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Abstract In this paper, the first and second order approximations of Taylor expansion are used for
calculating the change of each natural frequency by modifying an arbitrary parameter of a system
with a known amount and based on this approximation, the inverse eigenvalue problem is
transformed to a solvable algebraic equation. The finite element formulation, based on the classical
laminated plate theory (CLPT) is presented for laminated composite plates with piezoelectric patches.
Using the proposed FE model, sensitivity analysis is carried out, to find the effects of the changes
made in the design parameters such as the piezoelectric patch thickness and the fiber angles in each
layer on the natural frequencies of the structure. The inverse eigenvalue problem is solved in order to
find the thickness of piezoelectric patches and stacking sequence for relocating the natural
frequencies.

Keywords Composite, Piezoelectric, Natural Frequency, Sensitivity Analysis, Inverse Eigenvalue
Problem
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1. INTRODUCTION

Dynamic behavior modification is an active area of
research due to its several applications in structural
design/optimization. In contrast with the direct
eigenvalue problem (or finding the modal
characteristics of a known structure), the inverse
eigenvalue problem (finding the necessary changes
in structural parameters for achieving predefined
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modal behavior) deals with several difficulties.
Traditional methods for solving the inverse
eigenvalue problem are restricted to trial and error
iterative methods. Fox, et al [1] proposed exact
expressions for derivatives of eigenvalues and
eigenvectors with respect to any design variables for
simple un-damped vibratory systems. This was
rapidly developed to more complicated cases such
as damped systems with complex eigenvalue and
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eigenvectors [2,3]. Based on these derivatives many
researches were carried out on formulating the
inverse eigenvalue problem for different classes of
structures. The earliest works in this field were
restricted to modification of stiffness and mass
matrixes in order to achieve desired shifts in natural
frequencies for simple systems approximated with
mass-spring systems [4]. Studying the inverse
eigenvalue problem for continuous systems needs
the mathematical or physical discretization. The
finite element formulation is the most common
method in modeling structures as continuous
systems. So, formulating the inverse eigenvalue
problem based on FE may be very efficient. The
inverse eigenvalue problem in conjunction with FE
was first performed for beam and bar elements [5,6]
and consequently was developed for two
dimensional elements [7,8] and more complicated
structures like composite laminated plates [9] or
functionally graded material (FGM) plates covered
with piezoelectric layers [10]. In this paper, the
inverse eigenvalue problem or finding the necessary
changes in geometrical or physical properties of a
structure in order to achieve desired changes in
natural frequencies and relocating them in a
favorable manner, is investigated and presented for
a laminated composite plate with piezoelectric
patches wusing the first and second order
approximations of Taylor expansion.

2. CONSTITUTIVE EQUATIONS FOR
PIEZOELECTRIC LAMINATES

For a composite plate consists of arbitrary layers
(including the piezoelectric layers), the constitutive
equation for the kg layer of the laminate is
expressed as

Sxx C11 C12 0 Exx
c =|C C 0 € —

vy 12 22 yy
0 0 C

ny 66 ny
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(1b)
Which relates the stress vector {c c c }T
XX Yy Xy

to the strain vector {e , ¢ }T through the

vy Txy
elastic constants matrix, [C]. In these equations, E;
is the component of the electric field vector, D;
refers to the electric displacement vector
components, the quantities Cj; and e;; represent the
elastic and the piezoelectric constants, respectively
and k;; is the electric permittivity.

When the poling direction of the piezoelectric
layer coincides with the thickness direction, the
components of the electric field vector can be
expressed as gradient of electric potential ¢ in the
thickness direction as

E =20 @)

By assuming the electric potential applying and
varying linearly only in the thickness direction
Equation 2 is written as

0
0b=10 3)
E, o/t

Where t is the piezoelectric layer thickness.

