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Abstract   A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-
structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid 
contacts. In current work, the modification of the utilized SPH concerns on removing the artificial 
viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of 
tensile and numerical instabilities) as well as decreasing the CPU time with achieving more accuracy 
and the easier programming in comparison with other methods in the similar cases. The mentioned 
performance of the proposed algorithm is assessed by solving a test case including deformation of an 
elastic plate subjected to time-dependent water pressure. The obtained results are in close agreement 
with other high accuracy methods and experimental results. 
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 بـرای مـسائل     (SPH)" هيـدروديناميک ذرات متـصل    "يک الگوريتم اصلاح شـده از خـا نـواده روش            چكيده          

در اين ارتباط، اصلاح روش بر حذف لزجی مجازی         . اندرکنش سيال و ديواره قابل انعطاف معرفی گرديده است        
 کاهش  برای همواره   (SPH)ی   جملاتی که تاکنون در خانواده روش ها       :و تنش های مجازی استوار گرديده است      

و (SPH) پيامد اين امـر سـهولت بيـشتردر بـه کـار گيـری روش      . ناپايداری های عددی به کار گرفته شده است
روش ياد شده برای يک مسئله نمونـه از مـسائل   .  الگوريتم نويسی وکاهش زمان اجرای حل عددی است      "نتيجتا

آن در حل توام جريان و محدوه الاستيک ديواره بدون هر نوع            اندر کنش سيال و ديواره برای نشان دادن قابليت          
و نتايج تجربی مقايـسه  (SPH)  و نتايج با روش غير اصلاح شده هاستفاده از شرط مرزی ميانی به کار گرفته شد

 . استنتايج صحت  (SPH)ی مقايسه حاکی از ارتقا.گرديده است
 
 

1. INTRODUCTION 
 
One of the interesting problems in many 
engineering applications is associated with solid 
boundary deformations due to the fluid flow. Both 
problems of viscous fluid flow and of elastic body 
deformation have been studied separately for many 
years in great detail. But there are many problems 
encountered in real life where an interaction 
between those two media is of great importance. 
Many tubes used in industries can have 
deformations due to interactions with other devices 
or to the degradation of the material constituting 
the tubes. A typical example of such a problem is 
the area of aero-elasticity. Another important area 

where such interaction is of great interest is 
biomechanics. Such interaction is encountered 
especially when dealing with the blood circulatory 
system. Problems of a pulsatile flow in an elastic 
tube, flow through heart valves, flow in the heart 
chambers are some of the examples. In all these 
cases large deformations of a deformable solid 
interacting with an unsteady, often periodic, fluid 
flow must be dealt with [1]. 
     Fluid-structure interaction models are 
increasingly used in biomedical engineering 
applications and some of the most challenging 
fluid-structure problems that can be found in the 
human body involve the dynamics of heart valves 
and blood flow simulation in arteries. The arterial 
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walls and heart muscles are compliant and therefore 
play an important role in the process of opening and 
closing. Altogether, the combination makes the 
problem extremely complex to model [2]. 
     Different ways of modeling fluid-structure 
interaction (FSI) have been proposed in the past, 
each having its advantages and disadvantages. 
Arbitrary Lagrangian Eulerian (ALE) methods, as 
exploited by e.g. [3,4], are most commonly used 
for FSI problems and have the advantage to 
provide a strong coupling. As long as rotations, 
translations and/or deformations of the solid 
remain within certain limits, this method works 
well and is recommended. However, for problems 
in which these limits are violated, elements 
become ill-shaped and ALE alone does not suffice. 
As a solution to this problem an often-used 
combination is ALE with some form of remeshing. 
This can, however, be a difficult and time 
consuming task. 
     A more elegant way to solve the system 
allowing free movement of a structure through a 
fluid domain was proposed by Peskin [5]. He 
introduced a method that later became known as 
the immersed boundary method (IBM) where flow-
induced solid body motions could be computed 
without adjusting the fluid grid/mesh. 
     A method that could cope with large 
translations and rotations was used by Glowinski et 
al. [6,7]. Using a fictitious domain method, the 
sedimentation of rigid particles in a fluid domain 
could be computed. The rigid particles are 
immersed on the fluid domain and are coupled to 
the fluid by applying constraints across the particle 
using a Lagrange multiplier. This way of coupling 
is allowed for large translations as well as rotations 
of particles. 
     A method that resembles the above mentioned 
methods was introduced by Baaijens [8] for 
slender deforming bodies. In this method a fluid 
mesh is considered with an immersed solid mesh, 
and the solid mesh and fluid mesh are coupled by a 
Lagrange multiplier (or local body forces) at the 
boundary of the solid. The elegance of this method 
is its simplicity and flexibility. Actual three-
dimensional approximation is, up to now, very 
rare. The most common approach is the 
combination of separate solvers for fluid and solid 
by an outer coupling iteration. 
     Another class of the fluid structure interaction 

