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Abstract   In this paper, the first and second order approximations of Taylor expansion are used for 
calculating the change of each natural frequency by modifying an arbitrary parameter of a system 
with a known amount and based on this approximation, the inverse eigenvalue problem is 
transformed to a solvable algebraic equation. The finite element formulation, based on the classical 
laminated plate theory (CLPT) is presented for laminated composite plates with piezoelectric patches. 
Using the proposed FE model, sensitivity analysis is carried out, to find the effects of the changes 
made in the design parameters such as the piezoelectric patch thickness and the fiber angles in each 
layer on the natural frequencies of the structure. The inverse eigenvalue problem is solved in order to 
find the thickness of piezoelectric patches and stacking sequence for relocating the natural 
frequencies. 

 
Keywords   Composite, Piezoelectric, Natural Frequency, Sensitivity Analysis, Inverse Eigenvalue 
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در اين مقاله تقريب هاي مرتبة اول و دوم از بسط تيلور براي محاسبة تغيير هر يک از فرکانس هاي چكيده       

مترهاي سازه استفاده شده اند و با استفاده از اين بسط طبيعي به واسطة ايجاد تغيير دلخواهي در هر يک از پارا
روابط المان محدود براي . ها مسئلة مقدار ويژة معکوس به حل يک دسته معادلات جبري تبديل شده است

تحليل يک ورق کامپوزيت که داراي لايه يا قطعاتي از پيزوالکتريک است بر پاية تئوري کلاسيک ورق استخراج 
 برايفاده از روابط المان محدود ارائه شده، براي هر يک از فرکانس هاي طبيعي آناليز حساسيت با است. شده اند

بر روي فرکانس ) مانند زاويه الياف هر لايه يا ضخامت هر قطعة پيزوالکتريک(يافتن مؤثرترين پارامترهاي سازه 
اسب لايه ها و ضخامت هر يک از در نهايت مسئلة مقدار ويژة معکوس براي يافتن چيدمان من. انجام شده است

 .قطعات پيزوالکتريک براي تعيين تغييرات دلخواه در فرکانس هاي طبيعي حل شده است
 
 

1. INTRODUCTION 
 
Dynamic behavior modification is an active area of 
research due to its several applications in structural 
design/optimization. In contrast with the direct 
eigenvalue problem (or finding the modal 
characteristics of a known structure), the inverse 
eigenvalue problem (finding the necessary changes 
in structural parameters for achieving predefined 

modal behavior) deals with several difficulties. 
Traditional methods for solving the inverse 
eigenvalue problem are restricted to trial and error 
iterative methods. Fox, et al [1] proposed exact 
expressions for derivatives of eigenvalues and 
eigenvectors with respect to any design variables for 
simple un-damped vibratory systems. This was 
rapidly developed to more complicated cases such 
as damped systems with complex eigenvalue and 
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eigenvectors [2,3]. Based on these derivatives many 
researches were carried out on formulating the 
inverse eigenvalue problem for different classes of 
structures. The earliest works in this field were 
restricted to modification of stiffness and mass 
matrixes in order to achieve desired shifts in natural 
frequencies for simple systems approximated with 
mass-spring systems [4]. Studying the inverse 
eigenvalue problem for continuous systems needs 
the mathematical or physical discretization. The 
finite element formulation is the most common 
method in modeling structures as continuous 
systems. So, formulating the inverse eigenvalue 
problem based on FE may be very efficient. The 
inverse eigenvalue problem in conjunction with FE 
was first performed for beam and bar elements [5,6] 
and consequently was developed for two 
dimensional elements [7,8] and more complicated 
structures like composite laminated plates [9] or 
functionally graded material (FGM) plates covered 
with piezoelectric layers [10]. In this paper, the 
inverse eigenvalue problem or finding the necessary 
changes in geometrical or physical properties of a 
structure in order to achieve desired changes in 
natural frequencies and relocating them in a 
favorable manner, is investigated and presented for 
a laminated composite plate with piezoelectric 
patches using the first and second order 
approximations of Taylor expansion. 
 
