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Abstract Various problems of combinatorial optimization afid permutation can be solved with
neural network optimization. The problem of estimating the software reliability can be solved with the
optimization of failed components to its minimum value. Various solutions of the problem of
estimating the software reliability have been given. These solutions are exact and heuristic, but all the
exact approaches are of considerable theoretical interest. In this paper, we propose the simulated
annealing technique of mean field approximation for finding the possible minimum number of failed
components in the sequential testing. These minimum numbers of failed components are depending
upon the selection of time intervals or slots. The selection of time intervals or slots satisfies all the
necessary constraints of the problem. The new energy function with the mean field approximation is
also proposed. The constraint parameter for the annealing schedule is also dynamically defined that is
changed with the selection of a time interval or slot on each iteration of the processing. The algorithm
of the whole process shows that this approach can generate the optimal solution.
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1. INTRODUCTION

Most of the traditional problems of combinatorial
permutation can be solved with the help of the
Artificial Neural Network [1]. There are various
applications and uses of a neural network [2]. One
of the most successful applications of the neural
network is solving optimization problems [3].
There are many situations where a problem may be
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formulated as minimization or maximization of the
cost function or objective function subject to
constraints. It is possible to map such problems
onto a feedback network, where the units and
connection strengths are identified by comparing
the cost function of the problem with the energy
function of the network expressed in terms of the
states values of the units and the connection
strength. The software reliability can be defined in

Vol. 19, No. 1, December 2006 - 35



statistical terms as “the probability of fault free
operation of a system or component to perform its
required functions under stated conditions for a
specified period of time” [4]. Software reliability
represents a user (or customer) oriented view of
software quality. It relates directly to operation
rather than design of a program, and hence it is
dynamic rather than static. For this reason software
reliability is interested in failures occurring and not
faults in a program. Failures mean a function of the
software that does not meet user requirements .The
reliability of any software can be estimated using
the failure data of the system, but prediction of
exact failures in software is complicated. We have
various statistical methods [5] for predicting
failures but research indicates that these models are
not appropriate for prediction of failure. It may be
a better idea to use the optimization technique of
ANN for determining the failures and use it for
estimating the software reliability.

Various solutions for such types of problems
have been proposed in which the problems can be
formulated as the optimization of the cost or
function with the satisfaction of certain constraints.
The same method can also be applied to optimize
the reliability estimation, where the objective is_to
minimize the number of failed components in
sequential testing [6-7]. The traditional method to
solve such problems was gradient decent
approaches of hill climbing and a stochastic
simulated annealing [8].

In this paper, we propose the simulated
annealing technique of mean field approximation
for optimizing the possiblesminimum number of
failed components in the given time duration. The
selection of time intervals or slots satisfies all the
necessary constraints. Energy function for any
Hopfield type feedback neural network represents
the stored input pattern in the form of the number
of failed components. This energy function also
satisfies all the necessary constraints imposed in
the problem. A global constraint in the form of the
number of failed components in the particular slot
or time interval (that is being selected randomly)
can be selected for the Annealing schedule. The
constraints can be reduced as per annealing
schedule and the corresponding the new energy
function is estimated. It can be seen that the
possible minimum energy function will represent
the minimum number of failed components in the
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sequential testing.

2. SIMULATED ANNEALING OF MEAN
FIELD APPROXIMATION FOR OPTIMIZING
THE NUMBER OF FAILED COMPONENTS
OF THE SOFTWARE

To optimize the maximum or minimum number of
failed components in the testing period we can
consider the optimization method of simulated
annealing. The optimization is a process in which a
function can be formulated as minimization or
maximization’ of some cost function or objective
function subject to certain constraints. The solution
of the problem is generally defined in two terms,
one is global optimal solutions and other is local
the /optimal ‘solution. Global optimal solution is
used when there is no other feasible solution with
better objective-function values. A local optimal
solution is when there is no other feasible solution
in. the vicinity with better objective function
values. In the testing of the different software
components, the objective is to minimize the
number of failed components in the given time
duration (T) under certain conditions. We divide
the total time duration in to different small time
interval and note all the number of failed
components at the end of that slot. Therefore, we
can consider the different time intervals for the
execution of software. For example we are noting
the number of each failed component after one
hour, in other words we can note the number of
failed components after 2 hour and so on. Now, the
question is which time interval should be selected
so that the number of failed components could be
minimized with the constraints that each slot
should come only once in the testing period. The
Hopfield memory can be used to solve this
problem. In this process the characteristic of
interest is the rapid minimization of the energy
function. To use the Hopfield memory for the
application, we map the problem onto the Hopfield
type network architecture. The first term is to
develop a representation of the problem of the
solution that fits in an architecture having a single
array of the processing elements (PE). We develop
it by allowing a set of N PEs to represent the N
possible positions for a given slot in the sequence
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of the testing. The weight matrix format can be
found from the number of failed components in
that particular slot. The output will be labeled as
Tx;, where the ‘X’, subscript refers to the slot and
the ‘i, subscript refers to the position in the
testing. To formulate the connection weight matrix,
the energy function must be constructed so that it
satisfies the following criteria:

Energy minima must favor states that have each
slot only once in the sequential testing.

