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Abstract   This paper presents an Artificial Neural Network (ANN)-based modeling technique for 
prediction of outlet temperature, pressure and mass flow rate of gas turbine combustor. Results 
obtained by present modeling were compared with those obtained by experiment. The results showed 
the effectiveness and capability of the proposed modeling technique with reasonable accuracies of 
about 95 percent. This paper describes a nonlinear SVFAC (State Vector Feedback Adaptive Control) 
controller scheme for gas turbine combustor. In order to achieve the satisfied control performance, we 
have to consider the effect of nonlinear factors contained in controller. The controller is adaptively 
trained to force the plant output and to track an output reference. The proposed Adaptive control 
system configuration uses two neural networks, a controller network and a model network. The 
control performance of designed controller is compared with inverse control method and results have 
shown that, the proposed method has good performance for nonlinear plants such as gas turbine 
combustor. SVFAC technique is finally generalized for MIMO systems in this paper. 
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های عصبی برای پيش بينی مقدار دما، فشار در اِِين مقاله از تکنيک مدل سازی بر مبنای شبکه چکيده   

نتايج حاصل از مدل سازی با داده های تجربی . ودبی گازهای خروجی از اتاقک احتراق استفاده شده است
دهد که مدل سازی با  مقايسه نشان می. بدست آمده از دستگاه توربين گاز آزمايشگاهی مقايسه شده است

 SVFACدر اين مقاله تکنيک . فتار سيستم واقعی را تعقيب نمايد درصد ر۹۵تواند تا دقت  اين روش می
)State Vector Feedback Adaptive Control (برای کنترل اتاقک احتراق توربين گاز معرفی شده است .

در . برای رسيدن به عملکرد کنترلی مطلوب بايد پارامترهای کنترلر با توجه به ديناميک سيستم تنظيم گردد
گيرد که برای رسيدن به خروجی مطلوب، چه مقدار ورودی را به سيستم اعمال  ترلر ياد میاين روش کن

شبکه عصبی . روش تطبيقی پيشنهاد شده برای سيستم کنترلی از دو شبکه عصبی تشکيل شده است. نمايد
رلر عملکرد کنت. باشد اول مربوط است به کنترلر و شبکه عصبی دوم مدل اتاقک احتراق توربين گاز می

نتايج بدست آمده نشان دهنده . طراحی شده با نتايج بدست آمده کنترل معکوس مقايسه شده است
 بزای سيستم های چند SVFACدر انتها روش تعميم کنترلر . است SVFACعملکرد مطلوب کنترلر 

 .ورودی چند خروجی ارائه شده است
 
 

1. INTRODUCTION 
 
Gas turbines have been used for many years to 
generate electricity. In the past, their uses have 
generally been limited to generating electricity 
during the peak periods. Gas turbines are ideal for 
this application as they can be started and stopped 
easily, enabling them to be brought into service to 

