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Abstract A semi-analytical solution is presented for three dimensional elastic analysis of
finitelylong, simply supported, orthotropic, laminated cylindrical panels with piezoelectric layers
subjected to outer pressure and electrostatic excitation. Both the direct and inyerse piezoelectric
effects are investigated. The solution is obtained through reducing the highly coupled partial
differential equations (PDE's) of equilibrium to ordinary differential equations (ODE's) with variable
coefficients by means of trigonometric function expansion in longitudinal and circumferential
directions. The resulting ODE's are solved by dividing the radial domain into some finite subdivisions
and imposing necessary continuity conditions between the adjacent sub-layers. Some numerical
examples are presented for the stress distribution and electric responses due to outer pressure in both
sensorial and actuating states. Also, the effect of geometric properties on the sensitivity and actuating
power of the structure are investigated.
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1. INTRODUCTION

Piezoelectricity was first discovered by Jacques
and Pierre Curie in 1880, and other materials
later discovered included rochelle salt
(NaKC,H404.4H,0), barium titanate (BaTiO;),
lead titanate (PbTiO;), lead zirconate titanate
(PbZry 5, Tip.4503), zinc oxide (ZnO), aluminum
nitride (AIN), polyvinyliden fluoride (PVDF)
and its copolymers with trifluoroethylene
(TrFE) and tetraflouoroethylene (TFE), etc.
Since lead zirconate titanate (PZT) has
excellent piezoelectric properties, a high Curie

1JE Transactions B: Applications

temperature, high spontaneous polarization and
high electromechanical coupling coefficient, it is
probably the most widely used piezoelectric
material. On the other hand, light and flexible
ferroelectric polymers, especially PVDF, show
many advantages over ceramics for several
applications. So, composites made of ferroelectric
ceramics combined with polymers have several
advantages over pure piezoelectric materials.
Therefore, Diphasic composites of PZT (and La/Ca
modified PZT) combined with various polymers
such as PVDF, PVC, PVA, epoxy resin and co-
polymers have been widely studied and reported in
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the literature. Several intelligent composite
material systems, combining piezoelectric
materials with structural materials, have received
attention in various industrial fields. The
mechanics of laminated piezoelectric structures
therefore has gained much attention [1-5]. There
are two characteristics of piezoelectric materials
which permit them to be used as sensors and
actuators. One is their direct piezoelectric effect
which implies that the materials induce electric
charge or electric potential when they are subjected
to mechanical deformations. Conversely, the
second effect happens when they are deformed if
some electric charge or electric potential is
imposed on them, which is called inverse
piezoelectric effect. Laminated composite shells
with piezoelectric layers are important components
of smart or intelligent structures. Analytical three-
dimensional studies for these structures are not
only valuable in their own right, but they are also
useful for studying various approximate theories
and computational models.

