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Abstract   A semi-analytical solution is presented for three dimensional elastic analysis of 
finitelylong, simply supported, orthotropic, laminated cylindrical panels with piezoelectric layers 
subjected to outer pressure and electrostatic excitation. Both the direct and inverse piezoelectric 
effects are investigated. The solution is obtained through reducing the highly coupled partial 
differential equations (PDE's) of equilibrium to ordinary differential equations (ODE's) with variable 
coefficients by means of trigonometric function expansion in longitudinal and circumferential 
directions. The resulting ODE's are solved by dividing the radial domain into some finite subdivisions 
and imposing necessary continuity conditions between the adjacent sub-layers. Some numerical 
examples are presented for the stress distribution and electric responses due to outer pressure in both 
sensorial and actuating states. Also, the effect of geometric properties on the sensitivity and actuating 
power of the structure are investigated. 
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در اين مقاله يك روش نيمه تحليلي براي حل معادلات الاستيك حاكم بر يك قطاع استوانه اي مركب    هچكيد
ارائه   در معرض بارگذاري مكانيكي و الكتريكي قرار گرفتهچندلايه با لايه هاي پيزوالكتريك و طول محدود

. مورد بررسي قرار گرفته استدر ارائه روش حل و نتايج يزوالكتريك پتقيم و معكوس اثر مس. گرديده است
ابتدا با استفاده از بسط فوريه در دو راستاي طولي ومحيطي، معادلات تعادل حاكم بر محيط كه از نوع معادلات 

ابسته به مختصات و(باشند به يك دسته معادله ديفرانسيل معمولي با ضرايب متغير  ديفرانسيل پاره اي مي
سپس با تقسيم محدوده شعاعي به تعدادي لايه هاي نازك و محاسبه ضرايب . شوند كاهش داده مي) شعاعي

 معادلات ديفرانسيل معمولي به دست آمده در آن نواحي، اين معادلات به معادلاتي با ضرايب ثابت تبديل
 در مجاورت يكديگر پاسخ ها در هر ناحيه به با اعمال شرايط پيوستگي ضروري بين لايه هاي فرضي. شوند مي

در پايان، نتايج عددي به دست آمده براي . صورت توابع نمايي بر حسب مختصات شعاعي به دست خواهد آمد
همچنين اثرات مربوط به ويژگي هاي هندسي . هر دو حالت حسگري و عملگري مورد بررسي قرار گرفته است

 .ت عملگري آن مورد بحث و بررسي قرار گرفته استسازه، بر روي ميزان حساسيت و قدر
 
 

1. INTRODUCTION 
 
Piezoelectricity was first discovered by Jacques 
and Pierre Curie in 1880, and other materials 
la ter  discovered included rochel le  sal t  
(NaKC2H4O6.4H2O), barium titanate (BaTiO3), 
lead titanate (PbTiO3), lead zirconate titanate 
(PbZr0.52Ti0.48O3), zinc oxide (ZnO), aluminum 
nitride (AlN), polyvinyliden fluoride (PVDF) 
and its copolymers with trifluoroethylene 
(TrFE) and tetraflouoroethylene (TFE), etc. 
Since lead zirconate titanate (PZT) has 
excellent piezoelectric properties, a high Curie 