 
 

2. CONSTITUTIVE EQUATIONS FOR 
PIEZOELECTRIC LAMINATES 

 
For a composite plate consists of arbitrary layers 
(including the piezoelectric layers), the constitutive 
equation for the kth layer of the laminate is 
expressed as  
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 (1b) 
 
Which relates the stress vector T}xyσyyσxxσ{  

to the strain vector T}xyγyyεxxε{  through the 

elastic constants matrix, [C]. In these equations, Ei 
is the component of the electric field vector, Di 
refers to the electric displacement vector 
components, the quantities Cij and eij represent the 
elastic and the piezoelectric constants, respectively 
and kij is the electric permittivity. 
     When the poling direction of the piezoelectric 
layer coincides with the thickness direction, the 
components of the electric field vector can be 
expressed as gradient of electric potential φ in the 
thickness direction as 
 

ixiE
∂
ϕ∂

=  (2) 

 
By assuming the electric potential applying and 
varying linearly only in the thickness direction 
Equation 2 is written as 
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Where t is the piezoelectric layer thickness.  
 
 
 

3. DISPLACEMENT AND STRAIN FIELDS 
 
By defining vector }u{  as 
 

T}y/0wx/0w0w0v0u{}u{ ∂∂∂∂=  (4) 
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Where, u0, v0 and w0 are the mid-plane 
displacements, the displacement components based 
on the classical laminated plate theory (CLPT) 
may be expressed as [11] 
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The strains associated with these displacements are  
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4. FINITE ELEMENT FORMULATION 
 
A four node plate element with five degrees of 
freedom in each node containing u0, v0, w0, 

y0w,x0w ∂∂∂∂  is chosen. The terms u0 and v0 
are interpolated in terms of nodal values inside the 
element by means of bilinear Lagrangian 
interpolation functions as 
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and for approximating the term w0 inside the 
element according to nodal values, the Hermit 
interpolation is used as 
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Where uj, vj, wj are the nodal values, nn is the 

number of nodes per element, e
kΔ  is 

}y0w,x0w,0w{ ∂∂∂∂  vector in each node, ψ  
and ϕ  are the Lagrange and Hermit interpolation 
functions respectively [11]. 
     In addition to five degrees of freedom in each 
node, the elements that contain piezoelectric layers 
on the top and bottom surfaces have two electric 
potential degrees of freedom. Now the continuous 
displacement field in the element can be defined in 
terms of nodal variables as 
 

}e{u]u[N[H]}û{ =  (10) 
 
Where {ue} is a vector that contains all nodal 
displacements. [Nu] is the structural shape function 
that for a four nodded element is expressed as 
 

]]u4[N]u3[N]u2[N]u1[[N]u[N MMM=  (11) 
 
and each of the sub-matrices is 
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 (12) 
 
Where the terms iψ  are the linear interpolation 
functions and gij are the non-conforming Hermit 
cubic interpolation functions [11]. 
     The electrical potential is defined in terms of 
the layer variables as 
 

}{]N[}{ eϕ=ϕ ϕ  (13) 
 

Where }e{ϕ  is a vector that contains the electrical 
potentials in piezoelectric layers and ]N[ ϕ  is the 

electrical shape function. 
     Using the interpolation expressed in Equation 
10, strain components can be obtained through the 
derivatives of Equation 6 as: 
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}e{u]u[B{εε =  (14) 

 
The matrix ]u[B  for a four nodded element is 
expressed as 
 

]]u4[B]u3[B]u2[B]u1[[B]u[B MMM=  (15) 
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 (16) 
 
and using the interpolation of Equation 13 with the 
expression of Equation 2 gives 
 

}e]{[B{E} ϕϕ=  (17) 

 
Where 
 

][N][B ϕ−∇=ϕ . 