3. DISPLACEMENT AND STRAIN FIELDS

By defining vector {u} as
@ ={uy vy Wy Owo/ox dwyloy}" (4)

1JE Transactions B: Applications


www.SID.ir

Where, ug, vo and w, are the mid-plane
displacements, the displacement components based
on the classical laminated plate theory (CLPT)
may be expressed as [11]

u 1 00 —z O
ve=[0 1 0 0 —z|{u}=[H]{u} ®)]
w 001 O 0

The strains associated with these displacements are

2
ou 0w
e = —0 — Z—O (63)
X x 6x2
2
ov 0w
e =—0_,7 "0 (6b)
YTy T2
duy ov, 0*w,
Yoo = + -2z (60)
Xy dy  0Ox 0x0y

4. FINITE ELEMENT FORMULATION

A four node plate element with five degrees of
freedom in each node containing ug, Vo, Wo,
6w0/8x, 8w0/8y is chosen. The terms u,y and vg

are interpolated in terms of nodal values inside the
element by means of bilinear Lagrangian
interpolation functions as

nn

INCAE _zlu;?(tw;?(x, y) ™
]=
nn

S AE _ZIV?(O w5 (%) (®)
]:

and for approximating the term w, inside the
element according to nodal values, the Hermit
interpolation is used as

n

Woly,0= X AL (D) 0f (%) )
k=1

Where uj, vj, w; are the nodal values, nn is the

1JE Transactions B: Applications

number of nodes per element, Ale( is

{wo,awo/ax,awo/ay } vector in each node,

and ¢ are the Lagrange and Hermit interpolation

functions respectively [11].

In addition to five degrees of freedom in each
node, the elements that contain piezoelectric layers
on the top and bottom surfaces have two electric
potential degrees of freedom. Now the continuous
displacement field in the element can be defined in
terms of nodal variables as

{0} = [H]IN 1{u®} (10)

Where {u‘} is a vector that contains all nodal
displacements. [N,] is the structural shape function
that for a four nodded element is expressed as

[N, 1=[Ny 15N TIN5 1IN, ] (1

and each of the sub-matrices is
_‘I/i 0 _
Yi
O & & &z |
wl=] o o %81 %% Ogz| i=123.4
0x 0x 0x
0gy) 0gp 983
oy dy 0y |

(=]

(12)

Where the terms y; are the linear interpolation

functions and gj are the non-conforming Hermit
cubic interpolation functions [11].

The electrical potential is defined in terms of
the layer variables as

{0} =[N, {0} (13)

Where {¢°} is a vector that contains the electrical
potentials in piezoelectric layers and [N(P] is the
electrical shape function.

Using the interpolation expressed in Equation

10, strain components can be obtained through the
derivatives of Equation 6 as:
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tee=[B,1{u% (14)

The matrix (B,] for a four nodded element is

expressed as

[B,1=[[B,;]: B,]} B3]} [By,ll (15)
Where
[B,;]=
I 2 2 2. |
Moo, % Ep g
ox ox 2 ox2 ox2
2 2 2
0 % —za Sil za Si2 —z—8 513
Oy 6y2 8y2 8y2
2 2 2
% % —22a Sil —22a Si2 —Zz8 5i3
oy 0ox ox0y Ox0y Ox0y
(16)

and using the interpolation of Equation 13 with the
expression of Equation 2 gives

{E}=[B, {0} (17)

Where

[B,1=-VIN,].

The dynamic equation of motion for a laminated
composite plate with piezoelectric layers can be
derived from the Hamilton's principle

8jtt(1)(T—U—W)dt=O (18)

Where the term T denotes the kinetic energy, U
represents the strain energy and W is the external
work. The term T for a laminated composite plate
is expressed as

1 nl .k .k
_EH kz fhk+lpk{u Ve oW X 19)

wk vk Wk Tazjaxdy
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Where nl represents the number of layers, p, is
the density, (hy 1 1—hy) is the thickness and

{uk vk v'vk} is the velocity vector for the ky,

layer. The strain energy is expressed as

1
U=%H % fllllk+1{6}T{8}dZ dxdy —
k=1"k (20)
np
> Jy {EJT{D}dv
n=1 P

Where np represents the number of piezoelectric
layers. The external work done by the prescribed
surface traction f;, body forces f;, and the applied
electrical charge density Q on the piezoelectric
layers may be expressed as

W=s, {u)Tda+fy {u}T e dv+ jsp {o}TQdA

e2y)

Where S¢ and S, are the surfaces in which the
mechanical and electrical loads are applied,
respectively. Substituting Equations 19-21 into
Equation 18 and using Equations 10, 13, 14 and 17
the governing equations of motion for a laminated
composite plate with piezoelectric layers are
obtained as

M, ]} +[K

wl UK o= (F ) (220)

[K g J {03 ~[K g 10} = (Fy (22b)

