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Abstract   The occurrence of cycle slips is a major limiting factor for achievement of sub-decimeter 
accuracy in positioning with GPS (Global Positioning System). In the past, several authors introduced 
a method based on different combinations of GPS data together with Kalman filter to solve the 
problem of the cycle slips. In this paper the same philosophy is used but with discrete wavelet 
transforms. For experiments we simulated artificial cycle slips in real data. Studies show that the 
selection of a proper wavelet basis functional basis for wavelet is a very important problem in wavelet 
transforms. Wavelet transforms accurately detects the place of cycle slips, especially in low noise test 
quantities. 
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 GPSوقوع لغزش فاز يك عامل محدود كنندة مهم براي انجام تعيين موقعيت با دقت زير دسيمتر با چكيده       

 با GPSدر گذشته، محققين روشي را بر مبناي تركيبات مختلف اطلاعات . است) سيستم تعيين موقعيت جهاني(
 از همان اصول كلي با تبديلات موجك در اين مقاله. اند فيلتر كالمن براي حل مشكل لغزش فاز معرفي كرده

سازي شده در اطلاعات واقعي استفاده   از لغزش فازهاي شبيهاين تحقيق، ياه براي آزمايش. استفاده شده است
. انتخاب تابع پاية موجك مناسب مسئلة مهمي در تبديلات موجك استكه دهند  مطالعات نشان مي. شده است

تست با نويز كم آشكارسازي محل لغزش فاز را خيلي دقيق انجام هاي  تبديلات موجك بويژه در كميت
 .دهند مي

 
 

1. INTRODUCTION 
 
GPS receivers continuously monitor the carrier 
beat phase. When they lose their lock on a satellite, 
an unknown integer number of cycles are also lost. 
This event is called a 'cycle slip' (see Figure 1). 
These cycle slips have to be recovered in order to 
compute accurate positions. 
     The first step in the cycle slip correction 
consists of setting up a test quantity. Using test 
quantity is for eliminating the trend (geometrical 
distance between receiver and satellite) and time 
varying errors from observations, which prevents 
cycle slip detection. This combination has to be a 
slow time varying function so that a jump in this 
function will indicate the occurrence of a cycle 
slip. Formulating test quantities in the basic phase 

and code measurements is needed. Selection of a 
special test quantity depends on the type of 
observations and work. 
     GPS observation equations are as follows [9]: 
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Figure 1. Cycle slip occurrence. 

In which sub-indices 1 and 2 refers to first and 
second carriers and sub-indices k refers to receiver 
and super-indices i refer to satellite. 
     In general in all equations in Section 1 sub-
indices k and l refer to receivers and super-indices 
i and j refer to satellites and each quantity that has 
these indices it is between one or two receivers and 
one or two satellites. 
     In this paper we select the following test 
quantities: 
 
• Phase-code (P. C.) combination (Range 
Residual) [4]: 
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• Phase-phase combination (P. P.) (Ionosphere 
Residual) [4]: 
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In phase-code and phase-phase combinations 
some time varying errors such as satellite clock 
error, receiver clock error, troposphere effect 
and also geometric distance are eliminated. This 
combinations show the gradual changes of 
ionosphere effect from first observation epoch. 
Noise level of phase-code combination is high due 
the use of code observation. Noise level of phase-

phase combination is low. 
 
• Melbourne-Wubbena (M. W.) linear 
combination [9]: 
 

⎟
⎠
⎞⎜

⎝
⎛ −

−
=⎟

⎠
⎞⎜

⎝
⎛ +

+
−⎟

⎠
⎞⎜

⎝
⎛ −

−
=

i
k2Ni

k1N
2f1f

ci
k2P2fi

k1P1f

2f1f
1i

k2L2fi
k1L1f

2f1f
1i

k6L

 

 
In this combination satellite clock error, receiver 
clock error, troposphere effect, ionospheric effect 
and also geometric distance are eliminated. Noise 
level of this combination is not very high due to 
use of plus operation between two code 
observations that behaves as a low pass filter of 
code measurements. For this reason, one cycle slip 
is seen in this combination. If number of cycle 
slips in L1 and L2 are equal, are mathematically 
eliminated in test quantity. If the ionospheric 
effect is intensive, using of Melborne-Wubbena 
combination is proposed. 
 
• Double difference (D. D.) observation 
equations [9]: 
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In this test quantity, satellite clock error and 
receiver clock error has been eliminated. 
     We can use phase-code, phase-phase and 
Melbourne-Wubbena combinations in single site 
sessions and double difference combination in two 
site sessions. 
 
 
 

2. WAVELET TRANSFORMS 
 
It is well known from Fourier theory that a signal 
can be expressed as the sum of a, possibly infinite, 
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Figure 2. Heisenberg's uncertainty principle. 

series of sines and cosines. This sum is also 
referred to as a Fourier expansion. The big 
disadvantage of a Fourier expansion, however is 
that it has only frequency resolution and no time 
resolution. This means that, although we might be 
able to determine all the frequencies present in a 
signal, we do not know when they are present. To 
overcome this problem in the past decades several 
solutions have been developed which are more or 
less able to represent a signal in the time and 
frequency domain at the same time. 
     The idea behind these time-frequency joint 
representations is to cut the signal of interest into 
several parts and then analyze the parts separately. 
It is clear that analyzing a signal this way will give 
more information about the time and place of 
different frequency components, but it leads to a 
fundamental problem as well: how to cut the 
signal? Suppose that we want to know exactly all 
the frequency components present at a certain 
moment in time. We cut out only this very short 
time window using a Dirac pulse; transform it to 
the frequency domain and so on. 
     The problem here is that cutting the signal 
corresponds to a convolution between the signal 
and the cutting window. Since convolution in the 
time domain is identical to multiplication in the 
frequency domain and since the Fourier transform 
of a Dirac pulse contains all possible frequencies, 
the frequency components of the signal will be 
smeared out all over the frequency axis. In fact this 
situation is the opposite of the standard Fourier 
transform since we now have time resolution but 
no frequency resolution whatsoever. 
     The underlying principle of the phenomena just 
described is due to Heisenberg's uncertainty 
principle, which, in signal processing terms, states 
that it is impossible to know the exact frequency 
and time of occurrence of a frequency in a signal 
(see Figure 2). In other words, a signal can simply 
not be represented as a point in the time-frequency 
space. The uncertainty principle shows that it is 
very important how one cuts the signal. 
     The wavelet transform or wavelet analysis is 
probably the most recent solution to overcome the 
shortcomings of the Fourier transform. In wavelet 
analysis the use of a fully scalable modulated 
window solves the signal-cutting problem. The 
window is shifted along the signal and for every 
position the spectrum is calculated. Then this 