meet energy demands as quickly as possible. 
However, their small size and low thermal 
efficiency, in the past restricted their wider uses for 
electrical generation [1]. Over the past decade 
there have been major improvements in their sizes 
and efficiencies so much, that they are now 
considered to be an attractive option for base-load 
electrical generation. Industrial gas turbines may 
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reach up to more than 260 MW of power [1]. 
Depending on the size of the turbine, start up can 
take from 10 to 40 minutes to produce full power 
output [2]. They cost lower per kilowatt installed, 
then aero- derivative units and, because of their 
more robust construction, they are more suitable 
for base load operation. The gas temperature in the 
combustors and the point of entrance to the turbine 
can reach up to 1350°C [3]. At these high operating 
temperatures, hard particles and chemical 
impurities in the air and fuel can damage the 
turbine blades, thus reducing their effectiveness 
and efficiency [4]. The hot components of the 
turbine, particularly the blades, are also subject to 
“creep” failure. Metals at high temperature and 
high thermal stress gradually find changes in their 
metallurgical properties and plasticity, leading to 
deformations with possible catastrophic results [3]. 
So predicting the outlet temperature of combustion 
chamber's product and the inlet temperature of 
turbine is of some importance. In the industrial 
processes there are many systems having nonlinear 
properties. Moreover, these properties are often 
unknown and time varying. The commonly used 
Proportional-Integral-Derivative (PID) controllers 
are simple to realize, but they suffer poor 
performance, if there are uncertainties and 
nonlinearities. The neural network controllers have 
emerged as a tool for difficult control problems of 
unknown nonlinear systems. Neural networks are 
used for modeling and control of complex physical 
systems because of their ability to handle complex 
input-output mapping without detailed analytical 
models of the systems. 
     Neural networks have been applied very 
successfully to identify and control dynamic 
systems. To ensure safe and automatic operation of 
a gas turbine combustor, when designing a control 
system it is necessary to be able to predict 
temperature and pressure level and the outlet flow 
rate throughout the usage of gas turbine combustor 
and also to use the above data in order to have 
better control on some selected parameters. There 
are several control strategies for neural networks 
such as: 
 
• Fixed stabilizing controllers, 
• Direct inverse control (extracting inverse 

dynamics), 
• Adaptive inverse control, 

• Nonlinear internal model control, 
• Feedback linearization, 
• Model predictive control [5]. 
 
In the direct inverse control method, neural 
networks are trained by specialized back-
propagation algorithm. This method has attracted 
much attention in recent years because it is 
intuitive, and simple to be implemented [6]. 
 
 
 
2. CONTROL SYSTEM OF GAS TURBINES 

 
Figure 1 shows the main features of a gas turbine 
control system. The fundamental requirement is to 
maintain the safety of the engine, regardless of 
how the operator moves the throttle lever or how 
the inlet conditions (e.g. altitude) are changing. 
The control system must ensure that the critical 
operating limits of rotational speed and turbine 
inlet temperature are never exceeded, and that 
compressor surge is avoided [5]. Analysis of 
transient performance can predict the maximum 
fuel flow which can be used for acceleration 
without encountering surge or exceeding 
temperature limits. Mathematical models for 
simulating the transient behavior are an essential 
tool for optimization fuel schedules, which must be 
experimentally verified during the engine 
development program. The performance 
calculations showed that the variations of all the 
key parameters are wholly determined by 
matching; the compressor, turbine and the nozzle 
characteristics. It is important to realize that if the 
engine has fixed geometry, the steady-state 
performance cannot be altered in any way by the 
control system. If, however, devices such as 
variable IGVs, variable compressor stators or 
variable nozzles (turbine or propelling) are 
included, the operation of these can be integrated 
with the control system to modify the performance. 
The level of sophistication required of the control 
system is strongly dependent on the complexity of 
the engine. 
     The control system must incorporate both a 
computing section and Throttle Setting as seen in 
Figure 1. For many years both of these functions 
were met by hydro mechanical systems, in which 
fuel passing through the unit provided the 
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Figure 1. Control systems of gas turbine cycle. 
 
 
 

 
 

Figure 2. Schematic diagram of gas turbine system. 

necessary hydraulic actuation of a variety of 
pistons, bellows and levers which metered the 
required fuel to the combustion system. In recent 
years development of many digital control systems 
have taken its place; the increasing computational 
capacity and rapidly decreasing cost of small 
digital computers have made them quite feasible to 
use in a control systems. 
 
 
 

3. EXPERIMENTAL APPARATUS 
 
The gas turbine under experiment contains two 
radial turbines and one radial compressor. The first 

turbine runs compressor and the second one 
conveys its energy through a belt to a DC 
generator loading the turbine by magnetic field 
change. Schematic diagram of gas turbine is shown 
in Figure 2. Gas turbine is equipped with a blower 
for actuating the system and it can be turned off 
after turbine reaches a high speed. Referencing the 
turbine speed, compressor provides required air to 
the combustion chamber. 
     During the experiments Turbine speed should 
not exceed a specific limit to guarantee the safety. 
This limit is 60000 rpm for the first turbine and 
30000 rpm for the second turbine. An oil pump is 
used for lubricating the bearings at coupling of 
compressor and turbine. With increasing speed of 
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Figure 3. Variation of outlet temperature of combustion 
chamber with fuel flow rate. 
 