temperature, high spontaneous polarization and 
high electromechanical coupling coefficient, it is 
probably the most widely used piezoelectric 
material. On the other hand, light and flexible 
ferroelectric polymers, especially PVDF, show 
many advantages over ceramics for several 
applications. So, composites made of ferroelectric 
ceramics combined with polymers have several 
advantages over pure piezoelectric materials. 
Therefore, Diphasic composites of PZT (and La/Ca 
modified PZT) combined with various polymers 
such as PVDF, PVC, PVA, epoxy resin and co-
polymers have been widely studied and reported in 
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the literature. Several intelligent composite 
material systems, combining piezoelectric 
materials with structural materials, have received 
attention in various industrial fields. The 
mechanics of laminated piezoelectric structures 
therefore has gained much attention [1-5]. There 
are two characteristics of piezoelectric materials 
which permit them to be used as sensors and 
actuators. One is their direct piezoelectric effect 
which implies that the materials induce electric 
charge or electric potential when they are subjected 
to mechanical deformations. Conversely, the 
second effect happens when they are deformed if 
some electric charge or electric potential is 
imposed on them, which is called inverse 
piezoelectric effect. Laminated composite shells 
with piezoelectric layers are important components 
of smart or intelligent structures. Analytical three-
dimensional studies for these structures are not 
only valuable in their own right, but they are also 
useful for studying various approximate theories 
and computational models. 
     Mitchell and Reddy [6] have presented a power 
series solution for the static analysis of an 
axisymmetric composite cylinder with surface 
bonded or embedded piezoelectric lamina. Chen 
and his coworkers [7-9] have developed a variety 
of analytical and approximate solutions for 
piezoelectric shells. A higher order theory for 
functionally graded piezoelectric shells has been 
developed by Wu and his coworkers [10]. Wang 
and Zhong [11] investigated analytically the problem 
of a finitely long circular cylindrical shell of 
cylindrically orthotropic piezoelectric/piezomagnetic 
composite under pressure loading and a uniform 
temperature change. They obtained an analytical 
solution through the power series expansion 
method and the Fourier series expansion method. 
Kapuria et al. [12] have presented an exact 
piezothermoelastic solution of a finite transversely 
isotropic piezoelectric cylindrical shell under 
axisymmetric thermal, pressure, and electrostatic 
excitation by formulating the problem in terms of 
potential functions and using Fourier expansion 
series. Ossadzow and Touratier [13] have 
presented a two-dimensional theory for the 
analysis of piezoelectric shells based on a hybrid 
approach in which the continuity conditions for 
both mechanical and electric unknowns at layer 
interfaces as well as the imposed conditions on the 

bounding surfaces and at the interfaces are 
independently satisfied. Wu and his coworkers 
[14] have presented an analytical study for 
piezothermoelastic behavior of a functionally 
graded piezoelectric cylindrical shell subjected to 
axisymmetric thermal or mechanical loading. They 
have used the Fourier series expansion method 
together with the power series expansion method 
to reduce the governing PDE's to ODE's and have 
obtained the solution for both direct and inverse 
piezoelectric effects. Ma and his coworkers [15] 
have studied two-dimensional problems of 
anisotropic cylindrical piezoelectric tube, bar, and 
shell in a cylindrical coordinate system. They 
found that the electrical parameters of piezoelectric 
materials influence the formations of the solution 
significantly. Some researches on thermoelastic 
displacement and shape control of the laminated 
piezoelectric structures are treated in [16-18]. Also 
Ootao and Tanigawa [19] have analyzed the 
transient piezothermoelastic problem of an angle-
ply laminated cylindrical panel bonded to a 
piezoelectric layer. They also examined the 
influence of thickness of angle-ply laminate on the 
applied electric potential and transverse stresses. 
Tzou [20] represented a collection of relevant 
researches and developments on piezoelectric 
shells and related applications to the distributed 
measurement and control of continua. 
     In this study a very simple semi-analytical 
solution is presented for three-dimensional 
elasticity equations governing the finite laminated 
composite cylindrical panels with piezoelectric 
layers. The laminated panel is subjected to a 
uniform external pressure and an electric 
excitation. The panel is supposed to have simple 
supports at its four edges. The governing elasticity 
equations are reduced to ordinary differential 
equations (ODE's) using a doubly periodic solution 
in the shell surface coordinates. The resulting 
ODE's are solved by dividing the radial domain to 
some small finite subdivisions in which the radial 
coordinate appearing in the coefficients of these 
ODE's is treated to be constant. A convergence 
study is then carried out in order to determine the 
proper number of subdivisions made in each 
physical layer. Finally numerical results are 
presented for typical prescribed outer pressure and 
electric charge excitations in both sensorial and 
actuating states. Also, the effect of geometric 

www.SID.ir



Arc
hi

ve
 o

f S
ID

IJE Transactions B: Applications Vol. 19, No. 1, December 2006 - 63 

θ
θ0

P ie z o e le c tric  L a y e r
O rth o tro p ic  C o m p o s ite  L a y e r

 
Figure 1. configuration of the laminated cylindrical panel 
piezoelectric layers. 

properties of the cylindrical panel on the sensitivity 
and actuating power of the structure are studied. 
 