process is repeated many times with a slightly 
shorter (or longer) window for every new cycle. At 
the end, the result will be a collection of time-
frequency representations of the signal, all with 
different resolutions. Because of this collection of 
representations we can speak of a multi-resolution 
analysis. In the case of wavelets we normally do 
not speak about time-frequency representations but 
about time-scale representations, scale being in a 
way the opposite of frequency, because the term 
frequency is reserved for the Fourier transform. 
 
2.1. Continuous Wavelet Transform   The 
wavelet analysis described in the introduction is 
known as the continuous wavelet transform or 
CWT. More formally it is written as: 
 

( ) ( ) ( )dtt*
,stf,s ∫ ∞+

∞− τψ=τγ  (1) 
 
Where * denotes complex conjugation. This 
equation shows how a function f(t) is decomposed 
into a set of basic functions Ψs,τ(t), called the 
wavelets. The variables s and τ, scale and 
translation, are the new dimensions after the 
wavelet transform. 
     The wavelets are generated from a single basic 
wavelet ψ(t), the so-called mother wavelet, by 
translation and scaling: 
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In (2) s is the scale factor, τ is the translation factor 
and the factor s-1/2 is for energy normalization 
across the different scales. 
     It is important to note that in (1) and (2) the 
wavelet basic functions are not specified. This is a 
difference between the wavelet transform and the 
Fourier transform, or other transforms. The theory 
of wavelet transforms deals with the general 
properties of the wavelets and wavelet transforms 
only. It defines a framework within; one can 
design wavelets to own taste and wishes. 
 
2.2. Wavelet Properties   The most important 
properties of wavelets are the admissibility and the 
regularity conditions and these are the properties 
which gave wavelets their name. It can be shown 
that square integrable functions ( )tψ  satisfying the 
admissibility condition,  
 

( )
∞+<ω∫ ∞+

∞− ω
ωΨ

d
2

 (3) 

 
Can be used to first analyze and then reconstruct a 
signal without loss of information. In (3) Ψ(ω) 
stands for the Fourier transform of Ψ(t). The 
admissibility condition implies that the Fourier 
transform of Ψ(t) vanishes at the zero frequency, i.e. 
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=ω

ωΨ  (4) 

 
This means that wavelets must have a band-pass 
like spectrum. This is a very important 
observation, which we will use later on, to build an 
efficient wavelet transform. 
     A zero at the zero frequency also means that the 
average value of the wavelet in the time domain 
must be zero, 
 

( ) 0dtt =∫ ∞+
∞− ψ  (5) 

 
and therefore it must be oscillatory. In other words, 
Ψ(t) must be a wave. 
     It can be seen from (1) the wavelet transforms 
from a one-dimensional function to two-
dimensional; the wavelet transform of a two-
dimensional function is four-dimensional. The 
time-bandwidth product of the wavelet transform is 

the square of the input signal and for most practical 
applications this is not a desirable property. 
Therefore one imposes some additional conditions 
on the wavelet functions in order to make the 
wavelet transform decrease quickly with 
decreasing scale s. These are the regularity 
conditions and they state that the wavelet function 
should have some smoothness and concentration in 
both time and frequency domains. Regularity is 
quite a complex concept and we will try to explain 
it a little, using the concept of vanishing moments. 
     If we expand the wavelet transform (1) into the 
Taylor series at t = 0 until order n (let τ = 0 for 
simplicity) we get: 
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Here f(p) stands for the Pn derivative of f and 
O(n+1) means the rest of the expansion and it is in 
the order of tn+1 when t approaches zero. Now, if 
we define the moments of the wavelet about t = 0 
by Mp, 
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Then we can rewrite (6) into the finite development 
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 (8) 
 
From the admissibility condition, we already have 
the 0th moment M0 = 0 so that the first term in the 
right-hand side of (8) is zero. If we now manage to 
make the other moments up to Mn be zero as well, 
then the wavelet transform coefficients γ(s,τ) will 
decay as fast as sn+2 for a smooth signal f(t). This is 
known as the vanishing moments or approximation 
order. If a wavelet has N vanishing moments, then 
the approximation order of the wavelet transform 
is also N. The moments do not have to be exactly 
zero. In fact, experimental research suggests that 
the number of vanishing moments required 
depends heavily on the application. 
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Summarizing, the admissibility condition gave us 
the “wave”, regularity and vanishing moments 
gave us the fast decay or the “let”, and put together 
they give us the “wavelet”. 
 