modeling is the fluid–solid mixture model which at 
first was applied to swelling and diffusion in 
rubber materials [9] and the compression of 
cartilage [10]. 
     Nevertheless, it should be pointed out that the 
majority of the numerical schemes developed until 
now belong to the class of the so-called Eulerian 
methods, i.e. finite element (FE), finite volumes 
(FV), finite difference (FD) schemes, which make 
use of a fixed underlying grid to discretise the set 
of partial differential equations of the fluid motion. 
Until the early 1990s only a few works focused on 
the design of meshless methods for an alternative 
description of the physical problem, based on a 
purely Lagrangian description. Namely, many of 
these were concentrating more on astrophysical 
and cosmological problems, for whose simulations 
the first fully Lagrangian (and completely 
meshless) numerical method was developed in the 
late 1970s. This corresponds to the famous works 
of Lucy [11], Monaghan and Gingold [12] who in 
1977 simultaneously and independently developed 
smoothed particle hydrodynamics (SPH). 
     The method uses a purely Lagrangian approach 
and has been successfully employed in a wide 
range of problems. The SPH method is a branch of 
meshless methods and unlike Eulerian methods 
does not use a fixed grid to represent the 
computational domain. That is the method does not 
require connectivity data as needed by the finite 
volume and finite element methods. This gives the 
method a very useful feature when dealing with 
complex flows, exhibiting large deformations 
and/or free-surfaces. Instead the SPH method is a 
particle based method. The word "particle" does 
not mean a physical mass instead it refers to a 
region in space. Field variables are associated with 
these particles and at any other point in space are 
found by averaging, or smoothing, the particle 
values over the region of interest. This is fulfilled 
by an interpolation or weight function which is 
often called the interpolation kernel. It should be 
pointed out that SPH method was then successfully 
applied to the study of various fluid dynamics 
problems, such as free-surface incompressible 
flows [13], viscous flows [14-18], and elastic 
dynamics [19]. The first attempt to describe elastic 
solid deformation due to incompressible fluid flow 
was attempted by Carla Antoci et al. in [21]. 
     The motivation of this work is to present a new 
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free artificial viscosity SPH algorithm for 
simulating elastic solids and the fluid-structure 
interaction problems. It will be shown that the new 
algorithm can be utilized more easily with more 
accurate results for the test problems. 
     A benchmark of fluid-structure interaction 
problems was solved and the results are compared 
to the experimental results and the results of FEM 
simulation. The benchmark problem is the 
deformation of an elastic plate subjected to time-
dependent water pressure. 
 
 
 

2. FUNDAMENTALS 
 
The SPH method is based on the interpolation 
theory. The method allows any function to be 
expressed in terms of its values at a set of 
disordered points representing particle points using 
a kernel function. The kernel function refers to a 
weighing function and specifies the contribution of 
a typical field variable, A(r)  at a certain position, 
r  in space. The kernel estimate of A(r)  is defined 
as [21]: 
 

( ) ( ) ( ) rdh,rrW
Space

rArhA ′′−∫ ′=  (1) 

 
Where the smoothing length h represents the 
effective width of the kernel and W is a weighting 
function with the following properties [22]: 
 

( )∫ =′′−
V

1rdh,rrW      ( ) ( )rrh,rrW
0h

lim ′−δ=′−
→

 

 (2) 
 
If ( )rA ′  is known only at a discrete set of N point 

Nr,...,2r,1r  then ( )rA ′  can be approximated as 
follows [28]: 
 