Energy minima must favor states that have each
position in the testing only once.

Energy minima must favor states with the
minimum total number of failed components.

Denoting the state of a processing unit of the
Hopfield network as Tx; = 1 indicates that the slot
X is to be completed at the i stage of testing, the
energy function can be written as;

@.1)

where A, B and C are the positive constants and
denote the relative importance 'given to the
constraints.

The mean field approximation algorithm [9-10]
also proposed _a solution for this type of
optimization. The following energy function with a
mean field approximation can be proposed:

f X
Egr = n;a

N N N
222 T T
] X

i j#l

1NN N
EZ Z zfXYTXi (TY,i +TY,i—1)

X Y#X i

2.2)

Where f,,.x is real constant, which is slightly larger
than the largest number of failed components
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between the time intervals in the given sequential
testing. There fore, in Equation 2.2, there are only
two terms, the first term is regarding feasibility,
which inhibits two slots from being in the same
testing time. The second summation term is used
for the minimization of the number of failed
components. The term f,x is used for the
balancing of the summation terms.

The output Tx; of a neuron (X, i) is interpreted
as the probability of finding slot X in testing
duration at position i. The mean field for a neuron
(X, 1) is defined according to the energy function
given in Equation 2.2 as;

N N
E =T ZTxi + zfXY(TY,Hl +Tyi1) (2.3)
Y#X Y#X

Initially all-the neurons are arranged to the average
value.and the constraint parameter F with the f,..
The weights of the interconnections are initialized
with small random numbers. As per the Hopfield
model, the stable state of the any i neuron can be
define as

T, (t+1) =F [ > W;T;(t) ] (2.4)

j#

This stable state may lead to a state corresponding
to a local minimum of the energy function. In order
to reach the global minimum, i. e. the possible
minimum number of failed components in the
sequential testing, by passing the local minima, we
use the concept of stochastic updating of the unit in
the activation dynamics of the network. In
stochastic updating, the state of units is updated
using the probabilistic updating, which is
controlled by the annealing schedule constraint
parameter (F = f,) and the probability
distributions of the states at thermal equilibrium is
given as;

P( TXi):%e_EXi/F (2.5)

Where Z is the partition function.

Initially, the arbitrary time slot is selected and
the energy function of the network is constructed,
as given in Equation 2.2. The annealing schedule
assigned with the maximum number of failed
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components i. e. to its higher value. So at a higher
F, many states are likely to be visited, irrespective
of the energies of those states. Now, the value of
the constraint parameter F is gradually reduced as
per the annealing schedule, and the output value of
the states perturb. This perturbation continues
until the network settles in to a stable state or
equilibrium state. So, the network estimates the
energy function for this state and compares it with
the previous energy function by computing AE. If
AE < 0, we accept the solution with the highest
probability i.e. 1, otherwise we accept it with the
probability given in the Equation 2.5. On each
iteration of this process, the solution is accepted
with the probability 1, and then the constraint
parameter F is assigned with f..x of the newly
constructed energy function. Then every time on
the acceptable solution with higher probability, the
constraints parameter changes with the newly
found maximum number of failures. This newly
found maximum number of failed components will
be less then the previously found maximum
number of failed components. So the simulated
annealing process will continue with the new value
of the constraint parameter. This process continues
until the final value of the schedule is obtained. At
this state the units of the network represent the
state of equilibrium, which will represent ‘the
minimum energy function for the network. Thus
the minimum energy function will represent the
possible minimum number of failed components in
the sequential testing.

In order to speed up the process of the
simulated annealing, the mean field approximation
is used, in which the stochastic ‘updating of the
binary units is replaced by deterministic analog
states. Thus the fluctuating activation value of each
unit is replaced with its average value. The
Equation 2.4 can be express with this method as:
<T(t+D) > =F[<Y W,; T, (1) >]1=F Y. W, <T,()> (2.6)

j#i j#i

and from the stochastic updating with thermal
equilibrium we have;

N
<T(t+1)> = tanh [% DLW < T()>]  (27)

j#

This equation is solved iteratively starting with
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some arbitrary values < T; (0) > initially. The stable
state in the mean field approximation is a result of
minimization of an effective energy and defined as
the function of F:

1 0E(< T >)
0<T >

1

<T; >=tanh [- ] (2.8)

Where the effective energy E (< T; >) is the
expression for energy function of the Hopfield
model using averages for the state variables.