2.3. Discrete Wavelets   Now that we know 
what the wavelet transform is, we would like to 
make it practical. However, the wavelet transform 
as described so far still has three properties that 
make it difficult to use directly in the form of (1). 
The first is the redundancy of the CWT. In (1) the 
wavelet transform is calculated by continuously 
shifting a continuously scalable function over a 
signal and calculating the correlation between the 
two. It will be clear that these scaled functions will 
be nowhere near an orthogonal basis and the 
obtained wavelet coefficients will therefore be 
highly redundant. For most practical applications 
we would like to remove this redundancy. 
     Even without the redundancy of the CWT we 
still have an infinite number of wavelets in the 
wavelet transform and we would like to see this 
number reduced to a more manageable count. This 
is the second problem we have. 
     The third problem is that for most functions the 
wavelet transforms have no analytical solutions 
and they can be calculated only numerically or by 
an optical analog computer. Fast algorithms are 
needed to be able to exploit the power of the 
wavelet transform and it is in fact the existence of 
these fast algorithms that have put wavelet 
transforms where they are today. Let us start with 
the removal of redundancy. 
     As mentioned before the CWT maps a one-
dimensional signal to a two-dimensional time-scale 
joint representation that is highly redundant. The 
time-bandwidth product of the CWT is the square 
of the signal and for most applications, which seek 
a signal description with as few components as 
possible, this is not efficient. To overcome this 
problem discrete wavelets have been introduced. 
Discrete wavelets are not continuously scalable 
and translatable but can only be scaled and 
translated in discrete steps. This is achieved by 
modifying the wavelet representation (2) to create 
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Although it is called a discrete wavelet, it normally 
is a (piecewise) continuous function. In (9) j and k 
are integers and s0 > 1 is a fixed dilation step. The 
translation factor τ0 depends on the dilation step. 
The effect of discretizing the wavelet is that the 
time-scale space is now sampled at discrete 
intervals. We usually choose s0 = 2 so that the 
sampling of the frequency axis corresponds to 
dyadic sampling. This is a very natural choice for 
computers, the human ear and music for instance. 
For the translation factor we usually choose τ0 = 1 
so that we also have dyadic sampling of the time 
axis (see Figure 3). 
     When discrete wavelets are used to transform a 
continuous signal the result will be a series of 
wavelet coefficients, and it is referred to as the 
wavelet series decomposition. An important issue 
in such a decomposition scheme is of course the 
question of reconstruction. It is all very well to 
sample the time-scale joint representation on a 
dyadic grid, but if it will not be possible to 
reconstruct the signal it will not be of great use. As 
it turns out, it is indeed possible to reconstruct a 
signal from its wavelet series decomposition. It is 
proven that the necessary and sufficient condition 
for stable reconstruction is that the energy of the 
wavelet coefficients must lie between two positive 
bounds, i.e. 
 

2fB
Zk,j

2
k,j,f2fA ∑

∈
≤ψ≤  (10) 

 
Where 2f  is the energy of f(t), 0 < A < B, B < ∞ 
and A, B are independent of f(t). When (10) is 
satisfied, the family of basis functions ( )tk,jψ  with 

Zk,j ∈  is referred to as a frame with frame bounds A 
and B. When A = B the frame is tight. When A ≠ B 
exact reconstruction is still possible at the expense 
of a dual frame. In a dual frame discrete wavelet 
transform the decomposition wavelet is different 
from the reconstruction wavelet. 
     We continue with the removal of all redundancy 
from the wavelet transform. The last step we have to 
take is making the discrete wavelets to be 
orthonormal. This can be done only with discrete 
wavelets. The discrete wavelets can be made 
orthogonal to their own dilations and translations by 
special choices of the mother wavelet, which means: 
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Figure 3. Localization of the discrete wavelets in the time-
scale space on a dyadic grid. 
 
 
 

 
Figure 4. Touching wavelet spectra resulting from scaling of 
the mother wavelet in the time domain. 
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An arbitrary signal can be reconstructed by 
summing the orthogonal wavelet basis functions, 
weighted by the wavelet transform coefficients: 
 
( ) ( ) ( )∑

∈
∑
∈

ψγ=
Zj Zk

tk,jk,jtf  (12) 

 
Equation 12 shows the inverse wavelet transform 
for discrete wavelets. 
     Orthogonality is not essential in the 
representation of signals. The wavelets need not be 
orthogonal and in some applications the 
redundancy can help reducing the sensitivity to 
noise or improve the shift invariance of the 
transform. This is a disadvantage of discrete 
wavelets: the resulting wavelet transform is no 
longer shift invariant, which means that the 
wavelet transforms of a signal and of a time-shifted 
version of the same signal are not simply shifted 
versions of each other. 
 
2.4. Band-Pass Filter   With the redundancy 
removed, we still have two hurdles to pass before 
we have the wavelet transform in a practical form. 
We continue by trying to reduce the number of 
wavelets needed in the wavelet transform and save 
the problem of the difficult analytical solutions for 
the end. 
     Even with discrete wavelets we still need an 
infinite number of scaling and translations to 
calculate the wavelet transform. The easiest way to 
tackle this problem is simply not to use an infinite 
number of discrete wavelets. Of course this poses 
the question of the quality of transform. Is it 
possible to reduce the number of wavelets to 
analyze a signal and still have a useful result? 
     The translations of the wavelets are of course 
limited by the duration of the signal under 
investigation so that we have an upper boundary 
for the wavelets. This leaves us with the question 
of dilation: how many scales do we need to 
analyze our signal? How do we get a lower bound? 
It turns out that we can answer this question by 
looking at the wavelet transform in a different way. 
     If we look at (4) we see that the wavelet has a 
band-pass like spectrum. From Fourier theory we 
know that compression in time is equivalent to 

stretching the spectrum and shifting it upwards: 
 

( ){ } ⎟
⎠
⎞

⎜
⎝
⎛ ω=

a
F

a
1atfF  (13) 

 
This means that a time compression of the wavelet 
by a factor of 2 will stretch the frequency spectrum 
of the wavelet by a factor of 2 and also shift all 
frequency components up by a factor of 2. Using 
this insight we can cover the finite spectrum of our 
signal with the spectra of dilated wavelets in the 
same way as that we covered our signal in the time 
domain with translated wavelets. To get a good 
coverage of the signal spectrum the stretched 
wavelet spectra should touch each other; as if they 
were standing successively (see Figure 4). This can 
be arranged by correctly designing the wavelets. 
     In summary, if one wavelet can be seen as a 
band-pass filter, then a series of dilated wavelets 
can be seen as a band-pass filter bank. If we look at 
the ratio between the center frequency of a wavelet 
spectrum and the width of this spectrum we will 
see that it is the same for all wavelets. This ratio is 
normally referred to as the fidelity factor Q of a 
filter and in the case of wavelets one speaks 
therefore of a constant-Q filter bank. 
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Figure 5. How an infinite set of wavelets is replaced by one 
scaling function. 