Mitchell and Reddy [6] have presented a power
series solution for the static analysis of an
axisymmetric composite cylinder with surface
bonded or embedded piezoelectric lamina. Chen
and his coworkers [7-9] have developed a variety
of analytical and approximate solutions <for
piezoelectric shells. A higher order theory for
functionally graded piezoelectric ‘shells has. been
developed by Wu and his coworkers [10]. Wang
and Zhong [11] investigated analytically the problem
of a finitely long circular ecylindrical. shell of
cylindrically orthotropic piezoelectric/piezomagnetic
composite under pressure loading and a uniform
temperature change. They obtained an analytical
solution through the power series expansion
method and theFourier series expansion method.
Kapuria et al. [12]¢ have presented an exact
piezothermoelastic ‘solution of a finite transversely
isotropic  piezoelectric cylindrical shell under
axisymmetric thermal, pressure, and electrostatic
excitation by formulating the problem in terms of
potential functions and using Fourier expansion
series. Ossadzow and Touratier [13] have
presented a two-dimensional theory for the
analysis of piezoelectric shells based on a hybrid
approach in which the continuity conditions for
both mechanical and electric unknowns at layer
interfaces as well as the imposed conditions on the
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bounding surfaces and at the interfaces are
independently satisfied. Wu and his coworkers
[14] have presented an analytical study for
piezothermoelastic behavior of a functionally
graded piezoelectric cylindrical shell subjected to
axisymmetric thermal or mechanical loading. They
have used the Fourier series expansion method
together with the power series expansion method
to reduce the governing PDE's to ODE's and have
obtained the solution for both direct and inverse
piezoelectric effects. Ma and his coworkers [15]
have studied two-dimensional problems of
anisotropic cylindrical piezoelectric tube, bar, and
shell in a cylindrical coordinate system. They
found that the electrical parameters of piezoelectric
materials influence the formations of the solution
significantly. Some ‘researches on thermoelastic
displacement and shape control of the laminated
piezoelectric structures are treated in [16-18]. Also
Ootaor'and Tanigawa [19] have analyzed the
transient jpiezothermoelastic problem of an angle-
ply laminated cylindrical panel bonded to a
piezoelectric layer. They also examined the
influence of thickness of angle-ply laminate on the
applied electric potential and transverse stresses.
Tzou [20] represented a collection of relevant
researches and developments on piezoelectric
shells and related applications to the distributed
measurement and control of continua.

In this study a very simple semi-analytical
solution is presented for three-dimensional
elasticity equations governing the finite laminated
composite cylindrical panels with piezoelectric
layers. The laminated panel is subjected to a
uniform external pressure and an electric
excitation. The panel is supposed to have simple
supports at its four edges. The governing elasticity
equations are reduced to ordinary differential
equations (ODE's) using a doubly periodic solution
in the shell surface coordinates. The resulting
ODE's are solved by dividing the radial domain to
some small finite subdivisions in which the radial
coordinate appearing in the coefficients of these
ODE's is treated to be constant. A convergence
study is then carried out in order to determine the
proper number of subdivisions made in each
physical layer. Finally numerical results are
presented for typical prescribed outer pressure and
electric charge excitations in both sensorial and
actuating states. Also, the effect of geometric
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properties of the cylindrical panel on the sensitivity
and actuating power of the structure are studied.

2. FUNDAMENTAL EQUATIONS OF
PIEZOELASTICITY

The linear constitutive equations coupling the
piezo-elastic field are given by [20]:
E, (1)

Gjj = Cij€ia — €

ij mij

D; =¢jén+ Em Em (2)

where o; and ¢; are the stress and strain tensors.

Also D; and E; are the electric field vectors and

Cija» €mij» and e, are the elastic constants, the
piezoelectric stress constants, and the piezoelectric
coefficients, respectively. Relation 1 denotes the
inverse piezoelectric effect while 2 presents the
direct piezoelectric effect [20]. It is to be noted that
in 1 and 2 a repeated index implies summation
from one to three.

The equilibrium equations are given by [20,21]:

c.:=0 3)

i = 0 (4)

The linear relations between the strain components
g;'s and the displacement components U;'s and

the electric field E; and the electric potential ¥
are given by [20,21]:

1
& :E(Ui,j"_Uj,i) (5

E; = —\Y,i (6)

where an index following a comma indicates
partial differentiation with respect to a coordinate.
In this part, a finite laminated cylindrical
panel with piezoelectric layers is considered (see
Figure 1). The shell to be considered is
composed of orthotropic cross-ply layers and
some piezoelectric layers while the orthotropic
layers are made of reinforced fiber composites.
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Figure 1. configuration of the laminated cylindrical panel
piezoelectric layers.