Where [M ], [K } [K J and [K J are
uu uu uQ (010}

the mass, structural stiffness, coupled structural-
electrical stiffness and electric stiffness matrices,
respectively. {F_} and {Fq} are the applied

mechanical and electrical loads.
The matrices and vectors in Equations 22a and
22b are given by

M, 1= JINTT (H] T [p)(H][N]dv (23a)
v

[K,,1=JB,1T[CIB, Jdv (23b)
A%
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[K 1= 1B, 1 el (B, Jdv (23¢)
v

[K 1= /1B, 1 [e][B, Jav (23d)
v

K gql=! (B, [KI[B,,Jdv (23e)

{Fp b= TINg1 {a}ds (23f)
°p

(F =N T e v+
v
23
Nyt ey ds Ny Ty ) >
S
f

Where f. represents the concentrated force and all
the other terms are expressed previously.

Another form of equation of motion can be
expressed by eliminating the vector {¢}between

Equations 22a and 22b as

[M o 10} + [K o My ={F b+ K JK 17 46 3
(24)

Where

-1
(K gq] = Ky ]+ (K K T K ] (25)

5. THE EIGENVECTOR AND EIGENVALUE
DERIVATIVES

The standard eigenvalue problem for an n-degree
of freedom un-damped system may be formulated
as

([K]-¢[M]){y}=0 (26)

Where [K], [M], ¢ and {y} are the stiffness

matrix, mass matrix, the eigenvalue and the
eigenvector, respectively. Differentiating Equation
26 with respect to any arbitrary parameter and pre-
multiplication by the term {y}" gives
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27)
Where, the symbol (') represents derivative with

respect to the arbitrary parameter. Transposing
both sides of Equation 26 and post-multiplying

both sides by the term by {y }' gives

TRy =clyfTIM]{y f (28)
Using the orthogonality condition

{yTM]{y}=1 (29)

and substituting Equations 29 and 28 into Equation
27 gives

¢={y/TK] {y }-¢{yTIMT {y}30)

Equation 30 can be rewritten as

08 _
ob.
! (31)
K 1 i iaan ii
ob. ymyn_c . YmYn m,n=12,.,N
] ]

Where N is the number of DOFs, b; can be any of
physical or geometrical properties of the structure
and the superscript i represents the ig, mode of
vibration. Note that, no summation is implemented
on the upper indices.

Equation 31 can be used for performing the
initial sensitivity analysis for finding the regions
within the structure that changing the parameter b;
has the most influence on the iy, natural frequency.

The derivative of Equation 31 with respect to
the arbitrary parameter by, can be expressed as

i i . .

aZC _ ayr aKrs_laMrs)}l, i
S

db;dby ~ dby b, b

. (32)
1 .
o Mg 1

5 )yS
6bj6bk ﬁbk 8bj

; 2 i a2
;r(ﬁ K. _1 oM
8bj8bk
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It is obvious that the second derivative of each
eigenvalue depends on the first derivative of the
corresponding eigenvector. For calculating the
eigenvector derivative, the modal superposition
method is used. Rewriting Equation 26 gives

i i

(Ko =CM )y, =0  mn=12,..N (33)

The derivative of Equation 33 with respect to by is

i

. i .
1 oK -{M 1
oy _ ( mn S mn)y (34)

(Kmn - Can) -
abk abk

Approximating the eigenvector derivative by a
truncated series of the low-frequency mode shapes
gives

i 1
6yn

T, ik Yn (35)

Where summation is implemented on the upper
index 1. Substituting Equation 34 in 35 and

Multiplying both sides by the term yfn , in the case

of p=#i gives

p 1 ip 1
aikl(ym Kmn y.n_ o Ym an yn) = (36)

1
P oK —CM ) i
m abk y1’1

From the orthogonality condition, if 1 = p then the
left side of Equation 36 is zero, and in the case of
1= p Equation 36 is simplified to

P (K., iaan i
Yml o g, |'n

k K
€0

Equation 37 gives all of the coefficients a;, in
equation 35 except the terms ay;. For calculating
these terms the orthogonality of the eigenvector
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with respect to the mass matrix is used as

i i

M -1 (38)

ym mn yn
The derivative of Equation 38 with respect to by
using the truncated series of Equation 35 can be
written as

i 1 i aani
2¥m Minn®ika Yn = Ym g, = (39)