2.5. The Scaling Function   How to cover the 
spectrum all the way down to zero? Because every 
time you stretch the wavelet in the time domain 
with a factor of 2, its bandwidth is halved. In other 
words, with every wavelet stretch you cover only 
half of the remaining spectrum, which means that 
you will need an infinite number of wavelets to get 
the job done. 
     The solution to this problem is simply not to try 
to cover the spectrum all the way down to zero 
with wavelet spectra, but to use a cork to plug the 
hole when it is small enough. This cork then is a 
low-pass spectrum and it belongs to the so-called 
scaling function. The scaling function was 
introduced by Mallat. Because of the low-pass 
nature of the scaling function spectrum it is 
sometimes referred to as the averaging filter. If we 
look at the scaling function as being just a signal 
with a low-pass spectrum, then we can decompose 
it in wavelet components and express it like: 
 
( ) ( ) ( )∑

∈
∑
∈

ψγ=ϕ
Zj Zk

tk,jk,jt  (14) 

 
Since we selected the scaling function ( )tϕ  in such 
a way that its spectrum neatly fitted in the space 
left open by the wavelets, the expression (14) uses 
an infinite number of wavelets up to a certain scale 
j (see Figure 5). This means that if we analyze a 
signal using the combination of scaling function 
and wavelets, the scaling function by itself takes 
care of the spectrum otherwise covered by all the 
wavelets up to scale j, while the rest is done by the 
wavelets. In this way we have limited the number 
of wavelets from an infinite number to a finite 
number. 
     By introducing the scaling function we have 
circumvented the problem of the infinite number of 
wavelets and set a lower bound for the wavelets. 

Of course, when we use a scaling function instead 
of wavelets we lose information. That is to say, 
from a signal representation point of view we do 
not lose any information, since it will still be 
possible to reconstruct the original signal, but from 
a wavelet-analysis point of view we discard 
possible valuable scale information. The width of 
the scaling function spectrum is therefore an 
important parameter in the wavelet transform 
design. The shorter its spectrum the more wavelet 
coefficients you will have and the more scale 
information. But, as always, there will be practical 
limitations on the number of wavelet coefficients 
you can handle. As we will see later on, in the 
discrete wavelet transform this problem is more or 
less automatically solved. 
     The low-pass spectrum of the scaling function 
allows us to state some sort of admissibility 
condition similar to (5) 
 

( ) 1dtt =∫ ∞+
∞− ϕ  (15) 

 
Which shows that the 0th moment of the scaling 
function can not vanish. 
     Summarizing once more, if one wavelet can be 
seen as a band-pass filter and a scaling function as 
a low-pass filter, then a series of dilated wavelets 
together with a scaling function can be seen as a 
filter bank. 
 
2.6. Sub-Band Coding   Two of the three 
problems mentioned in Section 2.3 have now been 
resolved, but we still do not know how to calculate 
the wavelet transform. Therefore we will continue 
our discussion through multi-resolution land. If we 
regard the wavelet transform as a filter bank and 
then we can consider wavelet transforming a signal 
as passing the signal through this filter bank. The 
outputs of the different filter stages are the 
wavelet-and scaling function transform 
coefficients. Analyzing a signal by passing it 
through a filter bank is not a new idea and has been 
around for many years under the name sub-band 
coding. It is used for instance in computer vision 
applications. 
     The filter bank needed in sub-band coding can 
be built in several ways. One way is to build many 
band-pass filters to split the spectrum into 
frequency bands. The advantage is that the width 
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Figure 6. Splitting the signal spectrum with an iterated filter 
bank. 

of every band can be chosen freely, in such a way 
that the spectrum of the signal to analyze is 
covered in the places where it might be interesting. 
The disadvantage is that we will have to design 
every filter separately and this can be a time 
consuming process. Another way is to split the 
signal spectrum in two (equal) parts, a low-pass 
and a high-pass part. The high-pass part contains 
the smallest details we are interested in and we 
could stop here. We now have two bands. 
However, the low-pass part still contains some 
details and therefore we can split it again. And 
again, until we are satisfied with the number of 
bands we have created. In this way, we have 
created an iterated filter bank. Usually the number 
of bands is limited by, for instance, the amount of 
data or computation power available. The process 
of splitting the spectrum is graphically displayed in 
Figure 6. The advantage of this scheme is that we 
have to design only two filters; the disadvantage is 
that the signal spectrum coverage is fixed. 
     Looking at Figure 6 we see that what we are left 
with after the repeated spectrum splitting is a series 
of band-pass bands with doubling bandwidth and 
one low-pass band. (Although in theory the first 
split gave us a high-pass band and a low-pass band, 
in reality the high-pass band is a band-pass band 
due to the limited bandwidth of the signal.) In 
other words, we can perform the same sub-band 
analysis by feeding the signal into a bank of band-
pass filters of which each filter has a bandwidth 
twice as wide as his left neighbor (the frequency 
axis runs to the right here) and a low-pass filter. At 
the beginning of this section we stated that this is 
the same as applying a wavelet transform to the 
signal. The wavelets give us the band-pass bands 

with doubling bandwidth and the scaling function 
provides us with the low-pass band. From this we 
can conclude that a wavelet transforms is the same 
thing as a sub-band coding scheme using a 
constant-Q filter bank. In general we will refer to 
this kind of analysis as a multi-resolution analysis. 
     Summarizing, if we implement the wavelet 
transform as an iterated filter bank, we do not have 
to specify the wavelets explicitly! This sure is a 
remarkable result. 
 
