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Abstract   Homotopy Perturbation Method is an effective method to find a solution of a nonlinear 
differential equation, subjected to a set of boundary condition. In this method a nonlinear and 
complex differential equation is transformed to series of linear and nonlinear and almost simpler 
differential equations. These set of equations are then solved secularly. Finally a linear combination 
of the solutions completes the answer if the convergence is maintained. HPM based solution 
incorporates some reasonable assumptions. These are inspired from the boundary condition and a 
separation mechanism. In this paper, the need for stability verification is shown trough some 
examples. The novel idea is to keep the inherent stability of nonlinear dynamic in whole term, even if 
the selected linear part is not stable. Consequently, HPM is enhanced by a preliminary assumption. 
The proposed method is applied to Riccati equation as well as some other problems. The simulation 
result verifies the significance of the method whilst numerical and the exact solutions confirm the 
achievement. 
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 ـ در ا  .استروش هموتوپی پرتوربيشن يکی از روش های موثر در حل معادلات ديفرانسيلی             چكيده            روش ني

 ناي. شود یم لي ساده تر تبد   ی خط ليفرانسي معادلات د  ی سر کي به   دهيچي پ ی خط ري غ ليفرانسي معادله د  کيابتدا  
 بدست آمـده،    یها  مجموعه جواب  تيها در ن  نکهي حل شده تا ا    ی ا رهي بصورت زنج  ليفرانسيدسته از معادلات د   

در اين مقاله، با چنـد مثـال اهميـت بررسـی پايـداری      . شود ی همگرا مهي اولی خطري غ ليفرانسيبه پاسخ معادله د   
 به جـواب واقعـی معادلـه را         HPMايده جديد، همگرايی جواب معادله بدست آمده از روش          . شود نشان داده می  

اين روش پيشنهادی هماننـد مـسائل مـشابه بـر روی معادلـه              . نمايد فظ می حتی با ناپايدار بودن قسمت خطی ح      
کيفيت روش ارائه شده در همگرائـی جـواب، از طريـق شـبيه سـازی عـددی و                   . ريکاتی پياده سازی شده است    

 .مقايسه با حل دقيق آن اثبات شده است
 
 

1. INTRODUCTION 
 
In the last two decades with the rapid development 
of nonlinear dynamics, there has appeared an ever-
increasing interest of scientists and engineers in the 
analytical techniques for nonlinear problems. The 
widely applied perturbation technique has been of 
interest to be used in control systems [1,2]. To 
eliminate the limitation of “small parameter” 
assumption a new technique, based on homotopy 
in terminology, was proposed [3-5]. According to 
this method, a nonlinear problem is transformed 

into an infinite number of simple problems 
without using the perturbation techniques. 
Effectively, letting the small parameter float and 
converge to the unity, the problem will be 
converted into a special perturbation problem. 
This method was given a name; the Homotopy 
Perturbation Method (HPM). The effectiveness of 
the new technique presented [6,7]. This method 
can take full advantage of the traditional 
perturbation methods and homotopy analysis 
method. It has successfully been applied to linear, 
nonlinear ordinary and partial differential equations, 
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which almost describing a system dynamic 
incorporating the perturbation value (Called 
Homotopy Perturbation Method, i.e. HPM) [3,8,9]. 
It has also been applied to a wide class of 
differential equations, such as: 
     Duffing equation in [6], the area of numerical 
and algebraic methods [10-12], Gelfand equation 
[13], autonomous systems [1,14,15], system 
dynamic [16] and Heat transfer [9,17-19]. 
However, Homotopy Perturbation Method (HPM) 
is an asymptotical based Method. The method 
relies on some assumptions which is ignoring them 
makes the solution unreliable [20]. The need for 
the stability verification has been illustrated 
through some examples. HPM is then subjected to 
keep the stability of nonlinear dynamics. This 
method is investigated and restricted to such a 
situation to maintain the inherent convergence of 
the main problem. It will be done by keeping the 
stability of the linear part by adding an extra term 
to it. The fundamental idea will be introduced 
through some examples. The idea is to keep the 
original stability situation as an important criterion 
to ensure the global convergence. 
     Let us introduce HPM via following nonlinear 
equation: 
 

nRu,0f(r)A(x) ∈=−  (1) 
 