( ) ( )jdVjrAN

1j jrrrA ⎟
⎠
⎞⎜

⎝
⎛∑ = ⎟

⎠
⎞⎜

⎝
⎛ −′δ=′  (3) 

 
Where ( )jdV  is the differential volume element 

around the point jr . Combining Equation 1 and 

Equation 3 yields [28]: 

( ) ( ) ( ) rdh,rrWN
1j jdVjrAjrrrhA ′′−∑ = ∫ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ −′δ=  

 (4) 
 
After integration, and replacing the differential 
volume element ( )jdV  by jjm ρ  one gets [28]: 

 

( ) ( )h,rrWjAN
1j

j

jm
rhA ′−∑ = ρ

=  (5) 

 
Where the summation index j denotes a particle 
label and particle j carries a mass mj at position rj, 
a density ρj and a velocity vj. The value of A at j-th 
particle is shown by Aj. The summation is over 
particles which lie within a circle of radius 2h 
centered at r. 
 
2.1. Kernel Function   The kernel function is the 
most important ingredient of the SPH method. 
Various forms of kernels with different compact 
support were proposed by many researchers. 
Recent studies [13,15,16] indicate that stability of 
SPH algorithm depends strongly upon the second 
derivative of the kernel. 
     Using different kernels in the SPH method is 
similar to using different schemes in finite 
difference methods. One of the most popular 
kernels is based on spline functions [17]: 
 

( )
h
r

s

s20

2s13)s2(
4
1

1s03s
4
32s

2
31

h
h,rW =

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤

<≤−

<≤+−

×
ν
σ

=  

 (6) 
 
Where ν is the number of dimensions and σ is 

normalization constant with the values: 
ππ
1,

7
10,

3
2  

in one, two and three dimensions respectively. This 
kernel has compact support which is equal to 2h, it 
means that interactions are exactly zero for r > 2h. 
The second derivatives of this kernel continues and 
the dominant error term in the integral interpolant 
O(h2). Higher order splines can be used, but they 
interact at further distances and thus require more 
computational time. 
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2.2. Gradient and Divergence   The gradient 
and divergence operators need to be formulated in 
a SPH algorithm if simulation of the Navier-Stokes 
equations is to be attempted. In this work, the 
following commonly used forms are employed for 
a gradient of a scalar A and divergence of a vector 
u [22]: 
 

ijWi
j 2

j

jA

2
i

iA
jmAi

i

1
∇∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ρ
+

ρ
=∇

ρ
 (7) 

 

ijWi
j 2

j

ju

2
i

iu
jmiu.i

i

1
∇∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ρ
+

ρ
=∇

ρ
 (8) 

 
Where ijWi∇  is the gradient of kernel function 

⎟
⎠
⎞

⎜
⎝
⎛ − h,jrirW  with respect to ri, the position of 

particle i. This choice of discretization operators 
ensures that an exact projection algorithm is 
produced. 
 
2.3. Laplacian Formulation   A simple way to 
formulate the Laplacian operator is to envisage it 
as a dot product of the divergence and gradient 
operators. This approach proved to be problematic 
as the resulting second derivative of the kernel 
which is very sensitive to particle disorder and can 
easily lead to pressure instability and decoupling in 
the computation due to the co-location of the 
velocity and pressure. In this paper, the following 
alternative approach is adopted [23]: 
 

∑

η+

∇

⎟
⎠
⎞⎜

⎝
⎛ ρ+ρ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇

ρ
∇

j 22
ijr

ijWi.ijrijA

2
ji

8
jm

i
A1.  (9) 

 
Where jririjr,jAiAijA −=−=  and η is a small 

number introduced to avoid a zero denominator 
during computations and is set to 0.1h. 
 
 
 

3. GOVERNING EQUATIONS 
 
In this paper a new algorithm for elastic 

deformation modeling of solid particles is 
presented which doesn't utilize any artificial 
viscosity and artificial stress terms. The proposed 
algorithm for solid particle modeling is completely 
compatible with fluid particles and it Permits to 
easily follow the motion of fluid-solid interface in 
time without any specific treatment.????? 
 