2.7 Discrete Wavelet Transform   In many 
practical applications the signal of interest is 
sampled. In order to use the results we have 
achieved so far with a discrete signal and we have 
to make our wavelet transform discrete, too. We 
remember that our discrete wavelets are not time-
discrete, only the translation-and the scale step are 
discrete. Simply implementing the wavelet filter 
bank as a digital filter bank intuitively seems to do 
the job. 
     In (14), we stated that the scaling function could 
be expressed in wavelets from minus infinity up to 
a certain scale j. If we add a wavelet spectrum to 
the scaling function spectrum we will get a new 
scaling function, with a spectrum twice as wide as 
the first. The effect of this addition is that we can 
express the first scaling function in terms of the 
second, because all the information we need to do 
this is contained in the second scaling function. We 
can express this formally in the so-called multi-
resolution formulation or two-scale relation: 
 

( )∑
∈

⎟
⎠
⎞⎜

⎝
⎛ −+ϕ+=⎟

⎠
⎞⎜

⎝
⎛ϕ

Zk
kt1j2k1jhtj2  (16) 

 
The two-scale relation states that the scaling 
function at a certain scale can be expressed in 
terms of translated scaling functions at the next 
smaller scale. Smaller scale means more detail. 
     The first scaling function replaced a set of 
wavelets and therefore we can also express the 
wavelets in this set in terms of translated scaling 
functions at the next scale. More specifically we 
can write for the wavelet at level j: 
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Which is the two-scale relation between the scaling 
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function and the wavelet. 
     Since our signal f(t) could be expressed in terms 
of dilated and translated wavelets up to a scale j-1, 
this leads to the result that f(t) can also be 
expressed in terms of dilated and translated scaling 
functions at a scale j: 
 

( ) ( )∑
∈

⎟
⎠
⎞⎜

⎝
⎛ −ϕλ=

Zk
ktj2kjtf  (18) 

 
To be consistent in our notation we should in this 
case speak of discrete scaling functions since only 
discrete dilations and translations are allowed. 
     If in this equation we step up a scale to j-1, we 
have to add wavelets in order to keep the same level 
of detail. We can then express the signal f(t) as 
 

( ) ( )
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 (19) 

 
If the scaling function ( )tk,jϕ  and the wavelets 

( )tk,jψ  are orthonormal or a tight frame, then the 

coefficients ( )k1j−λ  and ( )k1j−γ  are found by 

taking the inner products 
 

( ) ( ) ( )

( ) ( ) ( )tk,j,tfk1j

tk,j,tfk1j

ψ=−γ

ϕ=−λ
 (20) 

 
If we now replace ( )tk,jϕ  and ( )tk,jψ  in the inner 

products by suitably scaled and translated versions 
of (16) and (17) and manipulate a bit, keeping in 
mind that the inner product can also be written as 
an integration, we arrive at the important result: 
 

( ) ( ) ( )∑
∈

λ−=−λ
Zm

mjk2mhk1j  (21) 

 
( ) ( ) ( )∑

∈
γ−=−γ

Zm
mjk2mgk1j  (22) 

 
These two equations state that the wavelet- and 
scaling function coefficients on a certain scale can 
be found by calculating a weighted sum of the 

scaling function coefficients from the previous 
scale (see Figure 7). Now recall from the section 
on the scaling function that the scaling function 
coefficients came from a low-pass filter and recall 
from the section on sub-band coding how we 
iterated a filter bank by repeatedly splitting the 
low-pass spectrum into a low-pass and a high-pass 
part. The filter bank iteration started with the 
signal spectrum, so if we imagine that the signal 
spectrum is the output of a low-pass filter at the 
previous (imaginary) scale, then we can regard our 
sampled signal as the scaling function coefficients 
from the previous (imaginary) scale. In other 
words, our sampled signal f(k) is simply equal to 
λ(k) at the largest scale! 
     But there is more. As we know from signal 
processing theory a discrete weighted sum like the 
ones in (21) and (22) is the same as a digital filter 
and since we know that the coefficients λj(k) come 
from the low-pass part of the splitted signal 
spectrum, the weighting factors h(k) in (21) must 
form a low-pass filter. And since we know that the 
coefficients γj(t) come from the high-pass part of 
the splitted signal spectrum, the weighting factors 
g(k) in (22) must form a high-pass filter. This 
means that (21) and (22) together form one stage 
of an iterated digital filter bank and from now on 
we will refer to the coefficients h(k) as the scaling 
filter and the coefficients g(k) as the wavelet filter. 
     By now we have made certain that 
implementing the wavelet transform as an iterated 
digital filter bank is possible and from now on we 
can speak of the discrete wavelet transform or 
DWT. Our intuition turned out to be correct. 
Because of this we are rewarded with a useful 
bonus property of (21) and (22), the sub-sampling 
property. If we take one last look at these two 
equations we see that the scaling and wavelet 
filters have a step-size of 2 in the variable k. The 
effect of this is that only every other λj(k) is used 
in the convolution, with the result that the output 
data rate is equal to the input data rate. Although 
this is not a new idea, it has always been exploited 
in sub-band coding schemes, it is kind of nice to 
see it pop up here as part of the deal. 
     The sub-sampling property also solves our 
problem, which had come up at the end of the 
section on the scaling function, of how to choose 
the width of the scaling function spectrum. 
Because, every time we iterate the filter bank the 
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Figure 7. Implementation of (21) and (22) as one stage of an 
iterated filter bank. 
 
