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Abstract   In this paper, using the three-phase induction motor fifth order model in a stationary two 
axis reference frame with stator current and rotor flux as state variables, a conventional backstepping 
controller is first designed for speed and rotor flux control of an induction motor drive. Then in order 
to make the control system stable and robust against all electromechanical parameter uncertainties as 
well as to the unknown load torque disturbance, the backstepping control is combined with artificial 
neural networks in order to design a robust nonlinear controller. It will be shown that the composite 
controller is capable of compensating the parameters variations and rejecting the external load torque 
disturbance. The overall system stability is proved by the Lyapunov theory. It is also shown that the 
method of artificial neural network training, guarantees the boundedness of errors and artificial neural 
network weights. Furthermore, in order to make the drive system free from flux sensor, a sliding-
mode rotor flux observer is employed that is also robust to all electrical parameter uncertainties and 
variations. Finally, the validity and effectiveness of the proposed controller is verified by computer 
simulation. 
 
Keywords   Artificial Neural Network, Backstepping, Induction Motor, Observer, Robust, Sliding-
Mode 
 

ک ي در مختصات مرجع ساکن استاتور، ابتدا يين مقاله، با استفاده از مدل مرتبه پنجم موتور القايدر اچكيده       
. شود ي مي طراحييو موتور القاي کنترل سرعت و شار استاتور درابرای يکنترل کننده گام به گام به عقب متعارف

 و گشتاور بار يکي و مکانيکي الکتري پارامتري هاينيستم کنترل در برابر همه نامعي سي مقاوم سازيسپس برا
 حاصل يبيک کنترل مقاوم ترکيشود تا  يب مي ترکي عصبينامشخص، کنترل گام به گام به عقب با شبکه ها

 و تحمل گشتاور بار نامشخص يرات پارامتريي قادر به جبران تغيبيشود که کنترل کننده ترک ينشان داده م. شود
شود که روش آموزش  ين نشان داده ميهمچن. شود ياپانف اثبات مي لي به کمک تئوريستم کلي سيداريپا. است

ستم ياز سي رفع نيبه علاوه، برا. است ي شبکه عصبيها  بودن خطاها و وزنکراندارن کننده ي، تضميشبکه عصب
رات يينسبت به تغشود که  ي شار رتور به کار گرفته ميک مشاهده گر مد لغزشيو به حسگر شار، يکنترل درا

 مورد يه سازي با شبيشنهاديت، عملکرد مناسب کنترل کننده پيدر نها.  مقاوم استيکي الکتريهمه پارامترها
 .رديگ يش قرار ميآزما

 
 

1. INTRODUCTION 
 
In the last two decades, nonlinear control methods 
such as input-output feedback linearization and 
Sliding-Mode(SM) control have been applied to 
the Induction Motor (IM) drive [1-2]. Especially in 
recent years, in the field of adaptive and robust 
control, there has been a tremendous amount of 
activity on a special control scheme known as 