Now the constraint parameter F decreases as per
the annealing schedule, the state of the network
perturbs with the stochastic asynchronous updating
of the processing elements. So, as the output value
perturbs, the neurons produce the updated states.
The states updating continues until the Equation
2.6 satisfied.

Hence, for stable conditions the energy function
of the annealing schedule can be expressed as;

new

— —max_ ZZZ<TX ><Ty, >+

i j#i X

(2.9)

PN NN
EZ Z ZfXY <Ty, > << Ty + Ty >)

X Y#X i
The energy difference AE is computed as;

f new

2 max 22<Tnew

i ji

AE=ER-EY -

fold N N
—ﬂzz <T§(]fj><T§(14>+
2 ! J

i gzl

<TY">
lN L new old new old
D (R - ) K TEY-TY>)
2 X Y#X i

l(< Ty i+ Ty > )new_ (< Tyin+ Ty o> )O]dJ
(2.10)

If the energy difference AE < 0, the probability of
accepting the solution becomes 1 otherwise it is
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P,0e " On each iteration with the highest

probability of accepting the solution, the constraint
parameter of the Annealing Schedule is defined
as;

F=f oy (2.11)
On each iteration, the constraint parameter is
changed to its minimum value with respect to the
previous value. Hence, each time the network
determines the stable condition with the new value
of energy function E and constraints parameter F
(when PE < = 0). The neurons produce the stable
state that represents the position of the slot with a
minimum number of failed components with
respect to the previous position. So, at stable
condition with AE < 0 the state of the neurons can

be defined from the Equation 2.5

<TXi>:tanh[—m

max

fneWNNN 1

N N N
o108 2 DT <> D03 D iy <Tx > T+ Tyis )l

i 4 X X Y#X i
0< Ty >

]

212)

The Mean field for the neuron (X, 1), where output
< Tx; > can be interpreted as the probability of
finding the slot X in the i™. testing position as
defined from the Equation 2.3 as;

N N
_ pnew
Ex, = foax Z <Tx, >+ zfxv KTyia+Tyi0>)
Y#X Y#X

(2.13)

Thus, the entire process continues until a fixed
point is found for the every value of constraint
parameter F. In the process of selecting a fixed
point, change in the energy is computed and the
probability of accepting the point in the minimum
number of failed components can be found. The
field for the selected points will also be computed.
This entire process will continue for every
schedule of the constraints parameter F, until F
reaches the final value.

The algorithm of the entire process can be

1JE Transactions B: Applications

proposed as:

Initialize the weights and bias with a small random
number. The value of F is initialized with any large
random number.

Store the input pattern in the form of the number
of failed components (f,,f,,———f,) that are

observed during the different time slots i.e.
(At,At,,———,At, ) of sequential testing for the

different modules of the software. The number of
failures (fj,f,,———,f,) is stored with the stable

state of the network as:

T (t+1) = F [ WT;(1)]

j#
Do until the fixed point is found.

Randomly select a slot say X.

Compute the'energy function as;

i

f N N N
EST _ rréax Z;;<TXi ><TXj >+

1N NN
52 Z zfXY <Tx, > (< Ty; +Tyiy >)

X Y#X i

Compute the state of the unit at equilibrium;

< TXi >= tanh[_LaEi
fax 0<Tx >

]

Also calculate the AE using Equation 2.7:

if AE <0 accept with P« Ty - (aceer) = 1 and set F
= finax €lse P < Ty, et = exp (AE /F) Compute
the Mean field as

N
Ex; = fiax z< Ty, > +xy (< Ty i + Ty >)
Y#X

(The average of the output values of accepted
fixed point i. e. neurons).

If F reaches the final value stop the processing
otherwise decrease the F according to the
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TABLE 1. Number of Failures in the Different Time Intervals for the Sequential Testing.

Time Failed Time Failed Time Failed Time Failed Time Failed

(hrs.) | components | (hrs.) | components | (hrs.) | components | (hrs.) | components | (hrs.) | components
0-1 130 0-2 170 0-3 150 0-4 240 0-5 300
1-2 83 2-4 158 3-6 163 4-8 248 5-10 350
2-3 75 4-6 132 6-9 148 8-12 230 10-15 200
3-4 68 6-8 145 9-12 130 12-16 172 15-20 150
4-5 62 8-10 100 12-15 121 16-20 110
5-6 56 10-12 73 15-18 146
6-7 51 12-14 60 18-20 140
7-8 46 14-16 16
8-9 41 16-18 18

9-10 37 18-20 20

10-11 34

11-12 31

12-13 28

13-14 64

14-15 76

15-16 62

16-17 40

17-18 12

18-19 3

19-20 1

annealing schedule and repeats Step 2.

