative under attainment of the 
desired goals. The smaller weighting coefficient is 
associated with the more important objectives.  
     Let b1 and b2 represent the goals for the total 
direct costs of the project, and the mean of project 
completion time. Let w1 and w2 represent the 
weights relating the under attainments of these 

desired goals, in which ∑
=

=
2

1i
i 1w  Now, Assuming 

z as a scalar variable unrestricted in sign, the 
appropriate mathematical formulation of the 
problem can be obtained from Corollary 2. 
 
Corollary 2   The appropriate nonlinear programming 
would be 
 
Min z (16a) 
 
s.t. 
 
P(k+1) = P(k)+Q(λ ).P(k) t∆     k = 0,1,…,K-1(16b) 
 
Pi(0) = 0             i = 1,2,…,N-1 (16c) 
 
PN(k) = 1            k = 0,1,…,K (16d) 
 

a

a
a c

n≤λ       Aa ∈  (16e) 

 

)x(g
n

aa

a
a ≤λ     Aa ∈  (16f) 

 
aa Ux ≤            Aa ∈  (16g) 

 

aa Lx ≥       Aa ∈  (16h) 
 
Pi(k)≤ 1     i = 1,2,…,N-1 , k = 1,2,…,K (16i) 
 

∑
∈Aa

aa )x(d -w1z 1b≤  (16j) 

 

( )∑
=

∆−
K

0k
1 t)k(P1 -w2z 2b≤  (16k) 

 
P(k), λ 0≥  (16l) 
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Proof   Taking into account the desired goals for 
the total direct costs of the project and the mean of 
project completion time, and also the weights relating 
the under attainment of these desired goals, by 
minimizing z, the both objectives are satisfied. 
     If we consider the constraints 16c and 16d 
implicitly, and replace each Pi(0) with zero and each 
PN(k) with one in another constraints, the nonlinear 
programming 16 would have 3K(N-1)+5n+2 
constraints including the constraints 16l, and 3K(N-
1)+7n+3 variables including the slack variables. 
 
 
 

4. NUMERICAL EXAMPLES 
 
For showing the numerical stability of the theoretical 

developments of the paper, we solve 3 numerical 
examples. Case I is depicted in Figure 2. Table 2 
shows the characteristics of the activities. In this case, 
all activity durations are exponentially distributed 
random variables. We want to obtain the optimal 
values of the resources allocated to the activities in 
this time-cost trade-off problem. 
S  = {(1),(2,3),(2*,3),(2,4),(2*,4),(2,4*), ),( φφ }. 
Table 3 shows matrix Q(λ ). 
     The appropriate nonlinear programming model 
for obtaining the optimal value of the control 
vector [ ]TxxxxX 4321 ,,,=  would be 
Min   z 
s.t. 
 
P1(k+1) = P1(k)- 1λ P1(k) t∆ + 1λ P2(k) t∆ ; 

k = 0, 1, …, K-1 
 

P2(k+1) = P2(k)- 2λ P2(k) t∆ - 

3λ P2(k) t∆ + 2λ P3(k) t∆  + 3λ P4(k) t∆ ; 
k = 0,1,…,K-1 

 
P3(k+1) = P3(k)- 3λ P3(k) t∆ + 3λ P5(k) t∆ ; 

k=0,1,…,K-1 

TABLE 2. Characteristics of the Activities of Case I. 

a )x(d aa  )x(g aa  ca La Ua 
1 3x1+2 24-5x1 5 1 4 
2 2x2+1 20-3x2 4 1 6 
3 x3+3 15-2x3 3 1 7 
4 x4

2+2 10-x4 2 1 9 
 
 

TABLE 3. Matrix Q(λ ) Corresponding to Case I. 

State 1 2 3 4 5 6 7 
1 

1λ−  1λ  0 0 0 0 0 
2 0 )( 32 λ+λ−  2λ  3λ  0 0 0 

3 0 0 
3λ−  0 

3λ  0 0 

4 0 0 0 )( 42 λ+λ−  2λ  4λ  0 
5 0 0 0 0 

4λ−  0 
4λ  

6 0 0 0 0 0 
2λ−  2λ  

7 0 0 0 0 0 0 0 
 

 
 
Figure 2. PERT network of Case I. 
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P4(k+1) = P4(k)- 2λ P4(k) t∆ - 