3.1. Governing Differential Equations for 
Fluid Particles   The governing equations for 
transient compressible fluid flow include the 
conservation of mass and momentum equations. In a 
Lagrangian framework these can be written as [27]: 
 

0v.
Dt
D1

=∇+
ρ

ρ
 (10) 

 

P1.1g
Dt

vD
∇

ρ
−

⇒
τ∇

ρ
+=  (11) 

 
Where t is time, g is the gravitational acceleration, 

P is pressure, v is the velocity vector, 
⇒
τ  is viscous 

stress tensor and D/Dt refers to the material 
derivative. The density ρ has been intentionally 
kept in the equations to be able to enforce the 
incompressibility of the fluid. The momentum 
equations include three driving force terms, i.e., 
body force, forces due to divergence of stress 
tensor and the pressure gradient. These must be 
handled along with the incompressibility 
constraint. In a SPH formulation the above system 
of governing equations must be solved for each 
particle at each time-step. The sequence with 
which the force terms are incorporated can be 
different from one algorithm to another. 
 
3.2. Viscous Terms in Fluid Zone   It is 

known that In the Newtonian fluids, 
⇒
τ  in 

Equation 11 must be defined as below: 
 

D2μ=
⇒
τ  (12) 

 

⎟
⎠
⎞⎜

⎝
⎛ ∇+∇= tvv2

1D  (13) 

 
jviuv
rr

+=  (14) 
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⇒
τ  in the momentum equation appears as a 

divergence form which can be written in SPH 
formulation as below [28]: 
 

⎟
⎠
⎞⎜

⎝
⎛ −∇

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ρ

⇒
τ

+
ρ

⇒
τ

∑=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⇒
τ∇

ρ
h,jrirW.2

j

j
2

i

i
j

jm
i

.1 rr  (15) 

 
3.3. Governing Differential Equations for 
Elastic Solid Zone   The acceleration equations 
(Momentum equation) for Elastic Medium can be 
written as below [19]: 
 

⇒
σ∇

ρ
+= .1g

td
vd  (16) 

 
In the above equations d/dt denotes a derivative 
following the motion, σ is the stress tensor and can 
be written as [19]: 
 

ijSijPij +δ−=σ  (17) 
 
By Combining Equation 16 and Equation 17 the 
final form of governing equations for Elastic 
Medium Motion includes the continuity and the 
acceleration equations which can be written as 
below 
 

0v.
Dt
D1

=∇+
ρ

ρ
 (18) 

 

P1S.1g
td
vd

∇
ρ

−
⇒

∇
ρ

+=  (19) 

 
Where g is the gravitational acceleration, P is 

pressure, 
⇒
S  is the deviatoric stress tensor and its 

rate of change is given by [19]: 
 

kjSikjkikSijij
3
1ij2

td

ijSd
ω+ω+⎟

⎠
⎞

⎜
⎝
⎛ εδ−εμ= &&  (20) 

 
Where [19]: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
=ε ix

jv
jx

iv
2
1ij&  (21) 

and the rotation tensor ωij is [19]: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

∂

∂
=ω ix

jv
jx

iv
2
1ij  (22) 

 
 
 

4. SOLUTION ALGORITHM 
 
In this paper, a fully explicit three-step algorithm is 
used for both fluid and elastic solid particles which 
will be explained in detail. 
 
4.1. Solution Algorithm for Fluid 
Particles   In the first step of this algorithm, the 
momentum equation is solved in the presence of 
the body forces neglecting all other forces. So, an 
intermediate velocity is computed as 
 

txgttu*u Δ+Δ−=  (23) 
 

tygttv*v Δ+Δ−=  (24) 

 
As said before, in the second step of fluid flow 
simulation the temporal velocity is employed to 
calculate the divergence of viscous stress tensor. 
Note that the divergence of viscous stress tensor is 
a vector T

r
 given by: 

 

jyTixTT
i

.1 rrr
+==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⇒
τ∇

ρ
 (25) 

 
At the end of the second step, the particle velocity 
is updated according to 
 

txTtxgttutxT*u**u Δ+Δ+Δ−=Δ+=  (26) 
 

tyTtygtvtyT*v**v Δ+Δ+=Δ+=  (27) 

 
At this stage the particle moved according to 
temporal velocities ( **v,**u ) and temporal 
position of the particle is: 
 

t**uttx*x Δ+Δ−=  (28) 
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t**vtty*y Δ+Δ−=  (29) 
 