The panel is subjected to a uniform outer pressure,
R;, is the inner surface radius and R, is the outer
one. For convenience the following variables are
introduced

(Ur,Up,U,,¥) @)

(urau97u29W): RO
where R, is the middle surface radius of the shell

panel. In the cylindrical coordinate system {r, 0, z}
Relations 3 to 6 are given as follows [20,21];

Gradient relations:

k k
ou
= R gt
k
8kr — 811 r
or
. auk 160k auk ouk (8)
Yoz = e+_ 29 Y= “+ -
0z r 00 or oz
P G L T
== —ut, +r
Y 1o I'( 0 0 or )
gl _ 00T L 1oy
! or ’ 20
" ' ©)
Ekp — a\l’
z 0z
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Equilibrium Equations [20,21]:

k k k k k
aGr+(Gr_G 6)+1a‘r r6+aT z

or r r 00 0z
k k k k
Ot 1000 0w 7T _ (10)
o r 00 oz r
nk, 10t ok,
17 +_ Z! z

+ +—2=0
or r 00 oz r

aD*?, . D', N oD . oD,
or r r 00 1574

=0 (11)

Constitutive Relations A piezoelectric material
with symmetrical hexagonal structure (Class Cgq, =
6 mm) exhibits transverse isotropy about its third
axis. Therefore, the constitutive relations for
piezoelectric layers are [21];

ko o k
Or Cll C12 C13 0 0 0 &r
RI¢] C22 C23 0 0 0 €9
GZ _ C33 0 0 0 SZ
0z Cag O 0 Y0z
Trz Sym. Css 0 Yrz
C
w) - 64 ne) (12
_ -kp
e33 0 0 E, kp
_ 632 0 0 E
0 0 0 0
0 0 624 EZ
L0 e5 0]
and
€, k
K kp | €
D, |" [es eyey 000 07 86
D, 0 0 0 0ey 0] |
Vrz (13)
Vo

e 0 0B ™

+H 0 ¢, O Eq
0 0 ey E

It is to be noted that in 8 through 13 the index k
denotes the k™ layer and index kp denotes the k"
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layer which is piezoelectric. That is, for non-
piezoelectric layers Equations 9, 11, and 13
disappear and the last term in Equation 12 must be
dropped (i.e., e;; = 0 for composite layers).

The boundary conditions to be considered are
those for simple supports [21,22];

u =uy=0,=y=0 at =O,L
R, (14)
u =u,=0,=y=0 at 0=0,0,

The traction conditions on the inner and outer
surfaces are assumed to be as follows;

G, =Ty=T,=0 at r=—=o

G, ="qy ., Tgp=T, =0 at r=——

In addition, any piezoelectric layer electrical
boundary conditions must be satisfied [22];

kp Ry
yP =0 at r=—=2 (16)
Ry

where R is the inner surface radius of the k"
piezoelectric layer. Furthermore;

kp
r = Rou (17a)

ke v at
A4 0 R,

if the piezoelectric layer is used as an actuator and

R
DY =0 at =2 (17b)
Ry

if the piezoelectric layer is served as a sensor
where R¥® is the outer surface radius of the k™

piezoelectric layer.

It should be mentioned that when a
piezoelectric layer is served as an actuator, a
voltage is imposed on one of the surfaces of the
piezoelectric lamina and the other surface is in zero
voltage level, while it serves as a sensor, one
surface of the piezoelectric layer is free of electric
excitation and the other one is in zero voltage level
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as formulated in the above.

3. METHOD OF ANALYSIS

The following expansions are used for various
response quantities;

o0 o0
u, = Z ZCI)lr( sina,0.sin P,z
m=In=1
0 o0
uk, = z ZCDE cosa,,0.sinf,z
m=In=1
o (18a)
uk = Z ZCDIZ‘ sina,0.cosB,z
m=ln=1
0 00
yrP = > Z\ukp sina,,0.sinB, z
m=1n=l

where @, ®f, ®*and y?Pare functions of “r”

only, the index k implies the k™ orthotropic layer,
the index kp implies the k™ piezoelectric layer, and

mm

nnR
Oy =— =—
0
0

. (18b)