4λ P4(k) t∆ + 2λ P5(k) t∆ + 4λ P6(k) t∆ ; 
k = 0,1,…,K-1 

 
P5(k+1) = P5(k)- 4λ P5(k) t∆ + 4λ t∆ ; 

k = 0,1,…,K-1 
 
P6(k+1) = P6(k)- 2λ P6(k) t∆ + 2λ t∆ ; 

k = 0,1,…,K-1 
 
Pi(0) = 0   i = 1,2,…,6 
 

a

a
a c

n≤λ   a = 1,2,3,4 

 

)x(g
n

aa

a
a ≤λ  a = 1,2,3,4 

 

aa Ux ≤   a = 1,2,3,4 
 

aa Lx ≥   a = 1,2,3,4 
 
Pi(k)≤ 1  i=1,2,…,6 , k=1,2,…,K 
 

∑
=

4

1a
aa )x(d -w1z 1b≤  

( )∑
=

∆−
K

0k
1 t)k(P1 -w2z 2b≤  

 
Pi(k)≥ 0  i = 1,2,…,6 , k = 1,2,…,K 
 

0a ≥λ    a = 1,2,3,4 
 (17) 
 
In nonlinear model 17, PN(k) = P7(k) = 1 for k = 0, 
1, …, K, and we replaced P7(k) with 1 in this 
model. It is also clear that 1n a =  for a = 1, 2, 3, 4. 
We set the goals for the total direct costs of the 
project and the mean of project completion time as 
b1 = 15 and b2 = 10, respectively. The values of 
other parameters are w1 = 0.4, w2 = 0.6, K = 10 and 

t∆  = 5. 
     We use LINGO to solve nonlinear programming 
17. Table 4 shows the optimal value of the amount 
of resource allocated to each activity a, or ax  for a 
= 1, 2, 3, 4, and also the optimal values of aλ  for a 
= 1, 2, 3, 4. Table 5 shows the distribution function 
of project completion time, or P1(k t∆ ), for k = 1, 
2, …, 10. 
     Finally, the optimal values of z or the objective 
function, f1(X,λ ) or the total direct costs of the 
project, and f2(X,λ ) or the mean project completion 
time are obtained as follows: 
 
z = 29.602  
f1(X,λ ) = 26.841 (18) 
 
f2(X, λ ) = 27.761 
 
In Case II, which is depicted in Figure 3, we test  

TABLE 4. Optimal values of ax  and aλ  for a=1,2,3,4 Corresponding to Case I. 

a 1 2 3 4 
ax  3.8 1 4.441 1 

aλ  0.2 0.059 0.163 0.111 

 
 

TABLE 5. P1(k t∆ ) for k=1,2,…,10 Corresponding to Case I. 
k 0 1 2 3 4 5 6 7 8 9 10 
P1(k) 0 0 0 0 0.401 0.633 0.771 0.852 0.902 0.934 0.954 

 

 
 
Figure 3. PERT network of Case II. 
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our model by a more general PERT network with 
Erlang distributions of activity durations. Table 6 
shows the characteristics of the activities. 
     In this case, after transforming the network into 
an equivalent network with exponentially distributed 
activity durations and obtaining matrix Q(λ ), we 
construct the appropriate nonlinear programming 
in order to obtain the optimal resources allocated to 
the activities. It is assumed that b1=12, b2 = 10, w1 

= 0.4, w2 = 0.6, K = 10 and t∆  = 5, respectively. 
Table 7 shows the optimal values of ax  for a = 1, 
2, 3. 
     The minimum values of the total direct costs of 
the project and the mean project completion time, 
in this case, are obtained as follows: 
 
f1(X, λ ) = 19.185 
 
f2(X, λ ) = 20.777 
 (19) 
 
In Case III, which is depicted in Figure 4, we test 

our model by a relatively large-scale system with 
10 activities. Table 8 shows the characteristics of 
the activities. In this case, all activity durations are 
exponentially distributed random variables. 
     In this case, after obtaining matrix Q( λ ), we 
construct the appropriate nonlinear programming 
in order to obtain the optimal amount of resource 
allocated to the activities. It is assumed that b1=70, 
b2 = 2.5, w1 = 0.9, w2 = 0.1, K = 10 and t∆  = 0.5, 
respectively. Table 9 shows the optimal values of 

ax  for a = 1, 2, …, 10. The minimum values of the 
total direct costs of the project and the mean 
project completion time, in this PERT network, are 
obtained as follows: 
 
f1(X, λ ) = 114.853 
 
f2(X, λ ) = 4.832 
 (20) 
 
 
 

5. CONCLUSION 
 
In this paper, we developed a new bicriteria model 
for the time-cost trade-off problem via optimal 
control theory in Markov PERT networks, in 
which the first criterion or the total direct costs of 
the project, and also the second criterion or the 
mean project completion time are both analytically 
minimized. Our method can be applied for the 
management and control of the projects with the 
stochastic natures. 