Subjected to boundary conditions: 
 

nRx,0t)x/B(x, ∈=∂∂  (2) 
 
Where A is a general differential operator, B is a 
boundary operator, x is known as analytic and n 
dimensional function (here, state) and u is an m 
dimensional input (independent variable). The 
differential part A(x) can be generally divided into 
two linear L, and nonlinear N, parts. Equation 1 
can therefore, be rewritten as: 
 

0)r(f)x(N)x(L =−+  (3) 
 
A homotopy statement H(ν,p) by using an 
auxiliary variable ν(x,p) with [0,1]p∈  can be 
defined as: 
 

[0,1]p,0])r(f)v(A[p

])0x(L)v(L[p)(1p)(v,H

∈=−

+−−=
 (4) 

P is called homotopy parameter (which is inspired 
from the “small parameter” in perturbation 
terminology). The idea behind using a small 
parameter p is smart. By p equals 0.0, Equation 4 is 
being completely linear whereas p equals to 1.0 the 
linear part in Equation 4 completely vanishes and 
Equation 4 will become the same as Equation 1. 
With a simple manipulation Equation 4 is reduced 
to the following Equation 5: 
 

]0,1[p,0](r)f(v)N[p

)0x(pL)0x(L(v)Lp)(v,H

∈=−

++−=
 (5) 

 
The initial guess x0 (u0 in the literature) needs to be 
a good initial approximation for the solution of 
Equation 1. Where [0,1]p∈  is an embedding 
parameter, x0 is an initial guess approximation of 
Equation 1, which satisfies the boundary 
conditions. 
 

0)r(f)v(A)v,1(H

0)0x(L)v(L)v,0(H

=−=

=−=
 

 
However, in the system area, it is a property of the 
system and can be meaningfully assigned. We use 
the embedding parameter p as a small parameter 
and assume that the solution of Equation 4 can be 
written as a power series in p: 
 

L+++= 2 v2p1v1p0v0pv  (6) 
 
By substituting (6) in (5) and rearranging the 
function in terms of ascending powers of P, an 
infinite number of differential equations in terms 
of ν , is achieved. A special attention must be 
given to avoid the secular terms to produce 
boundedness [1]. This set of almost simple 
differential equation with proper initial conditions 
is then solved. Finally an approximate solution of 
(1) can be written as: 
 

L+++=
→

= 2v1v0vv
1p

limx  (7) 

 
The convergence of HPM is discussed in the 
literature [7,20,28]. Due to practical restrictions, a 
shorter term of vi , i = 0, 1, 2, … is of interest. So 
the accuracy of the solution and therefore the rate 
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Figure 1. HPM and the numerical solutions of the nonlinear 
differential equation. 

of convergence is directly reduced. Among vi , i = 
0,1,2,… functions, and due to secular property of 
series in (6), the function v0, which is obtained 
from p0 term in Equation 6, affects all the other vi , 
i = 0,1,2,… functions. It means that the possible 
discrepancy is additive. However, a way of 
treatment and the source of an error will be 
clarified through some case studies. 
 
Case 1.   The heat transfer equation with radiation 
[17,25], to describe the capability of the HPM, 
consider the following nonlinear differential 
equation: 
 

0.5y(0),04yy
dt
dy

==++  (8) 

 
The linear and nonlinear parts are chosen 
respectively as: 
 

4yN(y),yyL(y) =+= &  (9) 
 
Then the Homotopy statement is built as follows: 
 

]4v[p)0y(pL)0y(Lvv)pv,(H ++−+= &  (10) 
 
By substituting L+++= 2v2p1v1p0v0pv  in (10) 
and assuming y0 = 0, leads us to: 
 

0.5)0(v0,]4)....2v2p1v1p0v0p([p

....)2v2p1v1p0v0p(

....)2v2p1v1p0v0p(

==+++

++++

++++

 (11) 

 
Rearranging the equation in terms of powers op p, 
the following equations are achieved: 
 

0.5(0)0v,00v0v:0p ==+&  (12) 
 

0(0)1v,04
0v1v1v:1p ==++&  (13) 

 

0(0)2v,03
0v14v2v2v:2p ==++&  (14) 

 
and so forth. By solving the simple equations in 12 
to 14, we have the solution as: 

t0.5e0v −=  
 

t-1)e-3t-(e
48
1

1v =  (15) 

 
t-1)e+3t-2e-6t-(e

576
1

2v =  

 
In order to have a satisfactory result, a 3rd order 
Homotopy is chosen. Therefore: 
 