 
The dynamic equation of motion for a laminated 
composite plate with piezoelectric layers can be 
derived from the Hamilton's principle 
 

01t
0t

W)dtU(Tδ =∫ −−  (18) 

 
Where the term T denotes the kinetic energy, U 
represents the strain energy and W is the external 
work. The term T for a laminated composite plate 
is expressed as 
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Where nl represents the number of layers, kρ  is 
the density, )kh1k(h −+  is the thickness and 

}kwkvku{ &&&  is the velocity vector for the kth 

layer. The strain energy is expressed as 
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Where np represents the number of piezoelectric 
layers. The external work done by the prescribed 
surface traction fs, body forces fb and the applied 
electrical charge density Q on the piezoelectric 
layers may be expressed as 
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Where Sf and Sp are the surfaces in which the 
mechanical and electrical loads are applied, 
respectively. Substituting Equations 19-21 into 
Equation 18 and using Equations 10, 13, 14 and 17 
the governing equations of motion for a laminated 
composite plate with piezoelectric layers are 
obtained as 
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the mass, structural stiffness, coupled structural-
electrical stiffness and electric stiffness matrices, 
respectively. }mF{  and }qF{  are the applied 

mechanical and electrical loads. 
     The matrices and vectors in Equations 22a and 
22b are given by 
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]dv
v
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Where fc represents the concentrated force and all 
the other terms are expressed previously. 
     Another form of equation of motion can be 
expressed by eliminating the vector }{ϕ between 
Equations 22a and 22b as 
 

}qf{1][K]u[K}m{F]{u}eq[K}u{]uu[M −
ϕϕϕ+=+&&  

 (24) 
 
Where 
 

]u[K1][K]u[K]uu[K]eq[K ϕ
−

ϕϕϕ+=  (25) 

 
 
 
5. THE EIGENVECTOR AND EIGENVALUE 

DERIVATIVES 
 
The standard eigenvalue problem for an n-degree 
of freedom un-damped system may be formulated 
as 
 
[ ] [ ]( ) { } 0yMζK =−  (26) 

 
Where [K], [M], ζ  and {y} are the stiffness 
matrix, mass matrix, the eigenvalue and the 
eigenvector, respectively. Differentiating Equation 
26 with respect to any arbitrary parameter and pre-
multiplication by the term {y}T gives 
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Where, the symbol (') represents derivative with 
respect to the arbitrary parameter. Transposing 
both sides of Equation 26 and post-multiplying 
both sides by the term by { }′y gives 
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Using the orthogonality condition 
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and substituting Equations 29 and 28 into Equation 
27 gives 
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Equation 30 can be rewritten as 
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Where N is the number of DOFs, bj can be any of 
physical or geometrical properties of the structure 
and the superscript i represents the ith mode of 
vibration. Note that, no summation is implemented 
on the upper indices. 
     Equation 31 can be used for performing the 
initial sensitivity analysis for finding the regions 
within the structure that changing the parameter bj 
has the most influence on the ith natural frequency. 
     The derivative of Equation 31 with respect to 
the arbitrary parameter bk can be expressed as 
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It is obvious that the second derivative of each 
eigenvalue depends on the first derivative of the 
corresponding eigenvector. For calculating the 
eigenvector derivative, the modal superposition 
method is used. Rewriting Equation 26 gives 
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i
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The derivative of Equation 33 with respect to bk is  
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Approximating the eigenvector derivative by a 
truncated series of the low-frequency mode shapes 
gives 
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Where summation is implemented on the upper 
index l. Substituting Equation 34 in 35 and 
Multiplying both sides by the term p

my , in the case 
of ip ≠  gives 
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From the orthogonality condition, if l = p then the 
left side of Equation 36 is zero, and in the case of 

pl ≠  Equation 36 is simplified to 
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Equation 37 gives all of the coefficients aikl in 
equation 35 except the terms aiki. For calculating 
these terms the orthogonality of the eigenvector 

with respect to the mass matrix is used as 
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The derivative of Equation 38 with respect to bk 
using the truncated series of Equation 35 can be 
written as 
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The left side of Equation 39 is nonzero only for i = l, 
in this case 
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6. THE DIRECT AND INVERSE 
APPROXIMATED EIGENVALUE 

PROBLEMS 
 
The first and second derivatives of eigenvalue 
were calculated in the previous section. Using 
these derivatives, Taylor expansion may be used 
for approximating the change of natural 
frequencies due to an arbitrary change in physical 
or geometrical properties of structure. In addition 
to the direct problem, the inverse eigenvalue 
problem can be formulated based on the Taylor 
expansion by solving a set of linear or quadratic 
equations. 
     Defining the matrix S as 
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Then, the Taylor expansion by using only the first 
term can be expressed as 
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or 
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{ } [ ] { }ΔbSΔζ =  (43) 
 