TABLE 6. Characteristics of the Activities of Case II. 

a Distribution  Parameters )( aa xd  )( aa xg  ca La Ua 

1 Exponential 
1λ  3x1+2 24-5x1 5 1 4 

2 Exponential 
2λ  2x2+1 20-3x2 4 1 6 

3 Erlang  ( 3λ , 3n =2) x3
2+2 15-2x3 3 1 7 

 
 

TABLE 7. Optimal values of ax  for a=1,2,3 corresponding to Case II. 

a 1 2 3 

ax  3.728 1 1 

 

 
 
Figure 4. PERT network of Case III. 
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     It was assumed that the mean of each activity 
duration is a non-increasing function, and the 
direct cost of each activity is a non-decreasing 
function of the resources allocated to this activity, 
or the controller of the problem. In application, 
these functions can be estimated using linear 
regression.  
     The corresponding continuous problem was so 
complicated to solve analytically. Therefore, we 
solved it numerically, by discretizing the relevant 
continuous-time system and converting the optimal 
control problem into an equivalent nonlinear 
programming. 
     To solve the relevant multiple objective 
programming, we used the goal attainment method, 
which is a variation of the goal programming 
technique. Goal attainment method is one of the 
multi objective techniques with priori articulation 
of preference information given. This method has 
the same disadvantages as those of goal 
programming; namely, the preferred solution is 
sensitive to the goal vector and the weighting 
vector given by the decision maker. However, the 
goal attainment method has fewer variables to 
work with, so it will be computationally faster, and 
therefore is a good method to solve our problem, 
which is complicated to solve even with the 
presented numerical method. 
     We could also use an interactive method like 

surrogate worth trade-off method, method of 
satisfactory goals or SEMOPS method for solving 
this bicriteria problem. 
     In the case of general PERT networks, we can 
approximate the general distributions of activity 
durations by the appropriate Erlang distributions, 
which is a special class of PH distribution, by 
matching the first two moments, and then use our 
proposed method to obtain the optimal resources 
allocated to the activities. 
     The limitation of this model is that the number 
of variables and constraints of the nonlinear 
programming 16 can grow exponentially with the 
network size. As the worst-case example, consider 
a complete directed acyclic network with n nodes 

and 2
)1n(n −  arcs. The size of the state space for 

this network is given by 1nn UU)n(N −−= , where 
 

∑
=

−=
n

0k

)kn(k
n 2U  (21) 

 
Refer to Kulkarni and Adlakha [3]. 
     Consequently in this case, the number of constraints 
of the nonlinear model would be equal to 3K(N(n)-
1) + 2.5n(n-1) + 2, and the number of variables 
would be 3K(N(n)-1) + 3.5n(n-1) + 3. Therefore, 
the number of constraints and variables of the 

TABLE 8. Characteristics of the Activities of Case III. 

a )( aa xd  )( aa xg  ca La Ua 

1 2x1 0.7-0.1x1 0 1 5 
2 3x2+1 1.5-0.2x2 0 1 6 
3 x3+2 1-0.1x3 0 1 9 
4 x4 1.5-0.3x4 0 1 4 
5 3x5+4 1.3-0.2x5 0 1 5 
6 x6+3 1.1-0.1x6 0 1 6 
7 2x7+5 1.5-0.2x7 0 1 7 
8 4x8+1 1-0.2x8 0 1 4 
9 5x9+2 2-0.4x9 0 1 4 

10 2x10+3 2.25-0.25x10 0 1 5 
 
 

TABLE 9. Optimal values of ax  for a = 1, 2, …, 10 corresponding to Case III. 

a 1 2 3 4 5  6 7 8 9 10 

ax  4.969 5.953 1 1 4.953 1 5.418 3.937 3.922 1 
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nonlinear programming 16 grows exponentially 
with n. In practice, the number of arcs of the PERT 

networks is generally much less than 2
)1n(n − . 

Even large sparse networks generally produce a 
reasonable size state space. 
     Our model can be extended in the following 
directions: 
1. The model can include the other objective 

functions like the total indirect costs of the 
project. 

2. The model can be extended to the general 
PERT networks. 

3. The control variable, or the amount of resource 
allocated to the activity, can be considered as a 
function of time. 
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