)2v2p1pv0(v
1p

limy ++
→

=  (16) 

 
This leads to: 
 

)t-e+4t-2e-7t-(e
576
1

)t-e-4t-(e
48
1te

2
1y(t) ++−=

 (17) 

 
However, to assess the efficiency of HPM, the 
result is compared with the numerical method 
presented in Figure 1. This graph shows that the 
two graphs are similar and the error is not 
significant. The initial conditions and partitioning 
of Equation 1 into two parts as Equation 3 have 
met the requirements. The secular property of the 
function v0 = e-t in Equations 12 to 14 is 
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Figure 2. HPM and the numerical Solutions of the nonlinear 
differential equation, case no. 2 and in a short time. 

unavoidable. So instability of this term affects all 
of the rest of functions. Although this statement is 
true for the other L0,1,2,is,'iv = , the role of 

function v0 is more crucial. This is because it 
comes from the linear part and the operator may 
design it improperly. In other words, the operator 
has a degree of freedom to select the linear part 
such that a stable answer v0 from the 
corresponding equation i.e. (12) is achieved. To 
highlight the significance of the method, consider 
another differential equation. 
 
Case 2.   To introduce the possible source of the 
error in the HPM, consider the following nonlinear 
differential equation. It should be noted that this 
equation is similar to Equation 8 but the sign of y 
in the linear term. 
 

0.5y(0),04yy
dt
dy

==+−  (18) 

 
In essence, this equation differs from the similar 
one by a negative sign on y(t).The linear and the 
nonlinear parts can be distinguished as: 
 

4yN(y),yyL(y) =−= &  (19) 
 
Using a similar procedure and considering the 
same situation for y0 as y0 = 0 alters the homotopy 
expression to: 
 

]4v[p)0y(pL)0y(Lvv)pv,(H ++−−= &  (20) 
 
Again substituting L+++= 2v2p1v1p0v0pv  in (19) 
yields: 
 

0.5)0(v0,]4....)2v2p1v1p0v0p([p

....)2v2p1v1p0v0p(

....)2v2p1v1p0v0p(

==+++

++++

+++

 (21) 

 
To equalize Equation 21 to zero, the statements 
including the ascending powers of p must be all 
together equal to zero. This means: 
 

0.5(0)0v,00v0v:0p ==−&  (22) 

0(0)1v,04
0v1v1v:1p ==+−&  (23) 

 
0(0)2v,03

0v14v2v2v:2p ==+−&  (24) 
 
Solving Equations 22 to 24 by HPM yields: 
 

t0.5e0v =  
 

)te-4t(e
48
1

1v −=  (25) 

 

)te+4t2e-7t(e
576
1

2v =  

 
When a 3rd order v is of interest as: 
 

)2v2p1pv0(v
1p

limHPMy ++
→

=  (26) 

 
We achieve: 
 

)te+4t2e-7t(e
576

1

)te-4t(e
48
1te

2
1y(t) +−=

 (27) 

 
The solution of functions Equation 17 and 27 are 
then plotted in Figure 2 in a shorter time (a typical 
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time in some literature). As it can be seen, the 
discrepancy is small but growing. If someone 
increases the time of simulation, the error will also 
increase (Figure 3). 
     The cause of divergence is in the equation’s 
nature, specifically on the stability property of the 
linear part in Equations 9 and 19. The L(y) in 
Equation 9 is stable, whereas in (19) is unstable. 
     An unstable linear part (it means the solutions 
of linear part have finite value in infinite time) e.g. 
L(y), produces a generative function v0, which in 
return produces generative and unstable vi function 
secularly. To achieve the convergence of the 
resultant equation with unstable linear part, a 
higher order v may cope with the error. This in 
turn, needs much work to extract the higher term 
for vi. So it is not investigated but an alternative 
option is suggested. It should be noted that the 
stability criteria for ordinary differential equations 
(i.e. the linear systems) can easily be verified (for 
example by checking the roots of the characteristic 
polynomial). A way of treating the lack of HPM 
will be presented by modification of the linear part 
of the HPM. The method is explained through 
some illustrative examples. 
 