 
 

 
 
Figure 4. Variation of outlet pressure of combustion chamber 
with fuel flow rate. 

compressor and turbine, oil temperature rises and 
oil cooler should be used. To avoid instability in 
the system all parameters should change slowly 
and parts must act accordingly. 
 
 
 

4. EXPERIMENTAL MEASUREMENTS 
ANDRESULTS 

 
The rotameter used for measuring fuel flow rate 
was calibrated for propone with 0.15 mPa pressure 
and temperature of 15˚C. In this experiment we 
used butane as fuel, so the fuel flow rate should be 
corrected by the following formula: 
 

sρ
ρ*macm =  (1) 

 
mac, m are defined in nomenclature. Gas turbine 
performance is sensitive to input conditions, so for 
day to day comparisons, we need to change results 
into standard form. Standard form is defined as 
below: 
 
Psta = 100 kPa 
 
T = 288 k 
 
As turbines are not heat isolated, therefore they 
transfer heat to environment through convection 
and radiation, affecting isentropic efficiency of 
turbines. As a result heat transfer is considered for 
calculation of isentropic efficiency. At the inlet of 
the combustion chamber is the fuel flow rate and 
the desired outlets are temperature, pressure and 
exit flow rate. In Figures 3 and 4 variations of 
outlet temperature and pressure of combustion 
chamber with fuel flow rate are shown 
respectively. 
     One of the important parameters of the gas 
turbine cycle is the turbine rotation which must not 
exceed the defined level because of the physical 
limitation and safety problems, but the output 
power of gas turbine cycle depends on the turbine 
rotation. Following figure shows the variation of 
rotation of the first turbine (coupled with 
compressor) and second turbine (coupled with 
generator) as a function of fuel flow rate. 
     The input temperature of combustion chamber 

is a critical factor of gas turbine. This temperature 
must be within a determined range. The efficiency 
of gas turbine decreases if the input temperature 
exceeds from the special value. The increment of 
input air temperature descends its density which 
results in decreasing input air mass flow rate and 
efficiency of gas turbine cycle. High enthalpy of 
input gas causes turbine rotation; as a result, 
temperature reduces at the output of the turbine. 
The experimental data in Figure 7 shows that 
enthalpy reduction of turbine is low between 
21000 rpm to 26000 rpm. 
 
 
 

5. NEURAL NETWORK MODELING 
 
When designing a gas turbine combustor, off-design 
performance and system control design must be 
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Figure 5. Variation of turbine and compressor’s rotation with 
fuel flow rate. 
 
 
 

 
 
Figure 6. Variation of Inlet temperature of combustion 
chamber with compressor’s rotational speed. 

 
 
Figure 7. Variation of inlet and outlet temperature of turbine 
with turbine’s rotational speed. 
 
 
 

 
 
Figure 8. The black box model of the combustion chamber. 

considered; off-design operation will include the 
effects of varying ambient conditions, as well as 
reduced power operation. When designing a control 
system in order to ensure the safe and automatic 
operation of the engine, it is necessary to be able to 
predict temperature and pressure levels throughout 
the engine and select some of these data to use as 
control parameters. The combustion chamber is a 
nonlinear system and it is difficult to be modeled 
precisely. To predict the temperature and the output 
pressure of combustion chamber we use neural 
network as a black-box modeling of the system. In 
order to evaluate the applicability of this approach, 
the black box model of the combustion chamber 
Figure 8 has been simulated in different conditions 
and a comprehensive set of data has been collected. 
Altogether, 28 simulation experiments were 
performed, ranging from a load of 6 W to 40 W. 