. Ba

Substituting Equations 18a into gradient Equations
8 and 9 and the subsequent results into the
constitutive Relations 12 and 13 and the final
results into the equilibrium Equations 10 and 11
yields;

k k
(24 S iyt

2 k
¢ C
r 1'2

Ck
{ lldrz
a d o
+{__m(ci(2+C:6)_+_;n(cl;2+clﬁ(6)}¢)lé
r dr r
B (19)
L(Ch,- €)@

T

d
+{-B, (C;,+Cs) =+
dr

d 1 d o
+{ey d7+;(e'§§ 'elsqf)a' (r—;"ef;’ﬂﬂie;z’)}\ukp =0

a d o
{T‘“(C'; +C'§1)a+ ri" (Co,+CE ) o

2k k
e L L S ety o)
r r dar r (20)

o
+{-mTB“<C§3+C§4>} o

o W koy Ok kp _
e e A A
r dr r° °
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ip,(: ) S Becr o

T
RIS
T
(21)
2 C 4 o
4ok 4 Ts & Zm ok ok g2y pk
(€t s p ot
B,

#(p (e S Pa iy
24 32 dr r 24

2 2
{ekp d_2+l(ekp+ekp)i_ (a_;nekp+ Biekp)}q)k
33 dI. T 31 33 dr T 15 24 r
+( O o et) S Gy
T 31 15 dr I. 15 0
d (22)
(e Pe ety
32 24 dr T 32, z
e’ d o
ko 20 T oy Tm o oke @32 Gkpyyy ke ()
dr’ o dr (e ey

+{-e
The above equations with variable coefficients
have been solved by Xu and Noor [23] through a
modified Frobenius method. In this study,
however, they will be solved by dividing each
layer into some finite thin sub-layers as shown in
Figure 2.

That is, the k™ layer within the laminate is
divided into N sublayers. This way, since each
sublayer becomes very thin, the variable r
appearing in Equations 19 through 22 can be
replaced by the mean radius ry (n) of each sublayer.
The resulting equations will be four ODE's with
constant coefficients as follows,

Figure 2. k™ layer is divided into N thin sublayers with thickne
hy(n),n=1,...,N.
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+{Ck d_2+ 55 i a’ Ck [3 )}(Dk
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+{-B. (e +ez4)01 o) e} of
& el d
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e » dr r.(n) dr ( k() " B ® )}W

The general solution of Equations 23 through 26 is
found by assuming that;

) A

r rmn
q)e Bemn 'Armn

o, = B A exXp(X 1) (27)
\Vp k,n Bsmn 'Armn k,n

66 - Vol. 19, No. 1, December 2006

where A, and X are

constant coefficients for n™ sublayer of k™ lamina.
The above  solution is  valid for

h
rk( )_ k( ) kz(n)

mean radlus of n™ sub-layer of k™ lamina.
Substituting 27 into Equations 23 through 26 and
solving for X,,,'s will yield a polynomial of order
six for nonpiezoelectric regions (sublayers) and of
order eight for piezoelectric regions (sublayers).
Upon determining X,'s, the constants By,,'s,

B,..'s, and B

llnear algebraic-equations obtained by substituting
X . 's into Equations 24 through 26. The

mn

p
Bemn s Bzmn > B

smn

<r<r (n)+ where 1(n) is the

's will be found by solving the

unknowns A .'s will then be determined by

imposing the necessary continuity conditions
between each two adjacent sublayers. That is;

O} O}
( r)k,n r=r; () k(n) ( r)k,n+l r=r, (n+]) hk(121+1)
D = (D
( 6)k,n r=r, (n)+hk(n) ( G)k,n+l r:rk(n+1)—hk(121+1)
D = (@
( z)k,n r=r, (n)+ @) k(n) ( z)k,n+1 r:rk(n+1)—hk(;+l)
(28)
(Gr)k,n . )+hk(n) (S )k n+t - (n+l)_hk(;1+1)
(Tm)k,n — (n)+hk(n) (sz)k,m-l — (n+1)—hk(;+1)
T T
( rﬂ)k,n r:rk(n)+hk2(n) ( r6)k,n+l r:rk(n+l)fhk(§+l)

where hy (n) is the thickness of n® sublayer of K
lamina. In addition, for piezoelectric regions
(sublayers) there are two additional necessary
continuity conditions as follows;

P _ p
(W)k,n r:rk(n)_‘_%n) (\lj)knwl r=r, (n 1) hk(n+l)
(29)
D,)’ = (D,
( r)k)“ r=rk(n)+hk2(n) ( r)k’n+1 r=rk(n+1)7hk(n+l)
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4. NUMERICAL RESULTS AND
DISCUSSIONS

The material properties of the piezoelectric layer
considered here are those for a piezoelectric
ceramic-PZT [7]:

Elastic constants;

cylindrical panel, H is the panel thickness, and L is
the panel length in z-direction (see Figure 1).