 
 

 
 
Figure 8. Db1 wavelet (Haar's wavelet). 

number of samples for the next stage is halved so 
that in the end we are left with just one sample (in 
the extreme case). It will be clear that this is where 
the iteration definitely has to stop and this 
determines the width of the spectrum of the scaling 
function. Normally the iteration will stop at the 
point where the number of samples has become 
smaller than the length of the scaling filter or the 
wavelet filter, whichever is the longest, so the 
length of the longest filter determines the width of 
the spectrum of the scaling function. 
     So we have managed to reduce the highly 
redundant continuous wavelet transform as 
formulated in (1) with its infinite number of 
unspecified wavelets to a finite stage iterated 
digital filter bank which can be directly 
implemented on a digital computer. The 
redundancy has been removed by using discrete 
wavelets and a scaling function solved the problem 
of the infinite number of wavelets needed in the 
wavelet transform. The filter bank has solved the 
problem of the non-existence of analytical 
solutions as mentioned in the section on discrete 
wavelets. Finally, we have built a digitally 
implementable version of (1) without specifying 
any wavelet, just as in (1). The wavelet transform 
has become very practical indeed.  
 
 
 

3. CYCLE SLIP DETECTION USING 
WAVELET TRANSFORMS 

 
Wavelet transform could be done in two forms: 
Continuous wavelet transform and discrete wavelet 
transform. Detection of cycle slip using wavelet 
transform could be explained as follows: 
     Indeed the continuous wavelet transform is the 
inner product of the time series of test quantity and 
the scaled, shifted versions of wavelet function, so 
the resulting coefficients from continuous wavelet 
transform show the similarity between time series 
of test quantity and the wavelet. It should be noted 
that for calculation of continuous wavelet 
transform coefficients we have to use the small 
values for scale because cycle slip is a high 
frequency phenomena. 
     In order to detect the cycle slip using discrete 
wavelet transform, we apply two high pass filter 
and low pass filter on time series of test quantity. 

Resulting coefficients from low pass filter show 
the general figure (approximation) of the signal 
and resulting coefficients from high pass filter 
show the details or high frequencies of the signal, 
so existence of jump in the output of high pass 
filter shows the place of cycle slip occurrence in 
GPS observables. 
 
3.1. Selection of a Appropriate Wavelet   The 
characteristic of cycle slip is a discontinuity in the 
epoch of cycle slip and the amplitude of slip give 
us information about the value of cycle slip. 
     Owing to the fact that the wavelet transform 
detects only parts of the signal similar to itself, a 
wavelet looks like the discontinuities encountered 
in the GPS observations should be selected. 
     For this purpose the low order Daubechies's 
wavelets (db1 and db2 wavelets) were used. 
Selection of these wavelets is due to their shape 
and compact support. 
     Haar's wavelet is discontinuous, and resembles 
a step function (see Figure 8). It represents the 
same wavelet as Daubechies db1. 
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The GPS carrier beat phase has a parabolic 
behavior due to the Doppler Effect. In order to 
eliminate the parabolic behavior introduced in the 
wavelet transform the Haar wavelet is not proper. 
This wavelet was built to detect jumps versus a 
horizontal right line. The parabolic behavior of the 
signal is seen by this wavelet as a succession of 
jumps (see Figures 20a and 20b). The wavelet to 
be used will detect jumps versus a parabola. So we 
should use a wavelet that removes the parabolic 
behavior of the GPS signal. For this purpose, 
according to the following theorem, we used from 
db2 wavelet that was built by Ingrid Daubechies. 
 
3.1.1. Theorem   “Every dbN wavelet has N 
vanishing moment” [8]. 
     So db2 wavelet detects cycle slips in the first 
derivative of the signal and the parabolic behavior 
is removed from the wavelet transform of the 
signal (see Figure 9). 
     After cycle slip detection we try to determine 
the value of cycle slip using wavelet transforms. 
For this purpose we apply discrete wavelet 
transform on phase-code combination, then fitting 
a low order polynomial on the output of low pass 
filter. The resulting values for cycle slip could be 
precized using phase-phase combination. 
 
3.2. Wavelet Transform of a Signal with a 
Discontinuity   One of the major applications of 
wavelet transforms is detection of discontinuity 
place in the signal because these transforms 
provide the joint time-frequency representation of 
signal. 
     According to the Heisenberg's uncertainty 
principle (see Figure 2), using the wavelet 
transform in high frequencies has good time 
resolution, contrary to low frequencies. Because 
cycle slip is a high frequency phenomenon in the 
time series of observations or test quantities, 
wavelet transforms can precisely detect the place 
of cycle slip in the signal. 
     Here we are faced with the simplest example of 

a rupture (i.e., a step, see Figure 10). We did a 
discrete wavelet transform with db2 wavelet using 
5 decomposition levels. The time instant when the 
jump occurs is equal to 500. The break is detected 
at all levels, but it is obviously detected with 
greater precision in the higher resolutions (levels 1 
and 2) than in the lower ones (levels 4 and 5). It is 
very precisely localized at level 1, where only a 
very small zone around the jump time can be seen. 
     It should be noted that the reconstructed details 
are primarily composed of the basic wavelet 
represented in the initial time. Furthermore, the 
rupture is more precisely localized when the 
wavelet corresponds to a short filter [7]. 
     In the above figure discontinuity not only is 
seen in the high pass filter output but also in the 
low pass filter output and in the successive 
decomposition levels this is true. The reason is that 
the cycle slip causes a discontinuity in the test 
quantity that is seen as a step. A look at the 
spectrum of the step function in frequency domain 
shows that it contains all possible frequencies, so it 
is seen in the output of both filters. 
 