The left side of Equation 39 is nonzero only fori=1,
in this case

6. THE DIRECT AND INVERSE
APPROXIMATED EIGENVALUE
PROBLEMS

The first and second derivatives of eigenvalue
were calculated in the previous section. Using
these derivatives, Taylor expansion may be used
for approximating the change of natural
frequencies due to an arbitrary change in physical
or geometrical properties of structure. In addition
to the direct problem, the inverse eigenvalue
problem can be formulated based on the Taylor
expansion by solving a set of linear or quadratic
equations.
Defining the matrix S as

i
_9¢
i =25 (41)
]
Then, the Taylor expansion by using only the first
term can be expressed as

i
AC:ﬂAb-
8bj J

(42)
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{Agh=[s]{ab} (43)

Equation 42 represents the direct approximated
eigenvalue problem. The inverse eigenvalue
problem using the first approximation in Taylor
expansion may be formulated as

{Ab}=[s]71{ac) (44)

The Taylor expansion using the first two terms is
expressed as

2 1
ﬁAbk+;[§bC(AA) + i(AAk) v 45)
]

2 21
a%¢ % ¢
AA AAA

bi)+ == (AAAby )]

Where b; and by can be any of the physical or
geometrical parameters. In a particular case that
the change of eigenvalue by changing only one
design parameter is studied, Equation 45 can be
simplified to

Y 1 azz; )
AC=25 Ab. + =L 5 (An, 46
. ob, 1 22, (84;) (46)

Equation 46 can be rewritten in the matrix form as
{AQ}:[SI]{Ab}+%[SZ]{Ab2} (47)

Where
i
Stjj :% 52i; :a—zg
j b~ j

The direct approximated eigenvalue problem is
formulated by setting the parameters Abj to known

values in Equation 46 and the inverse problem may
be formulated by solving a set of quadratic algebraic
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i
equations when the parameters A{ are set to known
values and the parameters Abj are unknown.

7. NUMERICAL RESULTS AND
DISCUSSION

7.1. Verification of the Finite Element
Model 1In order to verify the accuracy of the
proposed finite element model and self developed
computer programs, three case studies are taken
into consideration: (a) an 8-layer graphite/epoxy
cross-ply laminate [90/0/90/0/0/90/0/90]; (b) a
PZT-5A piezoelectric layer at the top surface of an
8-layer  graphite/epoxy  cross-ply  laminate
[90/0/90/0/0/90/0/90/p]; (©) an 8-layer
graphite/epoxy laminate covered with two PZT-5A
piezoelectric layers at the top and bottom surfaces
[p/90/0/90/0/0/90/0/90/p]. The plates are square of
side length L = 1 and the side-to-thickness ratio
L/h = 100. All the layers (the piezoelectric and
composite material layers) have the same
thickness, the material properties are:

E1 = 181Gpa, E2: 10.3 GPa, G12: 7.17 GPa, G23 =
2.87 GPa v, =028, vy3=033, p=1580Kg/m’,
E;=Es, Gi3=Gya.

The piezoelectric material properties are shown in
Table 1.

The results for the fundamental frequency of
plate with simply supported boundary conditions
on all sides obtained by the presented FE model
are compared with the results of two different
analytical methods in the literature: a 3D state
space uncoupled solution proposed by Xu, et al
[12] and a 2D analytical model based on sandwich
formulation using layer-wise first order shear
deformation theory proposed by Benjeddou, et al
[13]. It can be seen that there is a good agreement
between the presented results and the previously
reported results in the literature.

7.2. The Direct Approximated Eigenvalue
Problem A four-layered cantilever plate with
cross-ply stacking sequence [0/90/90/0] is
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TABLE 1. Material Properties of Piezoelectric Layers/Patches.

E (N/m?) v o (kg/md) €3 (c/m?) €35 (c/m?) K35 (F/m)
G-1195N 63¢9 0.3 7600 22.86 22.86 1.5¢-8
PZT-5A 61e9 0.35 7750 7.209 7.209 1.5¢-8

considered. The plate is square with length set as
0.4,, and the thickness of each layer is set to 1.
the material properties are:

E] =132.5 GPa, E2: 10.8 GPa, G12: 5.7 GPa, G23 =

3.4 GPa v, =024, v,,=0.49, p=1540Kg/m’,

E;=E;, Gi3= G

G-1195N piezoelectric patches are used for
bonding the top and bottom surfaces of the
laminated plate in a configuration as depicted in
Figure 1. The material properties of the
piezoelectric layer are shown in Table 2. The
thickness of each piezoelectric layer is set to be
0.1

The first ten natural frequencies of the
laminated plate before and after adding the
piezoelectric patches are shown in Table 3. It can
be seen that adding the piezoelectric patches
changes the value of natural frequencies.