In Fourier's series, a few terms can give
satisfactory results for the case studied (i.e., S =
52, L/Rg = 1). Therefore 20 terms have been used
throughout the analysis in each direction. In all
cases, each lamina is divided into 5 sublayers, so

the radial location ;5, R =Ri) will be shown in
H

the figures with the numbers 0 to 15 for [P/90°/0°]
laminates. When 0, = 45°, the laminate will be
referred to as the 45° - panel whereas when 0, is
22.5° it is said that the laminate is a 22.5° - panel.
Figure 3 .shows the sensorial voltage
distribution <(voltage . distribution when the
piezoelectric layer is served as a sensor) across the
thickness of the 45°+~ panel at 6 = 22.5°. Similar

Fiezo layér

[11.3
743 13.9 sym.
743 7.78 13.9
[C]= x10" Pa (30a)
0 0 0 26
0 0 0 0 256
L0 0 0 0 0 256
Piezoelectric constants;
151 0 0 ]
=52 0 0
=52 0 0
[e]= cm™ (30b)
0 0 0
0 0 127
L0 127 0 |
Dielectric constants;
562 0 0
[e]=] 0 646 0 |x10” Fm (30c)
0 0 646

The material properties of the graphite-epoxy layer
are [7];

E, =76.8x10° Pa , E =E,=55x10° Pa
G, =G, =2.07x10° Pay Gy, =1.4x10° Pa

Vg =0.37

(1)

V, =V, =034 ,

Two cases are considered in this study with a
three-layered [P/90°/0°] panel, one with 6y = 45°
and the other one with 6, = 22.5°. In each case
both the sensorial and actuating state responses due
to outer pressure have been studied for the
aforementioned laminates with the following
geometric dimensions;

R

s=fo_5 L (32)
H R,

where R, denotes the mean radius of the
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90 layer |

0 layer

Radial location 15x(R-Rin)/H

II|'| --i:-'-a ul--l m!rla I|r‘|: 0.025 --;n u|‘;}< 00
v
Figure 3. Through the thickness sensorial voltage distribution
at the middle (i.e., at 6 = 22.5°) of 45° - panel subjected to
outer pressure.

Piazo Jayqir

90 layer

Radial location 15x(R-Ri,)/H

@ layer

i i i i i i i J
0 0.5 1 15 2 25 3 35 4
% 10"

Figure 4. sensorial voltage distribution at the middle (i.e., at 6
=11.25°) 0of 22.5° - panel subjected to outer pressure.
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results are presented for the 22.5° - panel in Figure 4.
These figures illustrate the effect of 6, on the
laminate sensitivity (maximum voltage measured
on the piezoelectric layer when the structure is
subjected to outer pressure). It can be seen that the
45° - panel is about 9 times more sensitive than the
22.5° - panel.

Figure 5 illustrates the voltage distribution
across the thickness of the 45° - panel in which the
piezoelectric layer is being used as an actuator. A
Similar graph for the 22.5° - panel is presented in
Figure 6. It is seen that in low actuating voltages
the distribution becomes more nonlinear.
Generally, it can be seen that if the panel angle 6,

15 T

Vact=-0.05 ™~ 0.02/ | L0057

Piezo JJ_:;'Er

90 layer

Radial location 15x(R-R;,)/H

0 layer

405 004 03 002 001 0 001 002 003 004 005
v

Figure 5. Actuator voltage distribution at the:middle (i.e., at 0
=22.5°) of 45° - panel subjected to outer pressure.