Equation 42 represents the direct approximated 
eigenvalue problem. The inverse eigenvalue 
problem using the first approximation in Taylor 
expansion may be formulated as 
 
{ } [ ] { }Δζ1SΔb −=  (44) 
 
The Taylor expansion using the first two terms is 
expressed as 
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Where bj and bk can be any of the physical or 
geometrical parameters. In a particular case that 
the change of eigenvalue by changing only one 
design parameter is studied, Equation 45 can be 
simplified to 
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Equation 46 can be rewritten in the matrix form as 
 

{ } [ ]{ } [ ]
⎭
⎬
⎫

⎩
⎨
⎧+= 2ΔbS2

2
1ΔbS1Δζ  (47) 

 
Where 
 

j2b

i
ζ2

ijS2
jb

i
ζ

ijS1
∂

∂
=

∂
∂

=  

 
The direct approximated eigenvalue problem is 
formulated by setting the parameters jΔb  to known 

values in Equation 46 and the inverse problem may 
be formulated by solving a set of quadratic algebraic 

equations when the parameters 
i
ζΔ  are set to known 

values and the parameters jΔb  are unknown. 

 
 
 

7. NUMERICAL RESULTS AND 
DISCUSSION 

 
7.1. Verification of the Finite Element 
Model   In order to verify the accuracy of the 
proposed finite element model and self developed 
computer programs, three case studies are taken 
into consideration: (a) an 8-layer graphite/epoxy 
cross-ply laminate [90/0/90/0/0/90/0/90]; (b) a 
PZT-5A piezoelectric layer at the top surface of an 
8-layer graphite/epoxy cross-ply laminate 
[90/0/90/0/0/90/0/90/p]; (c) an 8-layer 
graphite/epoxy laminate covered with two PZT-5A 
piezoelectric layers at the top and bottom surfaces 
[p/90/0/90/0/0/90/0/90/p]. The plates are square of 
side length L = 1 and the side-to-thickness ratio 
L/h = 100. All the layers (the piezoelectric and 
composite material layers) have the same 
thickness, the material properties are: 
 
E1 = 181Gpa, E2 = 10.3 GPa, G12 = 7.17 GPa, G23 = 
2.87 GPa 0.2812ν = , 0.3323ν = , 31580Kg/mρ = , 
E3 = E2, G13 = G12. 
 
The piezoelectric material properties are shown in 
Table 1. 
     The results for the fundamental frequency of 
plate with simply supported boundary conditions 
on all sides obtained by the presented FE model 
are compared with the results of two different 
analytical methods in the literature: a 3D state 
space uncoupled solution proposed by Xu, et al 
[12] and a 2D analytical model based on sandwich 
formulation using layer-wise first order shear 
deformation theory proposed by Benjeddou, et al 
[13]. It can be seen that there is a good agreement 
between the presented results and the previously 
reported results in the literature. 
 
7.2. The Direct Approximated Eigenvalue 
Problem   A four-layered cantilever plate with 
cross-ply stacking sequence [0/90/90/0] is 
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TABLE 1. Material Properties of Piezoelectric Layers/Patches. 
 

 E (N/m2) ν  )3(kg/mρ  )2(c/m31e  )2(c/m32e  (F/m)33K  

G-1195N 63e9 0.3 7600 22.86 22.86 1.5e-8 

PZT-5A 61e9 0.35 7750 7.209 7.209 1.5e-8 
 

 
 
 

 
 
Figure 1. Patch configuration. 

considered. The plate is square with length set as 
0.4m and the thickness of each layer is set to 1mm. 
the material properties are: 
 