 
 

2. EHPM (ENHANCED HOMOTOPY 
PERTURBATION METHOD) 

 
Using HPM in some equations may lead to a 
different and unexpected answer. This problem 
specifically occurs when a stable nonlinear 
differential equation has an unstable linear part. 
This problem has to be treated to match the actual 
solution. A possible way of treatment will be 
briefly introduced. In this method, the stability of 
the nonlinear differential equation will be 
examined. If it is provided, the stability of the first 
seen linear part (the usual chosen) will be tested. It 
is hoped that the usual HPM leads to a satisfactory 
result (e.g. case 1). If not, there is no guarantee to 
have a well behaved answer (e.g. case 2). 
Hopefully a zero term (an extra term with zero 
effect in global i.e. (x)Ω(x)η ∈ , space of linear 
functions with real coefficients) may cope with the 
problem. At this stage, an extra term will be added 
to the linear part and subtracted from the rest of the 
statement at the same time, such that a linear part 

is stabilized. 
 

0)u(f
)v(Nnew

)x(N(x)η
)v(Lnew

)x(η)x(L =−+−+
44 344 214434421

 (28) 

 
The rest of the statement establishes the nonlinear 
part i.e. N(v). This alteration and using HPM 
reduces the method to so called EHPM. This new 
method stabilizes v0 and as a result, the whole 
solution. In order to interpret the procedure, let us 
again consider the Equation 18 to have further 
description of the proposed method. The usual 
linear and nonlinear part is again written for ease 
of referring. 
 

4yN(y),yyL(y) =−= &  (29) 
 
By adding and subtraction 3y in Equation 17 we 
have: 
 

0.5y(0),0
N(y)

4yy3y

L(y)

3y
dt
dy

==+−−+
4434421

43421
 (30) 

 
The new linear L(y) and N(y) parts are underlined 
respectively, as follows: 
 

4y4yN(y),3yyL(y) +−=+= &  (31) 
 
According to Equation 5 the homotopy function 
can be written as: 
 

]4v4v[p)0y(pL)0y(L3vv)pv,(H −++−+= &  (32) 
 
Assuming y0 = 0 as an initial condition and by 
substituting v as 
 

L+++= 2v2p1v1p0v0pv  in Equation 32, leads us 
to: 
 

0.5)0(v,0)]....2v2p1v1p0v0p(4

4....)2v2p1v1p0v0p([p

....)2v2p1v1p0v0p(3

....)2v2p1v1p0v0p(

==+++

−+++

++++

++++

 (33) 
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Figure 3. HPM and the numerical Solution of the nonlinear 
differential equation, case no. 2 in a longer time. 
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Figure 4. Comparison of EHPM, HPM and the numerical 
solutions. 

The constant term is caused due to the effect of 
y0 = 1. By rearranging the equations in terms of 
ascending powers of p, one obtains: 
 

0.5(0)0v,0303v0v:0p ==−+&  (34) 

 
0(0)1v,0)04v4

0(v313v1v:1p ==−+++&  (35) 
 

0(0)2v,0)14v3
0v1(4v23v2v:2p ==−++&  (36) 

 
With the same situation, again a 3rd order response 
was considered. The solutions of Equations 34 to 
36 are found as: 
 

3t0.5e10v −−=  
 

3t-)e
144
61-9t-e

144
1+6t-e

12
1-3t-e

2
1(1v =  (37) 

 
3t-)e

864
115-9t-e

54
1+6t-e

6
1-3t-e

216
61+12t-e

864
1(-2v =  

 
and finally when p according to Equation 16 
approaches the unity, the complete solution will be 
achieved. The graph of two HPM and EHPM 
based solutions are then plotted in the next figure 
(Figure 3) together with the numerical one. 
     It can be seen in Figure 4 that EHPM based 
response is more satisfactory with respect to HPM, 
assuming the numerical solution as an actual 
response. The convergence of EHPM solution is 
also shown while HPM one is not converging. The 
significance of the method is investigated through 
another example. 
 