3.3. Wavelet Transform of a Signal with a 
Polynomial and White Noise   In this case 
(see Figure 11) we used db2 and db3 wavelets with 
4 decomposition levels. The purpose of this 
analysis is to illustrate the property that causes the 
decomposition by dbN of a p-degree polynomial to 
produce null details as long as N > p. In this case, 
p = 2 and we examine the first four levels of details 
for two values of N: one is too small, N = 2 on the 
left, and the other is sufficient, N = 3 on the right. 
The approximations are left out since they differ 
very little from the signal itself. For db2 (on the 
left), we obtain the decomposition of t2 + b1(t), 
since the –t + 1 part of the signal is suppressed by 
the wavelet. In fact, with the exception of level 1, 
where noise-generated irregularities can be seen, 
the details for levels 2 to 4 show a periodic form 
that is very regular, and which increases with the 
level. This is because the detail for level j takes 
into account that the fluctuations of the function 
around its mean value on dyadic intervals are long. 
The fluctuations are periodic and very large in 
relation to the details of the noise decomposition. 
     On the other hand, for db3 (on the right) we 
again find the presence of white noise, thus 
indicating that the polynomial does not come into  
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Figure 9. Db2 wavelet. 
 
 
 

 
Figure 10. Wavelet transform of a signal with a discontinuity
at t = 500, analyzing wavelet: db2, decomposition levels: 5. 
 
 
 

 
Figure 11. Discrete wavelet transform of a signal with a 
polynomial and white noise, analyzing wavelets: db2 and db3, 
decomposition levels: 4. 

 
 
 

 
Figure 12. Selection of applied data. 

 

play in any of the details. The wavelet suppresses 
the polynomial part and analyzes the noise [7]. 
 
 
 

4. EXPERIMENT RESULTS 
 
4.1. Isun1 Package   This package is prepared in 
Tabriz University for special studies in GPS. 
 
4.2. Applied Data   Shown in Figure 12 is the 
test data that used here. N. C. C. GPS group has 
collected data at 18 March 2001 for 2 hours with 
LEICA SR299 receivers. The observations 
recording are made every 3 seconds. 
     Processing results using Geogenius software 
showed that CNCO and DNCO stations 
observations to satellites no 2 and 7 is free from 
cycle slips. In single site experiment we simulated 
artificial cycle slips in the observations from 
CNCO station to satellite no 2 (see Table 1). In 
two site experiment we simulated artificial cycle 
slips in the observations from CNCO and DNCO 
stations to satellites no 2 and 7 (see Tables 2 to 5). 
 
4.3. Results of Program in Test Data   We 
made different test quantities from observations 
and applied discrete wavelet transforms on them. 
     Figure 13a shows P. C. 1 combination without 
cycle slip. Figure 13b shows this combination with 
simulated cycle slips. 
     Comparison of Figures 13a and 13b shows that 
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TABLE 1. Simulated Cycle Slips in phase Observations 
from CNCO Station to PRN No. 2 in Single Site 
Experiment. 
 

 
 
 
TABLE 2. Simulated Cycle Slips in Phase Observations 
from CNCO Station to PRN No. 2. 
 

 
 
 
TABLE 3. Simulated Cycle Slips in Phase Observations 
from CNCO Station to PRN No. 7. 
 

 
 
 
TABLE 4. Simulated Cycle Slips in Phase Observations 
from DNCO Sation to PRN No. 2. 
 

 
 
 
TABLE 5. Simulated Cycle Slips in Phase Observations 
from DNCO Station to PRN No. 7. 
 

 

(a) 
 

 

(b) 
 
Figure 13. (a) P. C. 1 combination without cycle slip, (b) P. C.
1 combination with cycle slip. 

simulated cycle slips are not identifiable. Figures 
14a and 14b show the high pass filter output of 
discrete wavelet transform of phase-code 
combination using db1 wavelet. Comparison of 
theses figures show that the noise level of this 
combination is of the order of one Li cycle so cycle 
slips in 500 and 1500 epochs are not detected, but 

cycle slips in 1000, 2000 and 2500 epochs are 
detected. Larger values (5 to 10 cycles) are 
observed in the case of multipath, and for low 
elevations. As a consequence, this method only 
gives a first approximation of the jumps. 
     Figure 15a shows P. P. combination without 
cycle slip. Figure 15b shows this combination with 
simulated cycle slips. Comparison of Figures 15a 
and 15b shows that the noise level of this 
combination is of the order of a few millimeters. 
This means that the resolution of this method is 
much better than the phase-code combination. 

Archive of SID

www.SID.ir

www.SID.ir


22 - Vol. 21, No. 1, April 2008 IJE Transactions B: Applications 

 
(a) 

 

 
(b) 

 
Figure 14. (a) High-pass filter output of W. T. of P. C. 1 
combination without cycle slip, (b) High-pass filter output of 
W. T. of P. C. 1 combination with cycle slip. 

 
(a) 

 

 
(b) 

 
Figure 15. (a) P. P. combination without cycle slip, (b) P. P. 
combination with cycle slip. 

Figures 16a and 16b show the high pass filter 
output of discrete wavelet transform of phase-
phase combination using db1 wavelet. Comparison 
of these figures shows that all cycle slips have 
been detected. 
     Figure 17a shows the Melbourne-Wubbena 
combination without cycle slip. Figure 17b shows 
this combination with simulated cycle slips. 
Figures 18a and 18b show the high pass filter 
output of discrete wavelet transform of Melbourne-
Wubbena combination using db1 wavelet. 
Comparison of these figures shows that the noise 

level of this combination is less than one cycle. 
Cycle slip in 2500 epoch number is not detected, 
because in this epoch the number of cycle slips is 
equal in both carriers and mathematically 
eliminated in test quantity. 
     Figure 19a shows the double difference test 
quantity without cycle slip and Figure 19b shows 
this combination with simulated cycle slips. Cycle 
slips are not seen in this figure, because double 
difference of geometrical distance between 
receiver and satellite behaves as a trend that 
should be eliminated. Parabolic behavior of this 
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(a) 

 

 
(b) 

 
Figure 16. (a) High-pass filter output of W. T. of P. P. 
combination without cycle slip, (b) High-pass filter output of 
W.T. of P. P. combination with cycle slip. 