Thus far no constraint has been imposed to satisfy 
the incompressibility of the fluid and it is expected 
that the density of some particles change during 
this updating. In fact, with the help of the 
continuity equation one can calculate the density 
variations of each particle as 
 

⎟
⎠
⎞⎜

⎝
⎛∇⎟

⎠
⎞⎜

⎝
⎛ −∑=

ρ
h,ijrWi.jviv

j
jm

Dt
iD

 (30) 

 
Where ρi and vi are the density and velocity of 
particle i. When two particles approach each other, 
their relative velocity and therefore the gradient of 
kernel function become negative, so DtiDρ  will 
be positive and ρi will increase. Consequently, this 
will produce a repulsive force between the 
approaching particles. In a similar fashion, if two 
particles are repulsed from each other, an attractive 
force will be produced to stop this. This interaction 
based on the relative velocity of particles and the 
resulting coupling between the pressure and 
density will enforce incompressibility in the 
solution procedure. 
     The velocity field ( )v̂,ûv̂ =  which is needed to 
restore the density of particles to their original 
value is now calculated. To do this, in the third 
step of the algorithm, the momentum equation with 
the pressure gradient term as a source term is 
combined with the continuity Equation 10 as 
 

0)v̂.(
t

*
0

0

1
=∇+

Δ

ρ−ρ

ρ
 (31) 

 

tP*
1v̂ Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∇

ρ
−=  (32) 

 
to obtain the following pressure of the Poisson 
equation 
 

2t0

*
0P*

1.
Δρ

ρ−ρ
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∇

ρ
∇  (33) 

 
Equation 35 can be discretized according to 
Equation 9 to obtain pressure of each particle as 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

η+

∇
∑

ρ+ρ

η+

∇
∑

ρ+ρ
+

Δρ

ρ−ρ

=

22
jir

ijWi.jir

j 2)ji(
jm8

22
jir

jiWi.jirjP

j 2)ji(

jm8

2t0

*0

iP 

r

r

r

r

 

 (34) 
 
using this value for the pressure of each particle one 
can calculate v̂  according to Equation 34 and 7 as 
 

ijWi)2
j

jP

*
2
i

iP
(

j
jmiv̂ ∇

ρ
+

ρ
∑=  (35) 

 
Finally, overall velocity of each particle at the end 
of the time step will be obtained as 
 

û**uttu +=Δ+  (36) 
 

v̂**vttv +=Δ+  (37) 
 
And the final positions of particles are calculated 
using a central difference scheme in time 
 

)ttutu(
2
t

ttxtx Δ−+
Δ

+Δ−=  (38) 

 

)ttvtv(
2
t

ttyty Δ−+
Δ

+Δ−=  (39) 

 
4.2. Solution Algorithm for Solid 
Particles   A comparison between governing 
equations of fluid and solid zones shows that only 
the second term in momentum equations differ 
from each other. So, just the second step of 
solution algorithm for solid particles is different 
from related step in fluid particles. 
     In fact, in the second step of fluid flow 
simulation in the effect of viscous term (Equation 
11) is calculated in contrast of calculating the 
deviatoric stress for solid particles (Equation 19). 
     The second step of solution algorithm for solid 
zone starts with updating the deviatoric stress at 
each time step according to Equation 20 by 
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calculating ijε&  and ωij (Equations 21 and 22). To 
model an elastic-plastic material an additional 
yield condition is required which defines the 
material elastic limit and hence determines when 
plastic flow occurs. For the present work, the von 
Mises yield condition has been employed, which 
can be written in terms of the principal stresses, 
     By using the yield strength of the material in 
simple tension ( Yτ ), the yield condition can be 
written as [25] 
 

2
Y

2
xyS22

yS2
xS τ≤++  (40) 

 
and it is this expression which is used here to detect 
the onset of plastic flow. In the numerical scheme 
discussed in this work, once yield is detected the 
material is assumed to flow plastically, resisting 
with a constant state of deviatoric stress; hence the 
term elastic-perfectly plastic. 
     If the above condition is satisfied then response 
is elastic and this is the final state of stress, 
otherwise the material has yielded and flow is 
plastic and each stress component must be rescaled 
to lie on the yield surface by multiplying by the 
rescaling factor [24]: 
 