 
 

2. FUNDAMENTAL EQUATIONS OF 
PIEZOELASTICITY 

 
The linear constitutive equations coupling the 
piezo-elastic field are given by [20]: 
 

ij ijkl kl mij mC e Eσ = ε −  (1) 
 

i ikl kl im mD e E= ε +∈  (2) 
 
where ijσ  and ijε  are the stress and strain tensors. 
Also iD  and iE  are the electric field vectors and 

ijklC , mije , and im∈  are the elastic constants, the 
piezoelectric stress constants, and the piezoelectric 
coefficients, respectively. Relation 1 denotes the 
inverse piezoelectric effect while 2 presents the 
direct piezoelectric effect [20]. It is to be noted that 
in 1 and 2 a repeated index implies summation 
from one to three. 
     The equilibrium equations are given by [20,21]: 
 

ij, j 0σ =  (3) 
 

i,iD 0=  (4) 
 
The linear relations between the strain components 

ijε 's and the displacement components iU 's and 
the electric field iE  and the electric potential Ψ  
are given by [20,21]: 
 

ij i, j j,i
1 (U U )
2

ε = +  (5) 

 
i ,iE = −Ψ  (6) 

 
where an index following a comma indicates 
partial differentiation with respect to a coordinate. 
     In this part, a finite laminated cylindrical 
panel with piezoelectric layers is considered (see 
Figure 1). The shell to be considered is 
composed of orthotropic cross-ply layers and 
some piezoelectric layers while the orthotropic 
layers are made of reinforced fiber composites. 

The panel is subjected to a uniform outer pressure, 
Rin is the inner surface radius and Rout is the outer 
one. For convenience the following variables are 
introduced 
 

0

R z
r z

0

(R, Z)(r, z)
R

(U , U , U , )
(u ,u ,u , )

R
θ

θ

=

Ψ
ψ =

 (7) 

 
where 0R  is the middle surface radius of the shell 
panel. In the cylindrical coordinate system {r, θ, z} 
Relations 3 to 6 are given as follows [20,21]; 
 
Gradient relations: 
 

kk
k k kz

z r

k
k r

r

k k k k
k kz z r

z rz

kk
k kr

r

uu 1, ( u )
z r

u
r
u u u u1 ,
z r r z

uu1 ( u r )
r r

θ
θ

θ
θ

θ
θ θ

∂∂
ε = ε = +

∂ ∂θ
∂

ε =
∂
∂ ∂ ∂ ∂

γ = + γ = +
∂ ∂θ ∂ ∂

∂∂
γ = − +

∂θ ∂

 (8) 

 
kp kp

kp kp
r

kp
kp

z

1E , E
r r

E
z

θ
∂ψ ∂ψ

= − = −
∂ ∂θ
∂ψ

= −
∂

 (9) 

θ0

θ

R
Z
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Equilibrium Equations [20,21]: 
 

k k kk k
r rr rz

k k k k
r z r

kk k k
zrz z rz

( ) 1 0
r r r z

1 2 0
r r z r

1 0
r r z r

θ θ

θ θ θ θ

θ

σ −σ ∂τ∂σ ∂τ
+ + + =

∂ ∂θ ∂
∂τ ∂σ ∂τ τ

+ + + =
∂ ∂θ ∂

∂τ∂τ ∂σ τ
+ + + =

∂ ∂θ ∂

 (10) 

 
kpkp kp kp

r r zDD D D1 0
r r r z

θ∂∂ ∂
+ + + =

∂ ∂θ ∂
 (11) 

 
Constitutive Relations   A piezoelectric material 
with symmetrical hexagonal structure (Class C6v = 
6 mm) exhibits transverse isotropy about its third 
axis. Therefore, the constitutive relations for 
piezoelectric layers are [21]; 
 

 

k kkr rC C C 0 0 011 12 13
C C 0 0 022 23

C 0 0 0z z33
C 0 044z z

Sym. C 055rz rz
C66r r

kp
e 0 033

kpe 0 031 Er
e 0 032 E

0 0 0
Ez0 0 e24

0 e 015

σ ε

σ εθ θ
σ ε

=
τ γθ θ
τ γ

τ γθ θ

− θ

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

⎡ ⎤
⎢ ⎥

⎧ ⎫⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎩ ⎭⎢ ⎥
⎢ ⎥
⎣ ⎦

 (12)