2.1. HPM Based Solution   Consider the 
following differential equation as another case to 
interpret both capability of HPM and EHPM: 
 

1y(0),0y2yte
dt
dy

==−+  (38) 

 
The linear and nonlinear parts can be respectively 
chosen as: 
 

2yteN(y),yyL(y) =−= &  (39) 

In order to construct the homotopy statement in 
(5), HPM is applied. This leads us to: 
 

]2vte[p)0y(pL)0y(Lvv)pv,(H ++−−= &  (40) 
 
Considering y0 = 0 as an initial condition together 
with assumption L+++= 2v2p1v1p0v0pv , the 
following set of equations is yielded: 
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Figure 5. Comparison of HPM and the numerical simulation 
of Equation 38. 

1(0)0v,00v0v:0p ==−&  (41) 
 

0(0)1v,0)2
0vt(e1v1v:1p ==+−&  (42) 

 
0(0)2v,01v0vt2e2v2v:2p ==+−&  (43) 

 
The solutions are: 
 

te0v =  
 

)3te-t(e
2
1

1v =  (44) 

 

)te+3t2e-5t(e
4
1

2v =  

 
Therefore a 3rd order answer of Equation 38 by 
using Equation 16 can simply be obtained by 
summation of 32,1,i,iv = . The dynamic behavior 
in two situations; the numerical solution and HPM 
based, are shown in Figure 5. 
     Since the linear part of Equation 38 is unstable, 
graphs in Figure 5 are completely erroneous. Thus 
EHPM as a powerful tool will be used. 
 
2.2. EHPM Based Solution   Since nonlinear 
differential Equation 38 is stable whereas the linear 

term is not, EHPM is used. Adding and subtracting 
η(x) = y in (38), we have: 
 

1y(0),02y2yteyy ==−++&  (45) 
 
Consequently yy +&  is chosen as linear part. Where 
as the rest of Equation 38 is chosen as the 
nonlinear section. As a result of applying HPM, the 
homotopy statement can be established as: 
 

]2v2vte[p)0y(pL)0y(Lvv)pv,(H −++−+= &  (46) 
 
Considering y0 = 0 as an initial condition together 
assumption L+++= 2v2p1v1p0v0pv , yields the 
following set of equations: 
 

1(0)0v,00v0v:0p ==+&  (47) 

0(0)1v,002v2
0vte1v1v:1p ==−++&  (48) 

 
0(0)2v,012v1v0vt2e2v2v:2p ==−++&  (49) 

 
Those equations lead us to: 
 

te0v −=  
 

-tte1v =  (50) 
 

02v =  
 
With the same situation and by choosing a 3rd order 
of approximation as an answer of Equation 38, the 
following results are achieved: 
     It can be seen from Figure 6 that both EHPM 
and the numerical results are quite similar; whereas 
HPM's counterpart completely differs.  
 
2.3. HPM Based Riccati Equation   Riccati 
equation has frequently been used in the 
engineering field e.g. in optimal control [21,22]. 
So many attempts have been made to solve this 
problem [23,24]. Perturbation technique, 
homotopy perturbation method are also efficient 
approach which are used for solving riccati 
equation [23]. It should be noted that improper use 
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Figure 6. Comparison of HPM and the numerical simulation 
of Equation 38. 
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Figure 7. An HPM based solution of Riccati equation with 
respect of the numerical solution. 

of HPM diverges the result. The reader is advised 
to have a tour on MATLAB software to find more 
information about riccati equation. An alternative 
solution is presented here. Consider the following 
riccati equation [23,24]: 
 

0y(0),012y2yy ==−+−&  (51) 
 
The linear and nonlinear parts can be respectively 
chosen as: 
 

12yN(y),2yyL(y) −=−= &  (52) 
 
By using Equation 5 the Homotopy statement can 
be written as: 
 

]12v[p)0y(pL)0y(L2vv)pv,(H −++−−= &  (53) 
 
Initial guess is chosen as y0 = 2.4. By substituting v 
as L+++= 2v2p1v1p0v0pv  in Equation 53 the 
following equation in terms of ascending power of 
p can be written as: 
 

0(0)0v,00v0v:0p ==+&  (54) 
 

0(0)1v,012
0v4.812v1v:1p ==−+−−&  (55) 

0(0)2v,01v02v22v2v:2p ==+−&  (56) 
 
Therefore the solution can be found as: 
 

)2te(1
5

12
0v −=  

 
2t)e

10
29+2te

25
72-t

25
288+2t-e

50
1(-1v =  (57) 

 

2t)e4t72e+2576t+2te

-2t576te-2t-e+(292t
125

6-2te
125
432

2v =
 

 
When the limit in (7) takes place, a 3rd order 
answer will be achieved by the summation of iv , as 
follows: 
 

2v1v0vv ++=  (58) 
 
The resultant is plotted together with the numerical 
solution in Figure 7, in a short time interval. 
     Since the time of representation is short, the 
discrepancy of graphs is not shown very well. 
However one might notice the growth of an error 
between two responses. This notification inspires 
to increase the time of simulation, as it is done in 
Figure 8. 
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Figure 8. An HPM based solution of Riccati equation with 
respect of the numerical solution in a longer time with respect 
to Figure 7. 