In the first step, the thickness of each
piezoelectric patch is considered as the design

{ll

Clamped edge

Figure 1. Patch configuration.
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variable and the direct eigenvalue problem is
solved for investigating the effect of these
parameters on each natural frequency. As an
example, the change of the first natural frequency
due to changing the piezoelectric layer thickness
from 0.1, to 1., in each patch using the first
order approximation is shown in Figure 2.

Figure 3 shows the same results obtained by the
second order approximation.

In order to study the accuracy of the proposed
approximated method, the change of the first
natural frequency due to changing the thickness of
the piezoelectric patch number 1 from 0.lmm to
Imm is calculated by FE (as exact solution).
Figure 4 compares the results obtained by the first
and second order approximations with the exact
solution. Figure 5 shows the error of the first and
second order approximations for the results
depicted in Figure 4. It is obvious that the error of
the second order approximation for changing the
natural frequency up to 2 % is almost negligible.

In the next step, the fiber angle in each layer is
taken into consideration as the design parameter. A
four-layered cantilever plate with angle-ply
stacking sequence [15/45/75/105] and geometry
and material properties like the previous problem
is  considered. @ The  piezoelectric  patch
configuration is shown in Figure land each
piezoelectric layer thickness is set to 0.1mm in all
patches. The first and second derivatives of the
first four eigenvalues are calculated and the direct
approximated eigenvalue problem is solved based
on the first and second order approximations in
Taylor expansion for finding the change of
frequencies due to an arbitrary change in fiber
angles. As an example the change of the first
natural frequency due to change of fiber angles up
to 50° based on the first order approximation is
depicted in Figure 6. Figure 7 represents the same
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TABLE 2. Comparison of the Results for the Fundamental Frequency (Hz) Obtained
by the Proposed FE Model and the Results in the Literature.

Configuration 3D*[12] 2D** [13] Present Study
(a) 333.02 340.86 337.45
(b) 290.38 300.64 298.80
(© 268.86 283.93 270.28
* Uncoupled

** Exact sandwich formulation

TABLE 3. The First Ten Natural Frequencies of the Laminated Plate.

Mode No. Without Piezoelectric Patches (Hz) With Piezoelectric Patches (Hz)
1 35.312 34.36
2 47.399 48.52
3 127.03 133.47
4 221.32 215.47
5 235.78 233.24
6 295.87 303.86
7 306.11 322.42
8 437.88 460.44
9 583.02 601.2
10 618.91 613.33

results obtained by the second order approximation.

In order to study the accuracy of the proposed
approximated method, Figure 8 compares the
results obtained by the first and second order
approximations for calculating the change of the
first natural frequency due to change of fiber
angles in the second layer with the exact results
obtained by FE simulation. Figure 9 shows the
error of approximated solution for first and second
order methods. It is obvious that the error of
second order approximation for frequency changes
of up to 4 % is negligible.

As another example, consider an arbitrary
modification in the stacking sequence from
[15/45/75/105] to [25/90/80/105] for the plate with
geometry and material properties like the previous
example. The change of the first three natural

IJE Transactions B: Applications

frequencies due to this modification obtained by
the first and second order approximations are
compared with the results obtained by the exact
solution in Table 4. It can be seen that a good
agreement is obtained by the proposed approximated
methods.

7.3. The Inverse Approximated Eigenvalue
Problem As explained previously, the great
advantage of the proposed approximated method is
the ability of formulating the inverse eigenvalue
problem. That means finding the necessary changes
in geometrical or physical properties of the
structure for achieving the desired changes in
natural frequencies. In this section the inverse
eigenvalue problem based on the first and second
order approximations is investigated. The design
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Change of frequency(%)

rys J

&7 . . . : .
2 4 6 8 10 12
The thickness of piezoelectric patches (m) |

Figure 2. Change of the first natural frequency due to
changing the piezoelectric patch thickness using the first order
approximation.