 

 
and 
 

kp
r

kp kp
r 33 31 32

z
15

z
z 24

rz

r
kpkp

r33

11

22 z

D e e e 0 0 0
D 0 0 0 0 0 e
D 0 0 0 0 e 0

E0 0
0 0 E
0 0 E

θ

θ
θ

θ

θ

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪⎧ ⎫ ⎡ ⎤ ⎪ ⎪ε⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥ γ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎪ ⎪γ
⎪ ⎪
γ⎪ ⎪⎩ ⎭

∈ ⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥+ ∈ ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥∈⎣ ⎦ ⎩ ⎭

 (13) 

 
It is to be noted that in 8 through 13 the index k 
denotes the kth layer and index kp denotes the kth 

layer which is piezoelectric. That is, for non-
piezoelectric layers Equations 9, 11, and 13 
disappear and the last term in Equation 12 must be 
dropped (i.e., eij = 0 for composite layers). 
     The boundary conditions to be considered are 
those for simple supports [21,22]; 
 

r z
0

r z 0

Lu u 0 at z 0 ,
R

u u 0 at 0 ,

θ

θ

= = σ = ψ = =

= = σ = ψ = θ = θ
 (14) 

 
The traction conditions on the inner and outer 
surfaces are assumed to be as follows; 
 

in
r r rz

0

out
r 0 r rz

0

R0 at r
R
R

q , 0 at r
R

θ

θ

σ = τ = τ = =

σ = − τ = τ = =
 (15) 

 
In addition, any piezoelectric layer electrical 
boundary conditions must be satisfied [22]; 
 

kp
kp in

0

R
0 at r

R
ψ = =  (16) 

 
where kp

inR  is the inner surface radius of the kth 
piezoelectric layer. Furthermore; 
 

kp
kp out

0
0

R
V at r

R
ψ = =  (17a) 

 
if the piezoelectric layer is used as an actuator and 
 

kp
kp out

r
0

R
D 0 at r

R
= =  (17b) 

 
if the piezoelectric layer is served as a sensor 
where kp

outR  is the outer surface radius of the kth 
piezoelectric layer. 
     It should be mentioned that when a 
piezoelectric layer is served as an actuator, a 
voltage is imposed on one of the surfaces of the 
piezoelectric lamina and the other surface is in zero 
voltage level, while it serves as a sensor, one 
surface of the piezoelectric layer is free of electric 
excitation and the other one is in zero voltage level 
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as formulated in the above. 
 
 
 

3. METHOD OF ANALYSIS 
 
The following expansions are used for various 
response quantities; 
 

k k
r r m n

m 1 n 1

k k
m n

m 1 n 1

k k
z z m n

m 1 n 1

kp kp
m n

m 1 n 1

u sin .sin z

u cos .sin z

u sin .cos z

sin .sin z

∞ ∞

= =
∞ ∞

θ θ
= =
∞ ∞

= =
∞ ∞

= =

= Φ α θ β

= Φ α θ β

= Φ α θ β

ψ = ψ α θ β

∑∑

∑∑

∑∑

∑∑

 (18a) 

 

where k
rΦ , k

θΦ , k
zΦ and kpψ are functions of “r” 

only, the index k implies the kth orthotropic layer, 
the index kp implies the kth piezoelectric layer, and 
 

0
m n

0

n Rm ,
L
ππ

α = β =
θ

 (18b) 

 
Substituting Equations 18a into gradient Equations 
8 and 9 and the subsequent results into the 
constitutive Relations 12 and 13 and the final 
results into the equilibrium Equations 10 and 11 
yields; 
 

kk k2
k 2 k 2 k6611 22
11 m 55 n r2 2 2

k k k k km m
12 66 22 662

k k k k kn
n 13 55 23 13 z

22
kp kp kp kp 2 kp kpm
33 33 31 15 n 242 2

CC Cd d{C + ( )-( + +C )}
r drdr r r

d+{- (C +C ) + (C +C )}
r dr r

d+{- (C +C ) + (C - C )}
dr r

d 1 d+{e + (e -e ) - ( e + e )} =0
r drdr r

θ

α β Φ

α α
Φ

β
β Φ

α
β ψ

 (19) 

 