“backstepping” [3-5]. A major problem of the 
backstepping control approach is that certain 
function must be “linear in the unknown system 
parameters” and in addition, some very tedious 
analysis is needed to determine a “regression 
matrix” [5]. It must be noted that in adaptive 
backstepping control, the problem of finding a 
regression matrix is more difficult in comparison 
with conventional backstepping method. 
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     Artificial Neural Network (ANN) has been 
applied to system identification or identification-
based control. Uncertainty on how to initialize the 
ANN weights leads to the necessity for “preliminary 
off-line tuning”. Recently many ANN controllers 
have been proposed for various control applications 
that can provide closed-loop stability [6-8]. 
     To overcome the above problems, in [9], a 
combination of backstepping control and ANN has 
been proposed. According to this method, in the 
process of backstepping controller design, two ANN 
are used to estimate two nonlinear functions. 
Therefore there is no need to find the regression 
matrix for on-line estimation of unknown parameters. 
     In [9], using the ANN, the theory of robust 
backstepping control has been presented for strictly 
feedback nonlinear systems. This method has been 
applied to a single arm robot in [10] and to a rotor 
flux Field Oriented Control (FOC) IM drives in 
[11]. 
     One may note that the FOC methods are in fact 
a type of partial feedback linearization control 
technique in which the zero dynamic stability can 
not be proven. As a result, through this method, it 
can not be guaranteed that the system model 
preserves its robustness against the parameter 
variations. In addition in these control methods, the 
field orientation can be achieved only in the system 
steady state conditions. Moreover, the control 
method of [11] is only robust with respect to the 
rotor resistance variation. 
     To overcome the above problems, in this paper, 
using the fifth order model of IM in a fixed stator 
reference frame, with stator currents and rotor 
fluxes as state variables, using the nonlinear 
method described in [9], a composite nonlinear 
controller is designed that makes the IM drive 
system control robust and stable against the motor 
parameter uncertainties and external load torque 
disturbance. In this control approach, a two level 
SVPWM inverter feeds the IM drive. 
     Furthermore, the rotor flux is estimated by a 
SM observer which is also robust to all electrical 
parameter uncertainties. 
 
 
 

2. IM MODEL 
 
The IM fifth order model in a fixed two axis 

reference frame with rotor fluxes and stator 
currents as state variables [12], is given by 
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where sbu,sau,rb,ra,sbi,sai ψψ  are the stator 
currents, rotor fluxes and stator voltages, 
respectively. Subscripts b,a  indicate vector 
components in the fixed stator reference frame. 
Subscripts s,r indicate rotor and stator 
components.ω  is the rotor angular mechanical 
speed and )rLsL/(2M1−=σ . 
     rL,sL  are per -phase stator and rotor special 
inductances, respectively. M is the per phase 
magnetizing inductance. np is number of pole pairs. 

rR,sR  are stator and rotor resistances, respectively. 

 
 
 

3. ROBUST BACKSTEPPING CONTROL 
 
3.1. ANN Basics   Define W  as the collection of 
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ANN weights, then the net output is [4] 
 

)x(TWy φ=  (6) 
 

Let S  be a compact simply connected set of nℜ , 
with map nS:f ℜ→ , define )S(Cm  the functional 
space such that f  is continuous. A general 
nonlinear function )S(mC)x(f ∈ , S)t(x ∈  can be 
approximated by a neural network as 
 

)x()x(TW)x(f ε+φ=  (7) 
 
with )x(ε  an ANN functional reconstruction error 
vector and )x(φ  is sigmoid activation function. 
 
3.2. Robust Backstepping Control of IM 
Using ANN   Using the well known fifth order 
IM model in a stator two axis reference frame 
where the rotor fluxes and stator currents are 
assumed as state variables [12], the robust nonlinear 
controller is designed in the following way. 
     Dividing the above IM model into two nonlinear 
sub-systems, where sbi,sai  are the outputs for the 
first sub-system which are simultaneously assumed 
the fictitious inputs of the second sub-system. It is 
assumed that: 
 

• The reference trajectories rω  and r
rψ  are 

differentiable and bounded. 
• The load torque is an unknown constant and 
resistances, inductances and moment of inertia are 
unknown and bounded. 
 

     In the first step of the controller design, sbi,sai  
are assumed as fictitious controls for the second 
sub-system. The main objective is to obtain these 
controls so that the desired rotor speed and rotor 
flux amplitude signals are perfectly tracked in spite 
of machine parameters and external load torque 
uncertainties. 
     Considering rω  and r

rψ  as references for ω and 

rψ , tracking error equations are 
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 (9) 
Where 
 

[ ]T2e,1ee = . 