 
(a) 

 

 
(b) 

 
Figure 17. (a) M. W. combination without cycle slip, (b) M. 
W. combination with cycle slip. 

trend due to Doppler Effect is apparent from 
Figures 19a and 19b. 
     For cycle slip detection, in the first step we did 
the discrete wavelet transform using db1 wavelet. 
Figures 20a and 20b show that this trend has 
appeared as successive jumps in the high-pass 
filter output of discrete wavelet transform and 
detection has not done successfully. 
     In order to elimination of this trend we chose 
db2 wavelet. Figures 21a and 21b show the high-
pass filter outputs of discrete wavelet transform of 
this combination using db2 wavelet. These figures 

show that the parabolic trend has been eliminated 
in this transform and simulated cycle slips have 
been detected successfully. 
 
 
 

5. CONCLUSIONS 
AND RECOMMENDATIONS 

 
The aim of this paper was to demonstrate that the 
wavelet transform can be used to detect cycle slips 
in GPS measurements. 
     Because cycle slip can be modeled as a step 
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(a) 

 

 
(b) 

 
Figure 18. (a) High-pass filter output of W. T. of M. W. 
combination without cycle slip, (b) High-pass filter output of 
W. T. of M. W. combination with cycle slip. 

 
(a) 

 

 
(b) 

 
Figure 19. (a) D. D. observations without cycle slip, (b) D. D. 
observations with cycle slip. 

function, the Haar wavelet (db1) is a good basis to 
approximate this function. For cycle slip detection 
from P. C. and P. P. combinations the db1 wavelet 
is the best. Db2 wavelet can also follow the jump in 
the first order derivative of the signal. For this 
reason, cycle slip detection from D. D. combination 
using the db2 wavelet is proposed. 
     In general for GPS data processing the low 
order compact support Daubechies’s wavelets are 
recommended. The choice is based on the 
following reasons: the short wavelet basis has less 
phase distortion and time delay to facilitate a good 
signal recovery in real time. 

The advantage of the wavelet transform method 
lies in the fact that the filter is easy to implement. 
It is very precise in the time location of a cycle 
slip. 
     The disadvantages of this method are; (1) The 
filter is a non-adaptive one, (2) A signal with a lot 
of noise can be seen as successive jumps. 
     In general due to the redundancy problem of 
continuous wavelet transform, using discrete 
wavelet transform in GPS data processing is 
recommended. 
     The use of a Kalman filter requires a set of 
initial conditions: state vector, covariance matrix 
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(a) 

 

 
(b) 

 
Figure 20. (a) High-pass filter output of W. T. of D. D. 
combination without cycle slip using db1, (b) High-pass filter 
output of W. T. of D. D. combination with cycle slip using 
db1. 

 
(a) 

 

 
(b) 

 
Figure 21. (a) High-pass filter output of W. T. of D. D.
combination without cycle slip using db2, (b) High-pass filter 
output of W. T. of D. D. combination with cycle slip using 
db2. 

of the observations, state-transition noise matrix. 
The Kalman filter is very sensitive to these a priori 
values. Ideally, they should be adapted to the 
different situations that can be encountered: these 
values vary in function of the receiver type, 
multipath, the ionosphere conditions and so on. 
However, a suitable choice of these initial 
conditions will give a powerful tool to study a 
signal deteriorated by noise. The wavelet transform 
does not need any a priori value, is very simple to 
implement but does not give as good results as the 
Kalman filter on noisy signals. 

As a consequence, the two mathematically 
independent methods seem to be very 
complementary and should be used together to 
give mutual confirmation of the computed cycle 
slips. 
     If we don't have any information about the 
covariance matrix of observations, accurate 
detection of simulated cycle slip using Kalman 
filtering via arbitrary values for this matrix, can 
give us a good idea about this matrix. 
     Outlier detection and elimination of GPS code 
measurements could be done using wavelet 
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transforms. The precision of GPS code 
measurements can be increased by wavelet 
denoising techniques. For static and low dynamic 
receivers, the receiver state information is confined 
in a very narrow low frequency band and the 
denoising signal is directly derived from the output 
of the corresponding low-pass filter bank (data 
smoothing). 
     Wavelet transforms can be used to separate 
multipath from the signal. The signal is double 
differential phase observation, which is an input 
for wavelet transform system. Through multi-step 
decomposition for original double differential 
observation, multipath identity is exhibited at a 
certain scale in the decomposition and the double 
differential observation is then reconstructed by a 
filtering to the signal with multipath eliminated. 
The newly formed observation is then used as the 
input for baseline adjustment unit to achieve 
desired positioning efficiency. 
     It is important to transmitting the measurement 
information to and from reference and multi-user 
stations quickly for real time DGPS navigation. 
Transmitting a compressed data perhaps is one of 
the best choice means (data compression). The GPS 
data compression can be derived directly from the 
fast wavelet transform algorithm. Firstly, the 
compression is by denoising and bias elimination; 
secondly because the GPS measurements are 
closed-correlated, the redundancy of information is 
reduced by the orthogonal projection of the signal to 
the orthogonal space spanned by orthonormal 
wavelets. 
 
 
 

6. LIST OF SYMBOLS 
 

i
kL  Phase pseudorange between satellite 

receiver k in meters 
i
kP  Code pseudorange between satellite i 

and receiver k in meters 
i
kρ  Geometric distance between satellite i 

and receiver k 

i
kI  Ionospheric refraction between 

satellite i and receiver k 
i
kρΔ  Tropospheric refraction between 

satellite i and receiver k 
c Velocity of light 
δk Clock error of receiver k 
δi Clock error of satellite i 
λ Wavelength 
f Carrier frequency 
N Phase ambiguity 
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