E1 = 132.5 GPa, E2 = 10.8 GPa, G12 = 5.7 GPa, G23 = 

3.4 GPa 0.2412ν = , 0.4923ν = , 31540Kg/mρ = , 
E3 = E2, G13 = G12. 
 
G-1195N piezoelectric patches are used for 
bonding the top and bottom surfaces of the 
laminated plate in a configuration as depicted in 
Figure 1. The material properties of the 
piezoelectric layer are shown in Table 2. The 
thickness of each piezoelectric layer is set to be 
0.1mm. 
     The first ten natural frequencies of the 
laminated plate before and after adding the 
piezoelectric patches are shown in Table 3. It can 
be seen that adding the piezoelectric patches 
changes the value of natural frequencies. 
     In the first step, the thickness of each 
piezoelectric patch is considered as the design 

variable and the direct eigenvalue problem is 
solved for investigating the effect of these 
parameters on each natural frequency. As an 
example, the change of the first natural frequency 
due to changing the piezoelectric layer thickness 
from 0.1mm to 1mm in each patch using the first 
order approximation is shown in Figure 2. 
     Figure 3 shows the same results obtained by the 
second order approximation. 
     In order to study the accuracy of the proposed 
approximated method, the change of the first 
natural frequency due to changing the thickness of 
the piezoelectric patch number 1 from 0.1mm to 
1mm is calculated by FE (as exact solution). 
Figure 4 compares the results obtained by the first 
and second order approximations with the exact 
solution. Figure 5 shows the error of the first and 
second order approximations for the results 
depicted in Figure 4. It is obvious that the error of 
the second order approximation for changing the 
natural frequency up to 2 % is almost negligible. 
     In the next step, the fiber angle in each layer is 
taken into consideration as the design parameter. A 
four-layered cantilever plate with angle-ply 
stacking sequence [15/45/75/105] and geometry 
and material properties like the previous problem 
is considered. The piezoelectric patch 
configuration is shown in Figure 1and each 
piezoelectric layer thickness is set to 0.1mm in all 
patches. The first and second derivatives of the 
first four eigenvalues are calculated and the direct 
approximated eigenvalue problem is solved based 
on the first and second order approximations in 
Taylor expansion for finding the change of 
frequencies due to an arbitrary change in fiber 
angles. As an example the change of the first 
natural frequency due to change of fiber angles up 
to 50˚ based on the first order approximation is 
depicted in Figure 6. Figure 7 represents the same 
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TABLE 2. Comparison of the Results for the Fundamental Frequency (Hz) Obtained 
by the Proposed FE Model and the Results in the Literature. 

 

Configuration 3D* [12] 2D** [13] Present Study 

(a) 333.02 340.86 337.45 

(b) 290.38 300.64 298.80 

(c) 268.86 283.93 270.28 
 

* Uncoupled 
** Exact sandwich formulation 
 
 
 

TABLE 3. The First Ten Natural Frequencies of the Laminated Plate. 
 

Mode No. Without Piezoelectric Patches (Hz) With Piezoelectric Patches (Hz) 

1 35.312 34.36 
2 47.399 48.52 
3 127.03 133.47 
4 221.32 215.47 
5 235.78 233.24 
6 295.87 303.86 
7 306.11 322.42 
8 437.88 460.44 
9 583.02 601.2 

10 618.91 613.33 
 

results obtained by the second order approximation. 
     In order to study the accuracy of the proposed 
approximated method, Figure 8 compares the 
results obtained by the first and second order 
approximations for calculating the change of the 
first natural frequency due to change of fiber 
angles in the second layer with the exact results 
obtained by FE simulation. Figure 9 shows the 
error of approximated solution for first and second 
order methods. It is obvious that the error of 
second order approximation for frequency changes 
of up to 4 % is negligible. 
     As another example, consider an arbitrary 
modification in the stacking sequence from 
[15/45/75/105] to [25/90/80/105] for the plate with 
geometry and material properties like the previous 
example. The change of the first three natural 

frequencies due to this modification obtained by 
the first and second order approximations are 
compared with the results obtained by the exact 
solution in Table 4. It can be seen that a good 
agreement is obtained by the proposed approximated 
methods. 
 
7.3. The Inverse Approximated Eigenvalue 
Problem   As explained previously, the great 
advantage of the proposed approximated method is 
the ability of formulating the inverse eigenvalue 
problem. That means finding the necessary changes 
in geometrical or physical properties of the 
structure for achieving the desired changes in 
natural frequencies. In this section the inverse 
eigenvalue problem based on the first and second 
order approximations is investigated. The design 
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Figure 2. Change of the first natural frequency due to 
changing the piezoelectric patch thickness using the first order 
approximation. 
 