Vact=-0.03". -0.02 0.00 0.02 .05
Piezo layer :
I
=
<
@
AT
X i
[To
-
c i 90 layer
o
© i
o !
o '
s
8
o 0 layer
pl L i | )
005 0.03 -0.01 0.01 0.03 0.03
v

Figure 6. Actuator Voltage Distribution at the Middle (i.e., at
0 =11.25°) of 22.5° - Panel Subjected to Outer Pressure.
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is increased and/or the actuating voltage is
decreased the voltage variation across the thickness
will be more nonlinear. So the linear assumption
for voltage distribution should be considered with
much more caution in high sensitive structures
under low actuating voltages.

Figures 7 and 8 demonstrate the through-
thickness distribution of radial stress o, for 45° -
and 22.5° - panels in sensorial state. It is seen that
the response of the 45° - panel to the outer pressure
is about 5 times greater than that of the 22.5° -
panel.

In Figures 9 and 10 the through-thickness

90 layer

Radial location 15x(R-R;,)/H

0 -1 2 %) 4 5 6 T 5
n'!'qu
Figure 7. Through-thickness distribution of radial stress at the

middle point (i.e., at 8 = 22.5°) of 45° - Panel subjected to
outer pressure.

Piezo layer

10k : b 4

90 layer

0 layer

Radial location 15x(R-Ri,)/H

s'iqa
Figure 8. Through-thickness distribution of radial stress at the

middle point (i.e., at 6 = 11.25°) of 22.5° - panel subjected to
outer pressure.
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Radial location 15x(R-Ri,)/H

0 layer \

3 .15 -3 15 1 0.5 0 0.5

r{zfq‘1 at z boundaries

Figure 9. Through-thickness distribution of 7, at the

longitudinal boundaries (with 6 = 22.5°) of 45° - panel
subjected to outer pressure.

Plazo layer

I
=

<
&
o 10
=

X
n
—

c 90 I3
S "
IS

o
o .
3 5
k=]

o]
14
0 layer
0 i i i n
a3 35 25 e 0.5 0.4

:ﬂ-‘qn at z boundaries

Figure 10. Through-thickness distribution of .t, at the
longitudinal boundaries (with 6 =.11.25°) of 22.5% - panel
subjected to outer pressure.

distributions of interlaminar shear stress 1., at the
longitudinal boundaries.(i.e.,;atz=0and z = RL )
0

are presented for 45°- and 22.5°-panels in sensorial
state. Similar plots for 7,4 at the angular boundaries
(i.e.,at @ =0and 0 = 0 ) are shown in Figures 11
and 12. These figures clearly indicate that 1, in a
sensorial state will be very large if the panel angle
0o 1s increased. This variation in stress levels
directly affects the sensitivity of the structure as
mentioned earlier.

Variations of radial stresses o, at the middle
point of the panel in different actuating voltages
are presented in Figures 13 and 14 for the 45° - and
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Piezo layer

90 layer

0 layer

Radial location 15x(R-Rin)/H

=200 150 100 50 0 a0

t,,/9, at 0 boundaries

Figure 11. Through-thickness distribution of T,g at the angular
boundaries (with z =1/2) of 45° - panel subjected to outer
pressure.

Plezo layer |

90 layer

Radial location 15x(R-Ri,)/H

0 layer

1 13 16

-2 1 1 7
‘qun at 0 boundaries

Figure 12. Through-thickness distribution of T.g at the angular
boundaries (with z = L/2) of 22.5° - panel subjected to outer
pressure.

Plazo layer :

<
<
(9
X 10 i
] Vact=0.05( -
c
-S 90 layer
©
o
o
8 5
5
IS
@
0 layer
ol H i i i ]
-10 -8 -6 -4 -2 0 2

ld,

Figure 13. Variation of radial stress through the thickness at
the middle point (i.e., at 0 = 22.5°) of 45° - panel subjected
to outer pressure.
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22.5°panels, respectively. These figures demonstrate
the great influence of the actuating lamina in
controlling the radial stress through the thickness
of the laminate. By comparing Figures 13 and 14
in the state of “0.00 V” actuating voltage with
Figures 7 and 8 - in sensorial state - it can be seen
that there are some differences between the
maximum stresses and their distributions. These
differences may be attributed to the differences
between the characteristic behaviour of the
piezoelectric layer in sensorial and actuating states.