66 66 r

66 66

66

z

15 15

k k k k km m
21 222

k k2
k 2 2 k 2 k k

m 22 n 442 2

k k km n
23 44

kp kp kp kpm m
31 2

d{ (C +C ) + (C +C )}
r dr r

C Cd d+{C + -( + r C + C )} 
r drdr r

+{- (C +C )} 
r

d+{ (e +e ) + e }  =0
r dr r

θ

α α
Φ

α β Φ

α β
Φ

α α
ψ

 (20) 

55 31 32 55 r

44 32

55

55 44 33 z

24 32 24

k k k k kn
n

k k km n

k 22
k k k 2 km

n2 2

kp kp kp kpn
n

d{ (C +C ) + (C +C )}
dr r

+{- (C +C )}
r

Cd d+{C + -( C +C )}
r drdr r

d+{ (e +e ) + e }  =0
dr r

θ

β
β Φ

α β
Φ

α
β Φ

β
β ψ

 (21) 

 

33 31 33 15 24 r

31 15 15

32 24 32 z

33

33 11 22

22
kp kp kp kp 2 kp km

n2 2

kp kp kp km m
2

kp kp kp kn
n

kp 22
kp kp 2 kp kpm

n2 2

d 1 d{e + (e +e ) - ( e + e )}
r drdr r

d+{- (e +e ) + e }
r dr r

d+{- (e +e ) - e }
dr r

ed d+{-e - +( e +  e )}  =0
r drdr r

θ

α
β Φ

α α
Φ

β
β Φ

α
β ψ

 (22) 

 
The above equations with variable coefficients 
have been solved by Xu and Noor [23] through a 
modified Frobenius method. In this study, 
however, they will be solved by dividing each 
layer into some finite thin sub-layers as shown in 
Figure 2. 
     That is, the kth layer within the laminate is 
divided into N sublayers. This way, since each 
sublayer becomes very thin, the variable r 
appearing in Equations 19 through 22 can be 
replaced by the mean radius rk (n) of each sublayer. 
The resulting equations will be four ODE's with 
constant coefficients as follows, 
 
 

hk

h (n)k

k
h (n+1)

k
h (n-1)

r (n)k

kth layer

(k+1)th layer(k-1)th layer
1st layer

NLth layer

 

Figure 2. kth layer is divided into N thin sublayers with thickne
hk (n), n = 1, …, N. 
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6611 22

11 55 r

12 66 22 66

13 55 23 13 z

33 33 31

kk k2
k 2 k 2 k

m n2 2 2
k k k

k k k k km m
2

k k

k k k k kn
n

k
22

kp kp kp m
2 2

k k

CC Cd d{C + ( )-( + +C )}
r (n) drdr r (n) r (n)

d+{- (C +C ) + (C +C )}
r (n) dr r (n)

d+{- (C +C ) + (C - C )}
dr r (n)

d 1 d+{e + (e -e ) - (
r (n) drdr r (

θ

α β Φ

α α
Φ

β
β Φ

α
15 24

kp 2 kp kp
ne + e )} =0

n)
β ψ

 (23) 

 

66 21 22 66 r

66 66

66 22 44

23 44 z

15 31 15

k k k k km m
2

k k
k k2

k 2 2 k 2 k k
m k n2 2

k k

k k km n

k

kp kp kp kpm m
2

k k

d{ (C +C ) + (C +C )}
r (n) dr r (n)

C Cd d+{C + -( + r (n)C + C )} 
r (n) drdr r (n)

+{- (C +C )} 
r (n)

d+{ (e +e ) + e }  =0
r (n) dr r (n)

θ

α α
Φ

α β Φ

α β
Φ

α α
ψ

 (24) 

 

55 31 32 55 r

44 32

55

55 44 33 z

24 32 24

k k k k kn
n

k k km n

k
k 22

k k k 2 km
n2 2

k k

kp kp kp kpn
n

k

d{ (C +C ) + (C +C )}
dr r

+{- (C +C )}
r (n)

Cd d+{C + -( C +C )}
r (n) drdr r (n)

d+{ (e +e ) + e }  =0
dr r (n)

θ

β
β Φ

α β
Φ

α
β Φ

β
β ψ

 (25) 

 