 
It is clear that G1 is known and invertible. By 
treating i  as a fictitious input, a controller for the 
ideal i ( i ) is designed as 
 

[ ] 01K,e1K1F̂
1

1Gi >−−=  (10) 

 
where K1 a design parameter and 1F̂  the estimate 
of F1 which will be estimated in the next section 
with a two layer ANN. Substituting 10 into 9 gives 
 

ii,1Ge1K1F̂1Fe1D −=ηη+−−=
•

 (11) 
 
In the second step, the control )sbu,sau(u  are 
obtained in such a way that η in Equation 11, 
becomes as small as possible. Differentiating η 
with respect to time t, yields 
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Figure 1. Neural networks structure with inputs and outputs. 

To make η as small as possible, the following 
control is chosen 
 

⎥⎦
⎤

⎢⎣
⎡ −η−−−= eT

1G2K2F̂1
2Gu  (14) 

 
In 14, 2F̂  is an estimate of F2 in that like the first 
step, a two layer ANN is used to estimate it. In 
addition a term eT

1G−  is added in 14 which is 
necessary to cancel the effect of η1G  in 11. 
     Combining 12 and 14 gives 
 

eT
1G2K2F̂2F2D −η−−=

•
η  (15) 

 
3.3. F1, F2 Approximation   In this section, 
functions F1, F2 are approximated two-by-two layer 
ANN. In adaptive backstepping control, it is 
assumed that functions F1, F2 are linear in terms of 
known regression matrices, however in the ANN 
method there is no limitation for these functions. 
Using ANNs approximation property, F1, F2 as 
outputs of two two-layer ANN with constant 
weights wi , is assumed to be as follows 
 

cteN22,22
T

2W2F

cteN11,11
T

1W1F

=ε<εε+φ=

=ε<εε+φ=
 (16) 

 
where 2,1 φφ  provide suitable basis functions. 
From 16, one can find that net reconstruction error 

)x(iε  is bounded by a known constant iNε . 

 
• The ideal weights are bounded by known 
positive values so that 
 

M2W
F2W,M1W

F1W ≤≤  (17) 

 
or equivalently: 
 

{ }2W,1WdiagZ,MZFZ =≤  (18) 

 

The actual inputs to ANN1 are 
•
ψψ

•
ωψ r

r,r
r,r,r  and 

actual inputs to ANN2 are rb,ra,r
r,r,r,r, ψψψψ

•
ωωω , 

2e,1e,sbi,sai,r
r

•
ψ . 
     Considering F1, F2, it is clear why these inputs 
are selected for each neural network. For example, 
F1 contains signals rψ  (that is measured) and 

•
ψψ

•
ω r

r,r
r,r which are known as desired trajectories. 

Uncertainties such as J,rR,M,rL,lT  also exist in 
F1 that should be estimated by NN1. As shown in 
Figure 1, W1 and W2 are second layer weights of 
NN1 and NN2, respectively. For first weights of 
these NNs, small positive constants are selected. 
Each NN has two outputs that are first and second 
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elements of estimated matrix functions F1 and F2. 
For example, first output of NN1 is estimate of 
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On line ANN approximation of 1F  is 
 

1
T
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Then the error dynamic Equation of 11 becomes 
 

11Ge1K1
T
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•
 (20) 

 
where 1Ŵ1W1W~ −= is the error in weight estimation. 
Similarly, approximation of 2F  is assumes as 
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then the error dynamic 15 will be 
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•
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Note that there is a term η1G  in 20 and a term 

eT
1G−  in 22. This means there are couplings 

between the error dynamics 20 and 22. 
 
3.4. Updating ANNs Weights   In this part, the 
stability of the proposed controller is proven based 
on Lyapunov’s stability theory. This analysis 
shows that tracking errors and updated weights are 
Uniformly Ultimately Bounded (UUB). 
     Theory: Let the desired trajectories ω, ψr be 
bounded. Take the control input 14 with weight 
updates be provided by 
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with any constant matrices 0T
11 >Γ=Γ , 0T

22 >Γ=Γ  

and scalar positive constant kω. Then the errors 
)t(e),t(η  are UUB. ANN updated weights are 

bounded. The errors )t(e),t(η  can be kept as small 
as desired by increasing gains iK . 
 
