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Abstract   This paper proposes a novel, bi-objective mixed-integer mathematical programming for 

an open shop scheduling problem (OSSP) that minimizes the mean tardiness and the mean completion 

time. To obtain the efficient (Pareto-optimal) solutions, a fuzzy multi-objective decision making 

(fuzzy MODM) approach is applied. By the use of this approach, the related auxiliary single objective 

formulation can be achieved. Since the OSSP are known as a class of NP-hard problems, a tabu 

search (TS) method is thus used to solve several medium to large-sized instances in reasonable 

runtime. The efficiency of the results obtained by the proposed TS for small, medium and large-sized 

instances is evaluated by considering the corresponding overall satisfactory level of all objectives. 

Also the adaptability of the yielded solutions of the proposed TS for the small-sized instances is 

evaluated by comparing the results reported by the Lingo software. Several experiments on different-

sized test problems are considered and the related results are indicated the ability of the proposed TS 

algorithm to converge to the efficient solutions. 
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1. INTRODUCTION 

 

Assigning or sequencing some activities which 

require to be processed through a set of limited 

available resources (instance machines) is called 

scheduling. Efficient scheduling helps us to increase 

the efficiency of the capacity utilization by reducing 

the total machine idle time, jobs waiting times, 

mean job tardiness and reducing the time required 

to complete jobs. Scheduling is also useful to 

increase the profitability in competitive environment. 

Open shop scheduling problems (OSSP) are not 

like job shop or flow shop scheduling problems, 

because in OSSP there is no restrictions on the 
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order of any job processing. In other words, the 

order of jobs processed on a machine, and the 

order of machines to process a job can be selected 

arbitrarily. Usually the goal of the OSSP is to find 

a feasible combination of the order of machines 

and jobs (i.e., a feasible schedule) in order to 

minimize the makespan that is also known as 

overall completion time in dynamic scheduling, in 

which the ready times are not zero. With this 

ordering constraints relaxed from a job shop 

problem, it results in a larger space of the OSSP 

structure. 

     The OSSP seems to get less attention from 

researchers. It has a larger solution space than the 

job shop or flow shop scheduling problems. Thus 

to achieve good solutions in reasonable computation 

time, applying a number of meta-heuristics might 

be useful in such a hard problem. The OSSP has 

many applications in industry and manufacturing 

systems. For example consider a large automotive 

garage, in which each vehicle may need some 

activities, such as replace exhaust pipe, align the 

wheels and tune up. These activities should be 

done for one job, and can be performed in any 

order. This problem is a class of NP-hard problems 

[1]. The OSSP may use in testing facilities where 

activities should not be done in any specified order 

which frequently applied in testing the elements of 

an electronic system. In general, this problem can 

be used in order to repair facilities in an arbitrary 

order [2]. 

     Brucker, et al [3] and Liaw [4] proposed exact 

solution methods which followed by branch-and-

bound and elimination methods to obtain an 

optimal solution. Tavakkoli-Moghaddam, et al [5] 

developed a new mathematical model for parallel 

machines scheduling problems with sequence-

dependent setup times and precedence constraints 

to minimize the number of tardy jobs and total 

completion time of all jobs. As mentioned before, 

finding optimal solutions for medium or large-scale 

OSSP needs the vast amount of computational 

times, thus it is not a practical choice. Some meta-

heuristics, which are widely used in scheduling 

problems, are an ant colony optimization (ACO) 

algorithm [6] for a flow shop scheduling problem, 

a simulated annealing (SA) method [7] for an open 

shop problem, a tabu search (TS) method [8,9] for 

the OSSP, a genetic algorithm (GA) [10] for a flow 

shop scheduling problem. A genetic algorithm (GA) 

[11] proposed for a parallel machine scheduling 

with family setup times. In addition, some 

researchers applied hybrid heuristics, such as hybrid 

genetic algorithms (HGAs) [12-15] for job shop 

scheduling problems, a HGA [16] for a flow shop 

scheduling problem, and a HGA [17] for the 

OSSP. 

     In this paper, the discussion is focused on the 

open shop scheduling problems, and a 

mathematical formulation is also introduced. To 

solve some large-scale problems, a tabu search 

method is also proposed to obtain near-optimal 

solutions in a little computational time.  

     The rest of this paper is organized as follows. 

The static scenario taken into consideration in the 

model construction is described in Section 2. The 

related mathematical formulation is developed in 

Section 3, followed by the proposed fuzzy MODM 

method in Section 4. An efficient TS method is 

presented in Section 5. Computational results of 

small, medium and large-sized numerical 

experiments are given in Section 6. At last the 

deductions of this study and possible future 

researches are presented in Section 7. 

 

 
 

2. PROBLEM DEFINITIONS AND 

ASSUMPTIONS 
 

Most of the scheduling problems are associated 

with n jobs on m machines. If ni be the number of 

operations to be performed on machine i, then for 

an n job, m machine scheduling problems there are 

(n1)!(n2)! ... (nm)! Theoretically possible sequences 

which not all of them are feasible. The best 

sequence should be technologically feasible and 

optimizes the effectiveness measure. Considering 

the job operational flow or the processing order, n 

job on m machine scheduling problems can be 

divided into four categories as follows:  flow shop, 

job shop, dependent shop, and open or general 

shop. 