6. DYNAMIC NEURAL NETWORKS 
STRUCTURE 

 
Dynamic neural networks not only contain a 
nonlinear mapping operation on the weighted sum 
of the input signals but also have some dynamic 
processes such as the state signal feedback, time 
delays, hysteresis, and limit cycles. Dynamic 
feedback plays an essential role in the study of 
neural systems. Dynamic Neural Units (DNUs), as 
the basic elements of dynamic neural networks, 
receive not only external inputs but also state 
feedback signals from themselves and other 
neurons. The synaptic connections in a DNU 
contain a self-recurrent connection that represents 
a weighted feedback signal of its state and lateral 
inhibition connections, which are the state 
feedback signals from other DNUs in the network. 
In terms of information processing, the feedback 
signals involved in a DNU deal with some 
processing of the past knowledge and store current 
information for future usage. Each DNU has its 
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Figure 9. Neural network structure for combustion chamber learning. 

own internal potential or internal state that is used 
to describe the dynamic characteristics of the 
network. Because of the dynamical behavior of 
combustion phenomena, dynamic neural network 
is used for modeling of gas turbine combustor. A 
conventional dynamic feed-forward neural network 
structure, having a single hidden layer with 
sigmoid nonlinearities and a dynamic neural unit at 
output layer, has been assumed for the black-box 
model. A sketch of the neural network input/output 
structure is outlined in the following. The input is 
the fuel flow rate (m0

f) in the burner cell. The 
outputs are the estimated temperature (T), pressure 

(P) and flow rate (
°
tm ) of combustion chamber 

outlet. All 28 input/output data set are considered 
equivalently. 
 
 
 

7. COMBUSTION CHAMBER LEARNING 
 
A dynamic back-propagation technique [7,8] has 
been employed to train the dynamic feed-forward 

neural network parameters. With a trial and error 
procedure a hidden layer of 15 neurons has been 
selected. 
     Eight data sets have been employed to test the 
effect of using the eight different fuel flow rates. 
The fuel flow rate as input of combustion chamber 
is shown in Figure 10. This figure shows how 
discrete data applied as continuous signal. The 
estimated values of temperature, pressure and mass 
flow rate of the trained neural network on the data 
set referring to the fuel flow rate are shown in 
Figures 11-13 respectively. Similar results are 
obtained for the other data sets. 
     Figures 11-13 show results of modeling 
combustion chamber with designed neural 
network. 
 
 
 

8. STABILITY 
 
The estimated results obtained by the present 
model are validated to ensure that the proposed 
approach is robust and able to generalize to various 
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Figure 10. The fuel flow rate as input of combustion chamber.
 
 
 

 
Figure 11. Variation of predicted and measured (dashed line) 
temperature with time. 
 
 
 

 
Figure 12. Variation of predicted and measured (dashed line) 
pressure with time. 
 

operating conditions. In fact, if the neural network 
is over trained, it will not be capable of describing 
new data, not previously included in the training 
set, unless the training set phase is restarted. On 
the other hand, if a robust estimation technique is 
adopted, the neural network may be able to 
generalize to new data. A classical approach 
consists of preventing the network from over 
fitting the data, by stopping the training phase 
when the network performs satisfactorily on 
completely independent data. 
     To achieve this aim the available data set has 
been split in a training set (23 simulations) and a 
validation set (5 simulations). Training has been 
performed on the training set, while monitoring the 
performance on the validation set, and the 
estimation algorithm was stopped when a 
minimum MSQE was obtained on the latter data. 
The evolution of the MSQE during the training 
phase is shown in Figure 14. The estimation error 
indices with the training and validation set are 
reported in Table 1. 
 