Proof: Define the following Lyapunov function 
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Derivation of V with using of 20 and 22 yields 
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Considering Equation 23 note that 
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Using Schwartz inequality 
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Where minλ  is the minimum eigenvalue of K . 
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negative outside a compact set. Therefore, the 
control gain K , which is contained in minλ , can 
be selected large enough so that 
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According to a standard Lyapunov theorem, this 
demonstrates the UUB of both 

F
Z~,ζ . [9] 

 
• Small tracking error bounds may be 
achieved by selecting large control gain K . The 
parameter ωk  offers a design tradeoff between the 

relative eventual magnitudes of ζ  and 
F

Z~ , 

smaller ωk  yields smaller ζ  and larger 
F

Z~ , 

and vice versa. 
 

• If )0(1Ŵ  are taken as zeroes the linear 
proportional control term-Kξ stabilizes the system 
on an interim basis. 
 
 
 

4. SM-FLUX OBSERVER 
 
In this section, a SM rotor flux observer is 
employed that is robust subject to the IM electrical 
parameter variations and uncertainties. This 
method has already been applied to a primary type 
Linear Induction Motor (LIM) for low speed 
operation [13]. 
     From (4,5), the IM current model can be 

represented by 
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where F,E,C  are the nominal values of C, E, F 
respectively; F,E,C ΔΔΔ  denote the lumped 
uncertainty functions introduced by system 
parameters and 
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The current model lumped uncertainty vector is 
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The current model uncertainties are assumed to be 
bounded i.e. ibib,iaia η≤λη≤λ . Now, 
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Where rLsL/MBK σ= . According to the 
definition as shown in Equation 27, the IM current 
model can be rewritten as 
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where bV,aV,BK  are the nominal parameters of 

bV,aV,BK . To design a SM current observer the 
switching surfaces are defined as follows 
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where ξ, ω are positive values(note thatω in 29 is 
the constant positive value not rotor speed). The 
current estimation error vector is defined as 
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The SM current observer is proposed in the 
following form 
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bV̂,aV̂  are from 27. Subtracting 28 from 31, gives 
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Differentiating S(t) with respect to time, using 
Equation 32, yields 
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Candidating Lyapunov function as 
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Where k, v are positive constants and 
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Taking the derivative of the Lyapunov function 
and using 31, one can obtain that 
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The control gains are designed as 
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Where 
 

ibibˆib
~,iaiaˆia

~ η−η=ηη−η=η , 
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Then Equation 36 can be rewritten as follows 
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Defining the following term 
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The following result can be concluded 
 

∞<ττ∫
∞→

d)(t
0 abP

t
lim  (41) 

 

By Barbalat’s Lemma [14] 
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That is 0)t(ibS,0)t(iaS →→  as ∞→t . As a 
result, the proposed sliding mode current observer 
is asymptotically stable, even if system 
uncertainties exist. Moreover, the current 
estimation errors will converge to zero according 
to S(t) = 0. Consequently, the estimated flux can be 
derived according to 27 and 31 as follows 
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where 
••

sbî,saî are from 31, ibK,iaK  from 37 and 

ibS,iaS  from 29. 
 
 
 

5. SYSTEM SIMULATION 
 
Based on the proposed control strategy described 
in the previous section, the overall block diagram 
of IM drive control is shown in Figure 2. In this 
scheme, two ANNs are used to estimate nonlinear 
functions F1, F2 that contain uncertainties. 
Estimated functions ( 1F̂ , 2F̂ ) are delivered to 

controllers to produce controls u,i . 
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Figure 2. Block diagram of the IM drive control scheme. 
 
 
 

TABLE 1. IM Parameters. 
 