     In job shop scheduling problems, the various 

jobs can have different orders on the related 

machine; however, these orders are fixed. Also 

jobs are independent of each other. In dependent 

shop, the sequence of one or more jobs depends on 

the other jobs. If there are no precedence constraints 

(i.e., all jobs can be processed in any order), the 
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shop is called a general or open shop. Thus the 

open shop system has much flexibility in 

scheduling; however, it is difficult to develop a 

rule that give an optimal sequence for each 

problem [18]. 

     The assumptions considered in this paper are 

listed below: 
 

• Each of n jobs should be processed on m or 

fewer machines. 

• Each job follows an arbitrary machining 

order and has a specified processing time. 

• Each job has a certain due date. 

• One of the considered objectives in 

described OSSP is to minimize the mean 

completion time.  

• Another objective is to minimize the mean 

of job tardiness. Let these two objectives 

have the same importance in making a 

decision. 

• All n jobs are simultaneously available at the 

beginning of the planning period. 

• A single job cannot be processed 

simultaneously by more than one machine. 

• The processing time for each job on each 

machine is known. 

• Setup times and transportation times are 

independent of the sequence and are 

included in the processing times for all jobs. 

• The importance level of all jobs is assumed 

to be equal. 

• All m machines are available at the 

beginning of the planning horizon and ready 

to work on any of n jobs which require that 

machine. 

• At any given time, at the most one job can 

be processed on a specific machine. 

• There is only one machine of each type in 

the shop. 

• In-process inventory is not allowed, i.e. the 

jobs cannot have the waiting time. 

• The removal times and transportation times 

are assumed to be zero for all jobs in the 

shop. 

• In this study it is assumed that preemption is 

not allowed that is, any started operation 

must be completed without interruptions. 

• Operations of a job can be processed in any 

order. 

The following section contains a list of symbols 

and their definitions used in this paper. In addition, 

a mixed-integer programming model is formulated 

for the above-mentioned scenario that is presented 

in the next section. 

 

 

 
3. MATHEMATICAL MODEL 

 

In this section, the described bi-objective open 

shop scheduling scenario is treated as a mixed-

integer mathematical formulation. The notations, 

parameters, and decision variables are described as 

follows. 

 

3.1. Model Notations   To describe the addressed 

OSSP, the following notations are used: 
 

i, j Job indices (i, j = 1,…,n). 

k, l Machine indices (k, l = 1,…,m). 

Oik Operation of job i on machine k (i = 

1,…,n; k = 1,…,m). 

M A large positive number. 

di Due date of job i (i = 1,…,n). 

pik Processing time of job i on machine k 

(i = 1,…,n; k = 1,…,m). 

stik Starting time of processing job i on 

machine k (i = 1,…,n; k = 1,…,m). 

Cik Completion time of job i on machine 

k (i = 1,…,n; k = 1,…,m). 

xijk If job i precedes job j on machine k, 

then xijk = 1; Otherwise, xijk = 0 (i, j = 

1,…n; k = 1,…,m) 

yikl If job i on machine k precedes the 

same job on machine l, then yikl = 1; 

Otherwise, yikl = 0 (i = 1,…,n;  k, l = 

1,…,m). 
 

3.2. Mathematical Formulation   The mixed- 

integer mathematical programming has been 

formulated as follows: 

 


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s.t. 
 

kiTdpst iiikik ,; ∀≤−+  (3) 

 

kiCpst ikikik ,; ∀≤+  (4) 

 

( ) lkistyMpst iliklikik ,,;1 ∀≤−×−+  (5) 

 

lkistyMpst ikiklilil ,,; ∀≤×−+  (6) 

 

( ) kjistxMpst jkijkikik ,,;1 ∀≤−×−+  (7) 

 

kjistxMpst ikijkjkjk ,,; ∀≤×−+  (8) 

 

kjixx jikijk ,,;1 ∀=+  (9) 

 

lkiyy ilkikl ,,;1 ∀=+  (10) 

 

{ } kjixijk ,,;1,0 ∀∈  (11) 

 

{ } lkiyikl ,,;1,0 ∀∈  (12) 

 

kiCik ,;0 ∀≥  (13) 

 

iTi ∀≥ ;0  (14) 

 

3.3. Model Descriptions   The objective (1), seeks 

to minimize the mean job tardiness. Objective (2) 

attempts to minimize the mean job completion 

time. Constraint (3) describes the tardiness for each 

job which defines as: 

 

{ } nidCT iik
mk

i ,...,2,1;max,0max
,...,2,1

=








−=
=

 (15) 

 

Constraint (4) considers the relation between 

starting processing time, processing time, and 

completion time in the shop. Constraints (5) and 

(6) indicate the relationship between each two 

consecutive operations (machines) of a job. 