2
xyS22

yS2
xS

Y32

++

τ
 (41) 

 
Similar to the second step for the fluid zone, the 
divergence of deviatoric stress is utilized for 
calculating the temporal velocities )**v,**u( , 
then temporal position )*y,*x(  of particles will be 
calculated at the end of the second step. The third 
step for satisfying the incompressibility to elastic 
solid particles is completely similar to fluid ones. 
     It should be mentioned that all of the SPH 
algorithm for simulating solid particles utilizes an 
artificial viscosity term (in order to smooth out the 
velocity oscillations) and artificial stress (to 
eliminate the effects of tensile instability) but none 
were used in the artificial parameters in this new 
algorithm. In addition the pressures of solid particles 
are calculated by solving continuity with the third 
term of momentum equation (in third step of 
proposed algorithm) instead of using the equation. 

5. FLUID-STRUCTURE INTERACTION 
MODEL 

 
In the first attempt of the fluid-structure interaction 
modeling with SPH [20], some particles were 
defined as interface particles. The way to define 
the interface and its normal vector was similar to 
that which was proposed by [25] to define complex 
solid boundaries. The dynamic interface conditions 
were satisfied by adding some source terms to the 
momentum equation which is equivalent to the 
action-reaction principle. It was guaranteed that by 
imposing the force exerted by the fluid on the solid 
the same modulus as the force exerted by the solid, 
an opposite force is exerted to the fluid. 
     Here a different method for Fluid-structure 
interaction modeling is proposed. In this method it 
was assume that in each time step, elastic walls 
play the role of rigid walls for fluid particles and 
only contribute in the third step of computational 
algorithm. In fact, when fluid particles move 
toward elastic particles their pressure increases and 
prevents them from penetrating into a solid zone. 
Because of using the same solution algorithm for 
both fluid and solid zones, it can be assumed that a 
similar effect on solid particles due to fluid flow 
would take place. In another words, fluid particles 
contribute only in the third step of the solution 
procedure of their solid neighbors. 
     It will be shown that the accuracy of presented 
the method is higher than the old one. It has other 
advantages such as: easier implementation, no 
special treatment for interface particles, less CPU 
time (it hasn’t any extra procedure for interface 
calculation). 
 
 
 

6. RIGID WALL BOUNDARY 
CONDITIONS 

 
Boundary conditions always receive special 
attention in the SPH method; here the treatment 
used by Koshizuka et al. [26] was followed to 
model the wall boundaries by fixed wall particles, 
which are spaced according to the initial 
configuration. Here a kernel with a compact 
support of h = 1.5l0, where l0 is the initial particle 
spacing, was employed. In addition, two lines of 
dummy particles with properties which are 
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Figure 1. Schematic view of initial configuration. 

completely similar to boundary particles are also 
placed outside of the solid walls at spacing l0. The 
calculation procedure for both wall and dummy 
particles is completely similar to inner particles, 
except the zero velocity for no slip boundary 
conditions. 
 
 
 

7. THE TEST CASE 
 
In this section, a benchmark problem is studied to 
demonstrate the capability of the proposed method 
to solve fluid-structure interaction problems. 
     The benchmark problem is the deformation of 
an elastic plate subjected to time-dependent water 
pressure. 
     The results are compared with experimental 
data and results of the first attempt of SPH-FSI 
model [20] to show the better accuracy of the 
proposed algorithm. 
     Throughout this study and whatever the chosen 
smoothing length value, the typical distance 
(noted xΔ ) between two particles is determined so 
that the interpolation circle contains about 20 
particles (in a two dimensional context), that is, 
 

15.1
x

h
=

Δ
 (42) 