33 31 33 15 24 r

31 15 15

32 24 32 z

33

33 11 22

22
kp kp kp kp 2 kp km

n2 2
k k

kp kp kp km m
2

k k

kp kp kp kn
n

k
kp 22

kp kp 2 km
n2 2

k k

d 1 d{e + (e +e ) - ( e + e )}
r (n) drdr r (n)

d+{- (e +e ) + e }
r (n) dr r (n)

d+{- (e +e ) - e }
dr r (n)

ed d+{-e - +( e +  e
r (n) drdr r (n)

θ

α
β Φ

α α
Φ

β
β Φ

α
β p kp)}  =0ψ

 (26) 

 
The general solution of Equations 23 through 26 is 
found by assuming that; 
 

rmnr

mn rmn
mn

zmn rmnz
pp
smn rmnk,n k,n

A
B .A

.exp(X .r)B .A

B .A

θθ

Φ ⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪Φ⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬Φ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪ψ⎩ ⎭ ⎩ ⎭

 (27) 

where rmnA , mnBθ , zmnB , p
smnB  and mnX are 

constant coefficients for nth sublayer of kth lamina. 
     The above solution is valid for 

k k
k k

h (n) h (n)
r (n) r r (n)

2 2
− ≤ ≤ +  where rk(n) is the 

mean radius of nth sub-layer of kth lamina. 
Substituting 27 into Equations 23 through 26 and 
solving for Xmn's will yield a polynomial of order 
six for nonpiezoelectric regions (sublayers) and of 
order eight for piezoelectric regions (sublayers). 
Upon determining Xmn's, the constants mnBθ 's, 

zmnB 's, and p
smnB 's will be found by solving the 

linear algebraic equations obtained by substituting 
mnX 's into Equations 24 through 26. The 

unknowns rmnA 's will then be determined by 
imposing the necessary continuity conditions 
between each two adjacent sublayers. That is; 
 

k k
k k

k k
k k

k k
k k

k k
k k

r k,n h (n) r k,n 1 h (n 1)r r (n) r r (n 1)
2 2

k,n h (n) k,n 1 h (n 1)r r (n) r r (n 1)
2 2
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σ = σ

τ
k k
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+ +
= + = + −

θ θ + +
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= τ

τ = τ

 (28) 

 
where hk (n) is the thickness of nth sublayer of kth 
lamina. In addition, for piezoelectric regions 
(sublayers) there are two additional necessary 
continuity conditions as follows; 
 

k kk,n k,n 1
k k

k kk,n k,n 1
k k

p p
h (n) h (n 1)r r (n) r r (n 1)

2 2

p p
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(D ) (D )

+

+

+
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= + = + −

ψ = ψ

=

 (29) 
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4. NUMERICAL RESULTS AND 
DISCUSSIONS 

 

The material properties of the piezoelectric layer 
considered here are those for a piezoelectric 
ceramic-PZT [7]: 
 

Elastic constants; 
 

[ ] 10

11.3
7.43 13.9 sym.
7.43 7.78 13.9

C 10 Pa
0 0 0 2.6
0 0 0 0 2.56
0 0 0 0 0 2.56

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ×⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (30a) 

 

Piezoelectric constants; 
 

[ ] 2

15.1 0 0
5.2 0 0
5.2 0 0

e c.m
0 0 0
0 0 12.7
0 12.7 0

−

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (30b) 

 
Dielectric constants; 
 

[ ] 9 1
5.62 0 0

0 6.46 0 10 F.m
0 0 6.46

− −
⎡ ⎤
⎢ ⎥∈ = ×⎢ ⎥
⎢ ⎥⎣ ⎦

 (30c) 

 

The material properties of the graphite-epoxy layer 
are [7]; 
 

9 9
z r

9 9
zr z r

zr z r

E 76.8 10 Pa , E E 5.5 10 Pa

G G 2.07 10 Pa, G 1.4 10 Pa
0.34 , 0.37

θ

θ θ

θ θ

= × = = ×

= = × = ×

ν = ν = ν =

 (31) 

 

Two cases are considered in this study with a 
three-layered [P/90°/0°] panel, one with θ0 = 45° 
and the other one with θ0 = 22.5°. In each case 
both the sensorial and actuating state responses due 
to outer pressure have been studied for the 
aforementioned laminates with the following 
geometric dimensions; 
 