3. SIMULATION RESULTS

In this paper, for estimating the software
reliability we have applied the technique of
sequential testing with simulated annealing of
mean field approximation. The pattern of failure
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can be obtained from life - test results, i.e. by
testing a fairly large number of components
until failure occurs, and observing the failure
rate characteristics as a function of time. For
optimization of software reliability we consider
a series of tests conducted under certain stipulated
conditions on 1,000 software components.

The total time duration of the tests is 20
hours. The number of components that will fail
during the defined time interval is noted. The
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results obtained are tabulated as shown in Table
1.

TABLE 2. Selection of Time Interval with the Minimum
Number of Failures.

This table lists the total number of failed
components at the end of lhr, 2 hr, 3hr, etc. in the Time interval Number of Failures
second column. In the same manner, the total
number of failed components at the end of 2hr, 4hr,
etc. are listed. The same pattern can be seen in the 0-1 130
following columns. Now after some iteration this 0-2
number of failures will be stored in different energy 0-3
minima’s with the time interval (as Figure 1 shows) 0-4
according to this energy function as given in 0-5
Equation 2.2. 1-2 83
Initially the arbitrary slot is selected and the 2-3 75
energy function is constructed as given in Equation 2-4
2.2. The annealing schedule is assigned with the 3-4 68
maximum number of failures i.e. F. At the higher 3-6
F, many states are likely to be seen. Therefore, the 4-5 62
value of the constraints parameter F is gradually 4-6
reduced as per the annealing schedule, the output 4-8
value of the state perturbs. This perturbation 5.6 56
continues until the network settles to a stable state 5210
or an equilibrium state. 67 51
At the stable state after minimizing the 6-8
constraint parameter, Table 2 can be constructed. 6.9
Table 2 shows the results that the number of -8 16
8-9 41
8-10
8-12
9-10 37
400 | 9-12
350 | 10-11 34
10-12
300 | 10-15
T 11-12 31
g 12-13 28
k= 12-14
= 12-15
8 s 12-16
g 13-14 64
o 100 14-15
14-16 65
501 16-17 40
o | | | . | 16-18
0 5 10 15 20 25 16-20
17-18 12
Time Interval (hrs.) 18-19 3
. . . . . 18-20
Figure 1. Number of failures at different time interval at
different energy minima’s. 19-20 1
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failures of 130 gradually reduces from its higher
values of 350. This trend continues in the other
rows for the selection of the next slots. Now the
energy function will change as given in Equation
2.10 and the state of the neurons can be defined in
Equation 2.5.

This entire process will continue for every
schedule of the constraint parameter F, until F
reaches the final state. After completing the entire
iterations for the allowed minimum limit of F,
Table 3 can be constructed.

Table 3 shows that, the number of failed
components has been reduced. Initially we have
1,000 failures and after applying the annealing
schedule in the sequential testing, 927 cumulative
numbers of failures remain. The results of the
fourth column shows that this technique of
optimization reduced 73 failed components.

Figure 2 shows the optimized number of failed
components with different time intervals in the
energy landscape. This table also shows the failed
component density, failed component intensity,
and the reliability after getting the failures in each
time interval. The table shows that the reliability of
software components increases.

4. CONCLUSIONS

In the process of estimating the. software
reliability we are optimizing the failed
software components to their minimum value.
Using the simulated annealing technique of
MFA we reduce the failures in a very
systematic way. For this we divide the total
time duration dn.the small time intervals or
slots and note the failed components at the end
of each slot.

The selection of time interval or slot
depends upon certain constraints. The main
contribution of our work is to design or
formulations of necessary constraints under
which the slot is selected and determining the
optimized number of failed components of the
software. To accomplish the task of optimizing
the number of failed components, we select the
slots in the sequential testing. The selection of
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slots satisfies all the necessary constraints
imposed in the problem.

The Hopfield energy function represents
the stored failed components in different time
intervals in the sequential testing. The
constraint parameter F of the annealing
schedule will change on each iteration of the
process with the fmax (number of failures),
which is slightly larger than the number of
failures between slots that have been selected for
the sequence.

This newly found maximum number of failed
components will-be:less then the previously found
maximum number of failed components. So the
simulated annealing process will continue with the
new value of the constraint parameter. This process
continues until the final value of the schedule is
obtained.

At this state the units of the network represent
the state of the equilibrium, which represents the
minimum energy state for the network. Thus the
minimum energy function will represent the
possible minimum number of failed components in
the sequential testing. Thus, energy iteration will
be scheduled with the optimized value of F.

The reliability of the software is easily
estimated with the optimized minimum number of
failures determined by the network. The results
show that after applying the sequential testing with
MFA we can optimize the number of failures up to
a minimum value. These minimum numbers of
failures increase the software's reliability. More
experiments and analytical investigation are still
required for increasing the efficiency and speed of
the solution.
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