Figures 15 and 16 show the variations of t,, at
the longitudinal boundaries of 45° - and 22.5° -
panels, respectively, in different actuating voltages.
Those of 1,9 at the angular edges are presented in

Piezo layer

WVact=0.05

90 layer

0 layer

Radial location 15x(R-R;,)/H

ﬂ'u‘qu
Figure 14. Variation of radial stress through-thickness at the
middle point (i.e., at 8 = 11.25°) of 22.5° - panel subjected to
outer pressure.
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Figure 15. Variation of 1, through-thickness at the

longitudinal boundaries (with z = L/2) of 45° - panel subjected
to outer pressure.
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Figure 16. Variation of 1, through-thickness at the
longitudinal boundaries (with z = L/2) of 22.5° - panel
subjected to outer pressure.
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Figure 17. Variation of T, through-thickness at the
longitudinal boundaries (with z = L/2) of 45° - panel subjected
to outer pressure.
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Figure 18. Variation of Ty through-thickness at the

longitudinal boundaries (with z = L/2) of 22.5° - panel
subjected to outer pressure.
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Figures 17 and 18. Since the 45° - panel is much
more sensitive than the 22.5° - panel, the actuating
voltage will be more effective in controlling these
stresses in the 45° - panel.

Finally, the through-thickness distributions of
hoop stress oy in different actuating voltages are
presented in Figures 19 and 20. It can be seen that
this stress is extremely affected by varying
actuating voltages. By comparing these figures
with Figures 13 through 18, it can be observed that
by controlling any one of the stress components,

Piezo layer

Vact=-0.05
o0 layer

o layer

Radial location 15x(R-R;,)/H

i | j H j i H .
-3%00 -2500 -2000 -1500 -1000 =500 o 500 1000
a,/q, at 6 boundaries

Figure 19. Through-thickness distribution of hoop stress at 0
= 22.5° in different actuating voltages ‘in the 45° .- panel
subjected to outer pressure.
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=700 600 -500 =400 =300 =200 -100 0 100 200

n'ou'qo
Figure 20. Through-thickness distribution of hoop stress at 6

= 11.25° in different actuating voltages in the 22.5° - panel
subjected to outer pressure.
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one would be giving up the controlling of the
remaining ones.

5. CONCLUSIONS

A simple method for three-dimensional analysis of
finite cross-ply laminated cylindrical panels with
piezoelectric layers under uniform outer pressure
loading and electrical excitation is presented. The
panels are simply supported at four edges. The
present work may provide an enhanced insight into
the mechanical -and electrical responses of such
structures. The results are obtained for both direct
and inverse piezoelectric effects. Numerical results
are presented for three-layered finite circular
cylindrical panels made of one piezoelectric layer
and two orthotropic layers.

It is observed that the maximum radial stress
may not oceur in the outer or inner surfaces of the
shell which, on the other hand, can be controlled
by imposing different actuating voltages on the
piezoelectric layers. Also, the amount of
discontinuity of the in-plane stress Gy between the
layers within a laminate can be controlled by
changing the applied electric voltage appropriately.
Another important result is that the linear
assumption for voltage distribution in actuating
states are acceptable only in thin piezoelectric
layers -and high actuating voltages. If the layer is
thick or the actuating voltage is high, the voltage
distribution out through the thickness will be more
nonlinear.

Also in cylindrical panels the sensitivity of the
structures and consequently the actuating power of
the structure depend directly and greatly on the
panel angle 6, in both sensorial and actuating
states. It is seen that as 0, increases, the panel is
more sensitive and, consequently, behaves more
effectively in an actuating state.
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