0

0

R LS 52 , 1
H R

≡ = =  (32) 

 

where R0 denotes the mean radius of the 

cylindrical panel, H is the panel thickness, and L is 
the panel length in z-direction (see Figure 1). 
     In Fourier's series, a few terms can give 
satisfactory results for the case studied (i.e., S = 
52, L/R0 = 1). Therefore 20 terms have been used 
throughout the analysis in each direction. In all 
cases, each lamina is divided into 5 sublayers, so 
the radial location in(R R )

15
H
−

×  will be shown in 

the figures with the numbers 0 to 15 for [P/90°/0°] 
laminates. When θ0 = 45°, the laminate will be 
referred to as the 45° - panel whereas when θ0 is 
22.5° it is said that the laminate is a 22.5° - panel. 
     Figure 3 shows the sensorial voltage 
distribution (voltage distribution when the 
piezoelectric layer is served as a sensor) across the 
thickness of the 45° - panel at θ = 22.5°. Similar 
 
 
 

 
 
Figure 3. Through the thickness sensorial voltage distribution 
at the middle (i.e., at θ = 22.5°) of 45o - panel subjected to 
outer pressure. 
 
 

 
 
Figure 4. sensorial voltage distribution at the middle (i.e., at θ
= 11.25°) of 22.5o - panel subjected to outer pressure. 
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results are presented for the 22.5° - panel in Figure 4. 
These figures illustrate the effect of θ0 on the 
laminate sensitivity (maximum voltage measured 
on the piezoelectric layer when the structure is 
subjected to outer pressure). It can be seen that the 
45° - panel is about 9 times more sensitive than the 
22.5° - panel. 
     Figure 5 illustrates the voltage distribution 
across the thickness of the 45° - panel in which the 
piezoelectric layer is being used as an actuator. A 
Similar graph for the 22.5° - panel is presented in 
Figure 6. It is seen that in low actuating voltages 
the distribution becomes more nonlinear. 
Generally, it can be seen that if the panel angle θ0 

is increased and/or the actuating voltage is 
decreased the voltage variation across the thickness 
will be more nonlinear. So the linear assumption 
for voltage distribution should be considered with 
much more caution in high sensitive structures 
under low actuating voltages. 
     Figures 7 and 8 demonstrate the through-
thickness distribution of radial stress σr for 45° - 
and 22.5° - panels in sensorial state. It is seen that 
the response of the 45° - panel to the outer pressure 
is about 5 times greater than that of the 22.5° - 
panel. 
     In Figures 9 and 10 the through-thickness 

 
 
 

 
Figure 5. Actuator voltage distribution at the middle (i.e., at θ
= 22.5°) of 45o - panel subjected to outer pressure. 
 
 

 
Figure 6. Actuator Voltage Distribution at the Middle (i.e., at 
θ = 11.25°) of 22.5o - Panel Subjected to Outer Pressure. 

 
 
 

 
Figure 7. Through-thickness distribution of radial stress at the 
middle point (i.e., at θ = 22.5°) of 45o - Panel subjected to 
outer pressure. 
 
 

 
Figure 8. Through-thickness distribution of radial stress at the 
middle point (i.e., at θ = 11.25°) of 22.5o - panel subjected to 
outer pressure. 
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distributions of interlaminar shear stress τrz at the 
longitudinal boundaries ( i.e., at z = 0 and z = 

0

L
R

) 

are presented for 45°- and 22.5°-panels in sensorial 
state. Similar plots for τrθ at the angular boundaries 
( i.e., at θ = 0 and θ = θ0 ) are shown in Figures 11 
and 12. These figures clearly indicate that τrθ in a 
sensorial state will be very large if the panel angle 
θ0 is increased. This variation in stress levels 
directly affects the sensitivity of the structure as 
mentioned earlier. 
     Variations of radial stresses σr at the middle 
point of the panel in different actuating voltages 
are presented in Figures 13 and 14 for the 45° - and 

 

Figure 9. Through-thickness distribution of τrz at the 
longitudinal boundaries (with θ = 22.5°) of 45o - panel 
subjected to outer pressure. 
 
 

 
Figure 10. Through-thickness distribution of τrz at the 
longitudinal boundaries (with θ = 11.25°) of 22.5o - panel 
subjected to outer pressure. 