Ω= 18.0sR  Stator Resistance 

Ω= 15.0rR  Rotor Resistance 

turns.Wb3.1r
r =ψ  Rotor Nominal Flux Linkage 

1pn =  Number of Pole Pairs 
H0699.0sL =  Stator Inductance 
H0699.0rL =  Rotor Inductance 

H068.0M =  Mutual Inductance 

s/rad220r =ω  Nominal Rotor Speed 
2m.kg0586.0J =  Moment of Inertia 

     A C++ computer program was developed for 
system simulation. In this program, the nonlinear 
equations are solved based on static forth order 
Range-Kutta method. The proposed control method 
is tested for a three-phase IM with parameters 
shown in Table 1. 
     In this simulation, the controller gains are 
obtained by trial and error method and are given as 
 
K1 = diag {1525, 1550}, K2 = diag {5000, 1550}, 
Kω = 1, Гi = 10I 

SM observer gains are as follows 
ζ = 1000, ω = 1000 k = 1, v = 1 
 

Simulation results shown in Figure 3 are obtained 
in the case of an exponential reference flux rising 
up from zero to t.W3.1  at t = 0 sec, down to t.W8.0  
at t = 3 sec with a time constant of τ = 0.05 sec, an 
exponential reference speed from zero to 220 rad/s 
at t = 0.3 sec, rising up to 350 rad/s at t = 3 sec 
with a time constant of τ = 0.1 sec, a step load 
torque disturbance from zero to 40N.m. at t = 2 sec 
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Figure 3. IM speed and flux control using robust backstepping controller. 
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Figure 4. IM torque control. 

and motor electromechanical parameters assumed 
to be twice their nominal values at t = 1 sec. 
     Figure 4 shows the simulated results obtained 
for an exponential reference flux rising up from 
zero to t.W3.1  at t = 0 sec and an exponential 
reference speed rising up from zero to 220 rad/s at 
t = 0.3 sec, a load torque profile which is also 
shown in Figure 4 and motor electromechanical 
parameters assumed to be twice their nominal 
values at t = 0 sec. 
     The IM rotor flux control is obtained for an 
exponential reference speed, rising up from zero to 

220 rad/s at t = 0.3 sec and an exponential flux 
reference from zero to t.W3.1  at t = 0 sec, down to 
0.8 W.t at t = 2 sec and rising up to 1.3 W.t at t = 
3.5 sec, a step up load torque from zero to 40N.m. 
at t = 1 sec is shown in Figure 5. In addition the IM 
speed control is obtained for an exponential 
reference flux rising up from zero to t.W3.1  at t = 0 
sec and an exponential reference speed from zero 
to 220 rad/s at t = 0.3 sec, down to -220 rad/s at t = 
2 sec, rising up to 220 rad/s at t = 3.5 sec, a step 
load torque from zero to 40N.m. at t = 1 sec is 
shown in Figure 6. In flux and speed control 
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Figure 5. IM flux control. 
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Figure 6. IM speed control. 

performance, the motor electromechanical parameters 
are assumed to be twice their nominal values at t = 
0 sec and the rest of the conditions are assumed the 
same as described for Figure 4. 
 
 
 

6. CONCLUSIONS 
 
In this paper, a composite nonlinear controller has 
been proposed for the IM flux and speed control that 
is robust to all electromechanical parameter 
variations and uncertainties. First a backstepping 
controller is designed for a three-phase IM. This 
controller provides speed and flux tracking for 
desired trajectories, but it needs electrical and 
mechanical parameters to be known and if some 
uncertainties exist in the control system, the 
controller can not do its rule properly. So, to 