 
 
9. STATE VECTOR FEEDBACK CONTROL 

(SVFC) 
 
The conventional approach to design a single-input 
-single-output control system, the controller is 
designed as such, that the dominant closed-loop 
poles have a desired damping ratio ζ and 
undamped natural frequency ωn. In this approach, 
the order of the system may be raised by 1 or 2 
unless pole-zero cancellation takes place. Pole-
placement approach specifies all closed-loop poles. 
There is a cost associated with placing all closed-
loop poles, however, since placing all closed-loop 
poles requires successful measurements of all state 
variables, or else requires the inclusion of a state 
observer in the system. 
 
 
 
10. COMBINATION OF SVFC AND NEURAL 

NETWORK 
 
In this new structure, neural networks are used to 
adjust controller gain. Figure 15 shows the block 
diagram of the State Vector Feedback Adaptive 
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Figure 13. Variation of predicted and measured (dashed line) 
fuel flow rate with time. 
 
 
 

 
 
Figure 14. Evolution of the MSQE during the training phase. 
 
 
 
TABLE 1. Maximum and Minimum Percentage Errors 
and MSQE Indices with the Training and Validation Set. 
 

Data Set Max Error 
(%) 

Min Error 
(%) MSQE 

Training Set 4.18 2.22 0.00118

Validation 
Set 4.02 3.24 0.00328

 
 
 
Figure 15. Block diagram of the nonlinear state vector 
feedback control (SVFC) system using neural networks. 

 

Control (SVFAC) system using neural networks. 
State variables are measured by the measurement 
devices, and the extracted values enter into the 
controller. Adaptive control involves modifying 
the control law used by a controller to cope with 
the fact that the parameters of the system being 
controlled are slowly time-varying or uncertain. 
This control strategy can be generalized for most 
nonlinear systems. 
     Figure 16 shows the neural networks that have a 
two layered nonlinear neuron which has an input 
layer and an output layer. Neural networks are 
trained by the conventional back propagation 
algorithm to minimize the error between the 
controlled object and set point. Input signals to the 
neural networks are auxiliary error signals defined 
as Equation 1. 
 

T - T  Te
∧

=  (2) 
 

P - P  Pe
∧

=  (3) 
 

oo
o m  -  m  
m

e

∧

=  (4) 

 

In the above expressions, T, P and 
o

m  represent 
the outlet temperature, pressure and mass flow 
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Figure 16. Block Diagram of Neural Networks. 

rate, respectively and 
∧∧
P,T  and 

∧
o
m  show the 

input reference temperature, pressure and mass 
flow rate. The sigmoidal transfer function is 
chosen for neurons of neural networks. In Equation 
4, X g is a function parameter to determine the 
shape of function, and X is input variable. 
 

)}g4x/Xexp(2{1

)}g4x/Xexp({1gX
f(x)

−+

−−
=  (5) 

 

Pe,Te  and 

m
e
o

are input of neural networks as 

shown in Figure 16. 
     In the following equation 

m
K,PK,TK o  are the 

gains of controller and weights of neural networks. 
 

oo
m

e
m

KPePKTeTKx ++=  (6) 

 
U = f(x) (7) 
 
The output of neural networks is the input fuel 
mass flow rate to combustion chamber. The error 
function E(t) is used in back propagation algorithm 
as defined by Equation 7. 
 

2T}T.5{0E(t) −
∧

=  (8) 
 
To minimize the error function, the gains 

m
K,PK,TK o  are adjusted by the following 

expressions: 
 

TK
E

1η(t)TK1)(tTK
∂
∂

−=+  (9) 

 

PK
E

2)t(PK)1t(PK
∂
∂

η−=+  (10) 

 

o
oo

m
K

E
3η(t)

m
K1)(t

m
K

∂
∂

−=+  (11) 

 
The terms 3η,2η,1η  are the learning rates of 
algorithm to determine the convergency velocity. 
The chain derivative is used to estimate quantity 

o
m

K
Eand

PK
E,

TK
E

∂
∂

∂
∂

∂
∂  as follows: 

 

Te(x)'f
u
TT)T(

TK
x

x
u

u
T

T
E

TK
E

∂
∂

−
∧

−=
∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂  (12) 

 

Pe(x)'f
u
TT)T(

PK
x

x
u

u
T

T
E

PK
E

∂
∂

−
∧

−=
∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂  (13) 

 

m
e(x)'f

u
T)TT(

m
K
x

x
u

u
T

T
E

PK
E

oo ∂
∂

−
∧

−=
∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂  (14) 

 
The Equations 12-14 show how the gains of 
Equation 9-11 should be changed respectively until 
the control system behaves optimally. 
 