 
It should be mentioned that the formulation 
utilized for elastic wall simulation is comparable 
with a fluid with large viscosity (with the order of 
G), so the particles in the elastic solid zone have to 
be arranged closer to each other in comparison to 
fluid particles. In this simulation the initial spacing 
between solid particles is half of fluid ones, it 
means, the number of particles for showing the 
same amount of mass for an elastic solid zone is 2 
times greater than a fluid one. 
     An elastic gate, clamped at one end and free at 
the other one, interacts with a mass of water 
initially confined in a free-surface tank behind the 
gate. A schematic view of this 2D problem is 
shown in Figure 1. As it is shown, the left wall 
consists in an upper rigid part and in a lower 
deformable plate made of rubber. The rubber plate 
is free at its lower end, thus representing an elastic 
gate closing the tank. The geometric dimensions of 
the system and the physical characteristics of the 

elastic gate are reported in Table 1. 
     In Figure 2, the horizontal and vertical 
displacements computed for the plate (according 
to the presented SPH algorithm and FSI model) are 
compared with those measured in the digitalized 
images acquired during the experiments and the 
results of old SPH model of FSI. 
     Water level just behind the gate is shown in 
Figure 3. SPH particle positions at six different 
times are shown in Figure 4. These images are in 
complete agreement with the frames from the 
experiment setup at corresponding times (shown in 
[20]). 
     The evolution of the free-surface is also well 
reproduced by the simulation. Figure 4 shows the 
water level history immediately behind the gate. 
     As it can be seen, the accuracy of presented SPH 
simulation is completely greater than the old one. It 
is because of using a better algorithm for solid 
elastic simulation and no special treatment for 
interface particles (the interface modeled naturally). 
 
 
 

8. CONCLUSION 
 
This paper presents a numerical investigation of a 
fluid-structure interaction (FSI) model according to 
a modified Smoothed Particle Hydrodynamics 
(SPH) method.  
     The researchers have presented a new algorithm 
which models elastic-perfectly plastic solids using 
planar geometry, in the Lagrangian reference 
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TABLE 1. Dimensions of the System and Physical Characteristics of the Rubber Plate. 
 

Dimensions 

A (m) 0.1 

H (m) 0.14 

L (m) 0.079 

S (m) 0.005 

Rubber 

ρ (kg/m3) 1100 

G (N/m2) 4.27 × 10 6 
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Figure 2. Horizontal and vertical displacements of the free 
end of the plate. 
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Figure 3. Water level (m) just behind the gate. 

frame. The modification of the utilized SPH 
concerns on removing the artificial viscosities and 
the artificial stresses (which such terms are 
commonly used to eliminate the effects of tensile 
and numerical instabilities). The new algorithm for 
elastic simulation is based on a prediction-
correction procedure which has been used for fluid 
flow simulation. According to the presented 
method pressure Poisson equation (Equation 35) is 
utilized for pressure calculation instead of state 
equation which has some dependent constant to the 
materials and dynamics of the problems. 
     However, the purpose of this work was to 
propose a different method for Fluid-structure 
interaction modeling in engineering applications. It 
was shown that this method has some advantages 

such as more accuracy and easier programming  
compared to other methods in similar cases. The 
mentioned performance of the proposed algorithm 
is assessed by solving a test case including 
deformation of an elastic plate subjected to time-
dependent water pressure. The obtained results are 
in close agreement with other high accuracy 
methods and experimental results. 
 
 
 

9. NOMENCLATURE 
 
A A Typical Field Variable 
r Position Vector 
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]s[4.0t =                                                                                 ]s[0.0t =  
 

           
 

]s[5.1t =                                                                               ]s[9.0t =  
 

           
 

]s[4.2t =                                                                             ]s[9.1t =  
 

Figure 4. SPH particle positions at six different times. 

W Weight Function (Kernel) 
h Smoothing Length 
V Volume 

δ Dirac Delta Function 
σ Normalized Constant 
υ Number of Dimensions 
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m Mass of Particle 
ρ Density 
v Velocity 
s Normalized Position Variable 
u Velocity Vector 
V Velocity Vector 
τ Viscous Stress Tensor 
g Gravity Force Per Unit Mass 
S Shear Strain 
P Pressure 
t  Time 
Δx Space Step 
 
Subscripts 
 
i  Target Particle Index 
j  Neighborhood Particle Index 
Y Yeilding Point 
x  Normal in x-Direction 
y  Normal in y-Direction 
xy Shear Direction in x-y Plain. 
0 Reference Values 
t Time Index 
Δt Time Step 
 
Superscripts 
 
*,** Temporal Variables 
^ Field Variables 
. Time Derivity 
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