overcome this problem, a method is used that 
estimates nonlinear functions through uncertainties. 
Artificial neural networks have the ability to do this. 
Combining backstepping controller with ANNs, a 
composite controller that is robust to all 
electromechanical uncertainties is obtained. 
Stability of this composite controller is proved by 
the Lyapunov theory. Also small tracking errors are 
obtained through selecting large control gains. The 
above method has advantages in comparing 
conventional methods such as Adaptive 
Backstepping. It is simple, it includes less and 
simpler equations but more computer calculations. 
In addition, to making a control system free from 
physical flux sensor, a SM flux observer is designed 
that is also robust with respect to electrical 
parameter uncertainties. Computer simulation 
results show that by this control method, a perfect 
speed and rotor flux tracking control can be 

www.SID.ir



Arc
hi

ve
 o

f S
ID

232 - Vol. 20, No. 3, October 2007 IJE Transactions A: Basics 

achieved in spite of parameter uncertainties and 
external load torque disturbances. 
 
 
 

7. REFERENCES 
 
1. Bodson, M., Chiasson, J. and Novotnak, R., “High-

performance induction motor control via input-output 
linearization”, IEEE Control Syst. Mag., Vol. 14, No. 
4, (August 1994), 25-33. 

2. Shieh, H. J. and Shyu, K. K., “Nonlinear sliding-mode 
torque control with adaptive backstepping approach for 
induction motor drive”, IEEE Trans. Ind. Electron., 
Vol. 46, (April 1999), 380-389. 

3. Kanellakopoulos, I., Kokotovic, P. V. and Morse, A. S., 
“Systematic Design of Adaptive Controllers for 
Feedback Linearizable Systems”, IEEE Trans. 
Automat. Contr., Vol. 36, (1991), 1241-1253. 

4. Kokotovic, P. V., “Bode lecture: The joy of feedback,” 
IEEE Contr. Syst. Mag., No. 3, (June 1992), 7-17. 

5. Krstic, M., Kannellakopoulos, I. and Kokotovic, P., 
“Nonlinear and Adaptive Control Design”, Wiley and 
Sons Inc., New York, (1995). 

6. Polycarpou, M. M. and Ioannou, P. A., “Identification 
and control using neural network models: Design and 
stability analysis”, Dept. Elect. Eng. Syst., Univ. 
Southern California, Los Angeles, Tech. Rep. 91-09-01, 

(September 1991). 
7. Sadegh, N., “Nonlinear identification and control via 

neural networks”, Control Systems with Inexact 
Dynamic Models, Vol. DSC-33, (1991). 

8. Zhang, T., Ge, S. and Hang, C. C., “Direct adaptive 
control of nonaffine nonlinear system using multilayer 
neural networks”, Proc. Amer. Contr. Conf., (1998). 

9. Kwan, C. M. and Lewis, F. L., “Robust Backstepping 
Control of Nonlinear Systems Using Neural Networks”, 
IEEE Trans. Systems, Man and Cybernetics, Vol. 30, 
No. 6, (November 2000). 

10. Kuljaca, O., Swamy, N., Lewis, F. L. and Kwan, Ch. 
M., “Design and Implementation of Industrial Neural 
Network Controller Using Backstepping”, IEEE Trans. 
Industrial Electronics, Vol. 50, No. 1, (February 2003). 

11. Kwan, C. M. and Lewis, F. L., “Robust Backstepping 
Control of Induction Motors Using Neural Networks”, 
IEEE Trans. Neural Networks, Vol. 11, No. 5, 
(September 2000). 

12. Krause, P. C., “Analysis of Electric Machinery”, 
McGraw-Hill Inc., NY, USA, (1986). 

13. Wai, R. J. and Liu, W. K., “Nonlinear decoupled control 
for linear induction motor servo-drive using the sliding-
mode technique”, IEEE Proc. Control Theory Appl., 
Vol. 148, No. 3, (May 2001). 

14. Marino, R., Peresada, S. and Valigi, P., “Adaptive 
input-output linearizing control of induction motors”, 
IEEE Trans. Autom. Control, Vol. 38, No. 2, 
(February 1993), 208-221. 

 

www.SID.ir