 
 

11. SIMULATION RESULTS 
 
Simulating control system, the performance of 
SVFAC can be seen on the behavior of 
combustion chamber. Figures 17-19 show the 
results of simulation with different set points. 
One of the important advantages of SVFAC is 
the tune ability of its parameters. This attribute 
makes the controller adapt itself during the 
different conditions of plant. Figures 20-22 show the 
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Figure 17. Simulation results for temperature control. 
 
 
 

 
Figure 18. Simulation results for pressure control. 
 
 
 

 
Figure 19. Simulation results for outlet mass flow control. 

 
Figure 20. Variation of K1 with time in control process. 
 
 
 

 
Figure 21. Variation of K2 with time in control process. 

 

variation of PK,TK  and 

m
K
o

in control process 

respectively. Input fuel flow rate acts as a main 
parameter in the gas turbine control system. The 
value of input fuel flow rate is calculated by 
multiplying the output errors by the gains. In the 
beginning of the process because of the high error 
between outputs and reference inputs, the fuel flow 
rate will be tremendous and makes the system 
unstable. An actuator able to exert this fuel flow 
will be large and costly. 
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Figure 22. Variation of K3 with time in control process. 
 
 
 

 
Figure 23. Plant input. 

     To moderate the mentioned problem, an input 
saturation technique is used. Considering the 
maximum value of fuel flow rate 1.4 g/s, the 
simulation result is reported in Figure 24 with 
saturation technique it is possible to control the 
maximum output of actuator to prevent instability. 
 
 
 
12. COMPARISON BETWEEN SVFAC AND 

INVERSE CONTROL 
 
The inverse control using neural networks is used 
to evaluate the performance of proposed SVFAC. 
The simulation result shows the suitable 
performance of controller. The comparison between 
SVFAC and inverse control is shown for 
temperature control in Figure 25 
 
 
 

13. GENERALIZING SVFAC FOR MIMO 
SYSTEMS 

 
Figure 26 shows the control system for two input 
two output system. In the following control 
system, state variables are measured with 
instruments and are sent to controller and the 
controller is based on SVFAC technique. 
     Figure 27 shows the neural network that is used 
for structure of controller. The proposed neural 
network has two layers, inputs and outputs. The 
inputs of controller are the errors of outputs of 
control system and the outputs of controller are 
inputs of plant. Back propagation algorithm is used 
to train the controller to minimize the error 
between the control objects and set points 
     The inputs of the neural network are the 
following error signals: 
 

1y1y1e −
∧

=  (15) 
 

2y2y2e −
∧

=  (16) 
 

1y
∧

, 2y
∧

 are desired values of first and second set 
points respectively, and y1, y2 are outputs of plant. 
The sigmoidal transfer function is chosen as 

Equation 4. As Figure 27 shows x1 and x2 are 
defined as: 
 

2e2K1e1K1x +=  (17) 
 

2e4K1e3K2x +=  (18) 
 
In the above equation k1, k2, k3 and k4 are the 
gains of controller and weights of neural networks. 
     The outputs of neural network are inputs of 
plant: 
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Figure 24. Plant input with saturation. 
 
 
 

 
Figure 25. Comparison between SVFAC and inverse control. 

 
Figure 26. Structure of SVFAC for two input two output 
system. 
 
 
 

 
Figure 27. Comparison between SVFAC and inverse control. 