0 T T T T T
N Layer#| —e— |
. —_— 2
<l \ 3]
S ™ 4
5 ol i
g2
o
U =1
L P
3| |
Z0
=
<
=
O 4t |
-5 . . . : !
2 4 6 8 10 12
Thickness of piezoelectric patches (m) <10

Figure 3. Change of the first natural frequency due to
changing the piezoelectric patch thickness using the second
order approximation.

parameter is selected to be the piezoelectric layer
thickness in each patch. A four-layered cantilever
plate with stacking sequence [0/90/90/0] is
considered, the first two natural frequencies of this
plate are shown in Table 5. The problem is
formulated as finding the necessary change in the
thickness of piezoelectric patches P2 and P4
(Figure 1) which causes an arbitrary decrease in
the first natural frequency with the amount of 3 %
and an increase in the second frequency by 5 %.
Using the first order approximation yields to
a linear set of two equations with the parameters
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0 : -
s First order
qk . Second order ||
3 ) Exact
B ol
5
=
g
& 31 _
k)
)
D 4t |
o
5
@)
St
6 . . L . .
2 4 6 8 10 12
The thickness of piezoelectric patch (m) <10

Figure 4. Comparison of the approximated and exact results
for the first natural frequency due to changing the thickness of
the piezoelectric patch number 1.

120

............. FiTSI Ul'del'
100 Second order A

80+

60+

error (%)

40

20+

1 2 3 4 5 6 7 8 9
Thickness of piezoelectric patch (m) x10™

Figure 5. Error in results using the first and second order
approximations.

of At2 and At 4 35 the unknowns which results in
changes of Aty =0.4mm and At 4 =0.Imm. Using

the second order approximation yields to a set
of two quadratic equations which results in
At, =0.33mm and At, =0.2mm. By implementing

these changes on the initial model the change of
the first two natural frequencies are calculated and
compared with the desired values in Table 5.

It is obvious that the approximated method can
perform the desired modification with a good
accuracy.
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Change of frequency(%)

L

10 20 30 40 50
The change of fiber angles (A@")

Figure 6. Change of the first natural frequency due to change
of fiber angles in different layers based on the first order
approximation.

50r
—=»— | |Layer#
40+ 5
30 3
4

Change of frequency(%)

! L

40 :
0

10 20 30 40 50
The change of fiber angles (A6")

Figure 7. Change of the first natural frequency due to change
of fiber angles in different layers based on the second order
approximation.

8. CONCLUSION

This paper deals with the modification of free
vibration behavior of a laminated composite plate
with piezoelectric patches. Based on the classical
laminated plate theory, the finite element
formulation for composite plate with collocated
piezoelectric patches are derived and by using
this formulation, the first and second order
approximations of Taylor expansion are resulted
for solving the direct and the inverse eigenvalue
problems. Several numerical examples are carried
out to show the application and the accuracy of the
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Change of frequency(%)

o First order
2L Second order
Exact
-8 : . . ,
0 10 20 30 40 50

The change of fiber angles (A&")

Figure 8. Comparison of the approximated and exact results
for the first natural frequency due to change of fiber angles in
the second layer.
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Figure 9. Error in results using the first and second order
approximations.

present method and an applied design problem of
dynamic behavior modification is solved to show the
efficiency of the presented method on solving the
inverse eigenvalue problem. Studying the results in
Table 4, Figure 4 and Figure 8 (which compares
the results of the first and second order
approximations with the finite element solution)
shows the accuracy of the presented algorithm. It is
obvious from Table 5 that the presented method is so
efficient in dynamic behavior modification, that its
being formulated as an inverse eigenvalue problem.
The maximum error for the second order
approximation in the inverse method is less than 1 %.
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TABLE 4.

Change of the First three Natural Frequencies (Hz) Due to an
Arbitrary Modification in Stacking Sequence.

Mode Num Initial* Modified** Modified Modified Error % Error %
) (Exact) (F.0) (8.0) (F.0) (8.0)
1 18.54 16.71 16.37 16.89 -2.03 1.01
2 4391 44.02 4477 44.05 1.7 0.07
3 117.07 106.08 104.9 107.01 -1.11 0.09
F. O: First Order, S. O: Second Order
*[15/45/75/105]
** [25/90/80/105]
TABLE 5. The Natural Frequencies Obtained by the Inverse Eigenvalue Problem Based
on the First and Second Order Approximations.
Ao Tnitial (Hz) Modified Modified Error % Modified Error %
(Exact) (F.0) (F.0) (8.0, (8.0)
| 3% 34.36 33.33 33.54 0.63 3341 0.24
®, 5% 48.52 50.95 51.35 0.78 50.47 -0.94
F. O: First order, S. O: Second order
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