 
 
Figure 11. Through-thickness distribution of τrθ at the angular 
boundaries (with z = L/2) of 45o - panel subjected to outer 
pressure. 
 
 
 

 
Figure 12. Through-thickness distribution of τrθ at the angular 
boundaries (with z = L/2) of 22.5o - panel subjected to outer 
pressure. 
 
 
 

 
Figure 13. Variation of radial stress through the thickness at 
the middle point (i.e., at θ = 22.5°) of 45o - panel subjected 
to outer pressure. 
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Figure 16. Variation of τrz through-thickness at the 
longitudinal boundaries (with z = L/2) of 22.5o - panel 
subjected to outer pressure. 
 
 
 

 
Figure 17. Variation of τrθ through-thickness at the 
longitudinal boundaries (with z = L/2) of 45o - panel subjected 
to outer pressure. 
 
 
 

 
Figure 18. Variation of τrθ through-thickness at the 
longitudinal boundaries (with z = L/2) of 22.5o - panel 
subjected to outer pressure. 

22.5°-panels, respectively. These figures demonstrate 
the great influence of the actuating lamina in 
controlling the radial stress through the thickness 
of the laminate. By comparing Figures 13 and 14 
in the state of “0.00 V” actuating voltage with 
Figures 7 and 8 - in sensorial state - it can be seen 
that there are some differences between the 
maximum stresses and their distributions. These 
differences may be attributed to the differences 
between the characteristic behaviour of the 
piezoelectric layer in sensorial and actuating states. 
     Figures 15 and 16 show the variations of τrz at 
the longitudinal boundaries of 45° - and 22.5° - 
panels, respectively, in different actuating voltages. 
Those of τrθ at the angular edges are presented in 

R
ad

ia
l l

oc
at

io
n 

 1
5×

(R
-R

in
)/H

 
 
 

 
Figure 14. Variation of radial stress through-thickness at the 
middle point (i.e., at θ = 11.25°) of 22.5o - panel subjected to 
outer pressure. 
 
 

 
Figure 15. Variation of τrz through-thickness at the 
longitudinal boundaries (with z = L/2) of 45o - panel subjected 
to outer pressure. 
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Figures 17 and 18. Since the 45° - panel is much 
more sensitive than the 22.5° - panel, the actuating 
voltage will be more effective in controlling these 
stresses in the 45° - panel. 
     Finally, the through-thickness distributions of 
hoop stress σθ in different actuating voltages are 
presented in Figures 19 and 20. It can be seen that 
this stress is extremely affected by varying 
actuating voltages. By comparing these figures 
with Figures 13 through 18, it can be observed that 
by controlling any one of the stress components, 

one would be giving up the controlling of the 
remaining ones. 
 
 
 

5. CONCLUSIONS 
 
A simple method for three-dimensional analysis of 
finite cross-ply laminated cylindrical panels with 
piezoelectric layers under uniform outer pressure 
loading and electrical excitation is presented. The 
panels are simply supported at four edges. The 
present work may provide an enhanced insight into 
the mechanical and electrical responses of such 
structures. The results are obtained for both direct 
and inverse piezoelectric effects. Numerical results 
are presented for three-layered finite circular 
cylindrical panels made of one piezoelectric layer 
and two orthotropic layers. 
     It is observed that the maximum radial stress 
may not occur in the outer or inner surfaces of the 
shell which, on the other hand, can be controlled 
by imposing different actuating voltages on the 
piezoelectric layers. Also, the amount of 
discontinuity of the in-plane stress σθ between the 
layers within a laminate can be controlled by 
changing the applied electric voltage appropriately. 
Another important result is that the linear 
assumption for voltage distribution in actuating 
states are acceptable only in thin piezoelectric 
layers -and high actuating voltages. If the layer is 
thick or the actuating voltage is high, the voltage 
distribution out through the thickness will be more 
nonlinear. 
     Also in cylindrical panels the sensitivity of the 
structures and consequently the actuating power of 
the structure depend directly and greatly on the 
panel angle θ0 in both sensorial and actuating 
states. It is seen that as θ0 increases, the panel is 
more sensitive and, consequently, behaves more 
effectively in an actuating state. 
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