U1 = f1(x) (19) 
 
U2 = f2(x) (20) 
 
The error function used in BP algorithm is defined 
as: 
 

]2)y22y(2)1y1y([5E −+−=
oo

 
 
Controller gains or on the other hand the neural 

networks weight changes, so the value of error 
function becomes optimal. The following 
equations show how the gains should be changed 
until the control system achieves optimal response. 
 

1K
E

1η(t)1K1)(t1K
∂
∂

−=+  (21) 

 

2K
E

1η(t)2K1)(t2K
∂
∂

−=+  (22) 

 

3K
E

2η(t)3K1)(t3K
∂
∂

−=+  (23) 

 

4K
E

2η(t)4K1)(t4K
∂
∂

−=+  (24) 
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In the above equation η1 and η2 are learning rates 
of neurons and determine the convergence of 
learning algorithm. To find the values of 

4K
Eand

3K
E,

2K
E,

1K
E

∂
∂

∂
∂

∂
∂

∂
∂  derivative chain 

rule is used. 
 

1e(x)'
1f

1u
1y

)1y1y(
1K
1x

1x
1u

1u
1y

1y
E

1K
E

∂

∂
−

∧
−=

∂

∂

∂

∂

∂

∂

∂
∂

=
∂
∂

 

 (25) 
 

2e(x)'
1f

1u
2y

)2y2y(
2K
1x

1x
1u

1u
2y

2y
E

2K
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The Equations 25-28 show how the gains in 
Equation 21-24 should be changed respectively 
until the control system behave optimally. 
 
 
 

14. CONCLUSION 
 
In this paper the properties of capability and 
stability of dynamic neural networks as model of 
gas turbine combustor are presented. A 
quantitative analysis of modeling technique has 
been carried out using different evaluation indices; 
namely, Mean-Square-Quantization-Error (MSQE) 

and actual percentage error. It has been shown that 
if sufficiently large number of connections 
between neurons are allowed then the dynamic 
forward feed neural network is capable of 
approximating the input-output behavior of gas 
turbine combustor and the modeling error doesn’t 
exceed % 5. 
     This paper presented the new adaptive SVFC 
controller using neural networks with compensation 
for nonlinear plants. It has shown that the proposed 
method has good performance for the gas turbine 
combustor. However, there are still some problems, 
such as initial gains and learning coefficient which 
needs to be improved. Simulation results show that 
the SVFAC is a good controller for gas turbine 
combustor as a nonlinear system. The advantages 
of SVFAC are: 
 
• SVFAC compare state vector and 

reference inputs and control the plant so 
there is no need for parameter modeling 
of plant. This strategy is useful for 
systems which are not model based. 

• Since the SVFAC is based on nonlinear 
adjustment algorithm (back propagation 
algorithm), this method is capable of 
controlling nonlinear systems. 

• The parameters of SVFAC are time 
varied which can be used for time varied 
systems. 

• The considered controller can be 
generalized for MIMO (Multi Input Multi 
Output) systems. 

 
 
 

15. NOMENCLATURE 
 
E Error Function 
KT Temperature Gain 
KP Pressure Gain 
o
m

K  Mass Flow Gain 

MSQE Mean Square Quantization Error 

fm
o

 Inlet Fuel Flow Rate  

tm
o

 Outlet Flow Rate of Products 

acm
o

 Actual Flow Rate 
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o
m  Measured Flow Rate 
P Outlet Pressure of Products of 

Combustion Chamber 
SVFC State Vector Feedback Control 
SVFAC State Vector Feedback Adaptive 

Control 
T Outlet Temperature of Products of 

Combustion Chamber 
U Control Input 
Xg Function Parameter 
X Function Input 
η  Learning Rate  

sρ  Gas (Butane) Density at Standard 
Conditions 

ρ  Gas (Propane) Density at Laboratory 
Conditions 

 
Subscripts 
 
a Actual 
f Fuel 
s Standard 
t Total 
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