The divergence of HPM with respect to the real 
transient behavior even in 0.5 seconds emphasizes 
the use of EHPM. 
 
 
 

3. EHPM (ENHANCED HOMOTOPY 
PERTURBATION METHOD) 

 
Consider again the following riccati equation: 
 

0y(0),012y2yy ==−+−&  (59) 
 
A nonlinear stability test shows that Riccati 
equation in 59 is stable in sense of large. But the 
selected linear part in (52) is unstable. So EHPM is 
applied to find a stable solution for Riccati 
equation. An extra term of η(x) = 2y term is added 
to the linear part and is deduced from the nonlinear 
part of Equation 52. 
 

0y(0),0
N(y)

4y12y
L(y)

2yy ==−−++
43421321

&  (60) 

 
or in a separation format: 
 

14y2yN(y),2yyL(y) −−=+= &  (61) 
 
Consequently the new linear part is stable as well 

as Riccati equation in 59. 
     Equation 5 is applied and a homotopy 
interpretation is built which is as follows: 
 

]14v2v[p)0(ypL)0y(L2vvp)v,(H −−++−+= &  (62) 

 
Again and similar to HPM case, the initial 
condition is selected as  y0 = 2.4. ν is substituted 
by L+++= 2v2p1v1p0v0pv . The rest of algorithm 
is the same as HPM. Therefore the following set of 
differential equation in terms of ascending power 
of p is achieved: 
 

0(0)0v,04.802v0v:0p ==−+&  (63) 
 

0(0)1v,0104v2
0v4.812v1v:1p ==−−+++&  (64) 

 

0(0)2v,012v1v02v22v2v:2p ==−++&  (65) 
 
Those equations conduct us to the following 
answers: 
 

)2te(1
5

12
0v −−=  

 
2t-)e

10
29-2t-e

25
72t

25
48+2t-e

50
1(1v +=  (66) 

 

2t-)e4t-432e+2t-576te+302t

-2t-726e-296t+2te
125

1-2t-e
125
293-2v =

 

 
When Equation 7 with assuming a 3rd order 
approximation, are considered, an EHPM solution 
of Riccati equation is achieved. The result is then 
plotted in Figure 9, to compare the significance of 
EHPM. 
     The efficiency of EHPM is significant, whereas 
HPM based one is not satisfactory.  
 
3.1. The Exact Solution [27]   With an initial 
condition y(0) = 0, the exact solution of Equation 
51 was found [27] as: 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

++= )
12
12ln(

2
1t2tanh21y(t)  (67) 
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Figure 9. Comparison of EHPM, HPM and the numerical solution of 
Riccati equation in a longer duration. 
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Figure 10. Comparison of Riccati exact solution and EHPM based response. 

EHPM solution is again compared with the exact 
solution presented in Figure 10 to show the 
existing error. 
 
 
 

4. CONCLUSION 
 
A well-defined homotopy perturbation method 
was used to solve nonlinear differential equations. 

In some circumstances, especially when the 
chosen linear part is unstable; the results are not 
satisfactory. It was shown that the stability of 
linear part is more important and must be verified. 
Therefore, an alternative enhancement approach 
to improve HPM performance is proposed. A 
method was proposed to stabilize the unstable 
linear part by adding and subtracting an extra 
linear term. Accordingly, the solution of the linear 
part, i.e.v0 is approaching the stable position. This 
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solution establishes a stable basis for the rest of 
the successive vi differential equations. This 
method was successfully applied to Riccati 
differential equation by stabilizing the linear part. 
The simulation result and the exact solution 
confirm the significance of EHPM method. 
Although the results are satisfactory, one may 
investigate the role of the extra term in the 
convergence and the transient behavior by 
choosing other extra terms. 
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