 
 

 
Figure 3. Change of the first natural frequency due to 
changing the piezoelectric patch thickness using the second 
order approximation. 

 
Figure 4. Comparison of the approximated and exact results 
for the first natural frequency due to changing the thickness of 
the piezoelectric patch number 1. 
 
 
 

 
Figure 5. Error in results using the first and second order 
approximations. 

parameter is selected to be the piezoelectric layer 
thickness in each patch. A four-layered cantilever 
plate with stacking sequence [0/90/90/0] is 
considered, the first two natural frequencies of this 
plate are shown in Table 5. The problem is 
formulated as finding the necessary change in the 
thickness of piezoelectric patches P2 and P4 
(Figure 1) which causes an arbitrary decrease in 
the first natural frequency with the amount of 3 % 
and an increase in the second frequency by 5 %. 
     Using the first order approximation yields to 
a linear set of two equations with the parameters 

of 2Δt  and 4Δt  as the unknowns which results in 
changes of 0.4mm2Δt =  and 0.1mm4Δt = . Using 
the second order approximation yields to a set 
of two quadratic equations which results in 

0.33mm2Δt =  and 0.2mm4Δt = . By implementing 
these changes on the initial model the change of 
the first two natural frequencies are calculated and 
compared with the desired values in Table 5. 
     It is obvious that the approximated method can 
perform the desired modification with a good 
accuracy. 
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Figure 6. Change of the first natural frequency due to change 
of fiber angles in different layers based on the first order 
approximation. 
 
 
 

 
Figure 7. Change of the first natural frequency due to change 
of fiber angles in different layers based on the second order 
approximation. 

 
Figure 8. Comparison of the approximated and exact results 
for the first natural frequency due to change of fiber angles in 
the second layer. 
 
 
 

 
Figure 9. Error in results using the first and second order 
approximations. 

8. CONCLUSION 
 
This paper deals with the modification of free 
vibration behavior of a laminated composite plate 
with piezoelectric patches. Based on the classical 
laminated plate theory, the finite element 
formulation for composite plate with collocated 
piezoelectric patches are derived and by using 
this formulation, the first and second order 
approximations of Taylor expansion are resulted 
for solving the direct and the inverse eigenvalue 
problems. Several numerical examples are carried 
out to show the application and the accuracy of the 

present method and an applied design problem of 
dynamic behavior modification is solved to show the 
efficiency of the presented method on solving the 
inverse eigenvalue problem. Studying the results in 
Table 4, Figure 4 and Figure 8 (which compares 
the results of the first and second order 
approximations with the finite element solution) 
shows the accuracy of the presented algorithm. It is 
obvious from Table 5 that the presented method is so 
efficient in dynamic behavior modification, that its 
being formulated as an inverse eigenvalue problem. 
The maximum error for the second order 
approximation in the inverse method is less than 1 %. 
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TABLE 4. Change of the First three Natural Frequencies (Hz) Due to an 
Arbitrary Modification in Stacking Sequence. 

 

Mode Num. Initial* Modified** 
(Exact) 

Modified 
(F.O.) 

Modified 
(S.O.) 

Error % 
(F.O.) 

Error % 
(S.O.) 

1 18.54 16.71 16.37 16.89 -2.03 1.01 
2 43.91 44.02 44.77 44.05 1.7 0.07 
3 117.07 106.08 104.9 107.01 -1.11 0.09 

 
F. O: First Order, S. O: Second Order 
* [15/45/75/105] 
** [25/90/80/105] 
 
 
 

TABLE 5. The Natural Frequencies Obtained by the Inverse Eigenvalue Problem Based 
on the First and Second Order Approximations. 

 

 ωΔ  Initial (Hz) Modified 
(Exact) 

Modified 
(F.O.) 

Error % 
(F.O.) 

Modified 
(S.O.) 

Error % 
(S.O.) 

1ω  -3 % 34.36 33.33 33.54 0.63 33.41 0.24 
2ω  5 % 48.52 50.95 51.35 0.78 50.47 -0.94 

 
F. O: First order, S. O: Second order 
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