Constraints (7) and (8) express the precedence 

between each pair of jobs on each related machine. 

Constraint (9) specifies the order relation between 

two jobs on a machine. Constraint (10) determines 

the order relation between two consecutive 

operations (machines) of a job. Constraints (11) to 

(14) represent integrality and non-negativity 

conditions. 

4. FUZZY MULTI-OBJECTIVE DECISION 

MAKING APPROACH 
 

Several approaches for solving multi-objective 

linear programming (MOLP) models are presented 

in the literature. Most of these approaches are fuzzy 

programming methods. A brief review of these 

methods is presented in the following paragraph. 

For more details refer to Torabi, et al [17]. 

     The first fuzzy approach for solving a MOLP 

developed by Zimmermann [20] is called max–min 

approach; however the solution yielded by a max–

min operator is well-known that may neithr be 

unique nor efficient [21-22]. Thus, thereafter to 

remove this deficiency several methods are 

proposed. Particular interests are the augmented 

max–min approach (LH method) [22], a modified 

version of Werners’ approach [23] (MW method) 

[24], a two-phase fuzzy approach (LZL method) 

[25], and a fuzzy approach (TH method) [19]. The 

TH method is a combination of LH and MW 

methods. Each of the TH, LH and MW methods 

usually gives us the efficient solutions of an MOLP 

model. Moreover they are more flexible than the 

LZL approach, also due to their single-phase 

characteristic [19]. Thus, we evaluate TH, LH and 

MW methods by applying them to several small-

sized test problems generated at random. The 

obtained results indicate that all of these three 

methods always yield the efficient (non-dominated) 

solutions (i.e., an efficient solution is a feasible 

solution if there is no other feasible solution that 

yields an improvement in one objective without 

causing degradation in at least one other objective). 

The TH method, which is a combination of the LH 

and MW methods, yields several options for an 

MOLP because of its parameters combinations. In 

addition, The TH and MW methods propose more 

flexible formulation of an aggregation function. 

However, the LH method can be a suitable method 

along with the TH method. In this case, the LH 

method not only yields an efficient solution in a few 

runtime, but also is easier to apply in the proposed 

tabu search algorithm. Thus in this paper, the 

proposed bi-objective mixed integer model is solved 

by using the LH method. 

 
4.1. Fuzzy Approach for an Obtained Crisp 

MOLP   Consider the proposed bi-objective 

mixed-integer model presented in Section 3.2. The 
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following steps convert this model to a single-

objective mixed-integer formulation. 
 

Step 1. For each objective function calculate the 

positive ideal solution ( PIS
kZ ) and negative ideal 

solution ( NIS
kZ ) by the following equations. 

Assume that, F be a set of all model constraints 

(i.e., Constraints (3) to (14)). 
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Step 2. Define a linear membership function for 

each obtained positive and negative objectives in 

Step 1, use the following membership equations. 

Suppose that ( )X
kZµ  be the satisfaction level of 

the k-th objective for decision vector X (see 

Figures 1 and 2). 
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Step 3. Convert the bi-objective model to its 

related equivalent single-objective model by using 

LH aggregation functions and their corresponding 

formulations. 

     Equations 22 to 28 show that how the 

aggregation functions of the LH method can be 

inserted to the final crisp MOLP model. The LH 

aggregation function is used in subsequent model. 

Consequently the auxiliary single-objective model 

for the OSSP is obtained. 
 

( ) ( )∑
=

+=
2

1

Zk
max

k

k XX µθδλλ  (22) 

( )XZ1
µ  

( )XZ1
 

PISZ1
 NIS

Z1
 

1 

 
 

Figure 1. Linear membership function of Z1(X). 

 

 

 
( )XZ2

µ  

( )XZ2

PIS
Z2

 NIS
Z2

 

1 

 

Figure 2. Linear membership function of Z2(X). 
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=k

kθ  (26) 

 

2,1,0 => kkθ  (27) 

 

[ ]1,0∈λ  (28) 

 

Where δ is a small positive number adequately 

which is usually set to 0.01 [21,22]. Moreover, the 

preferences of the objectives are determined by the 

decision maker as: θ1 = θ2, thus the objectives 

weight vector is set to θ1 = θ2 = 0.5. Take notice, F 

is the set of Constraints (3) to (14). 

     Since the OSSP has a large solution space, thus 

to achieve a good solution in reasonable computation 

time for some large-scale problems, a tabu search 

(TS) method is proposed in the next section. 

 

 

 
5. PROPOSED TABU SEARCH 

 

The tabu search (TS) method was first defined and 

introduced by Glover [26,27], which is an individual 

local search-based method for solving hard 

combinatorial optimization instances. Following is 

a brief description of the TS method. In the first 

step, a move function must be defined to transform 

a solution to another one. For instance, a move 

function can replace some jobs in a basic sequence. 

With such a function, this method can generate 

some new solutions from a basic (or initial) 

sequence. Therefore, with the move function, the 

TS search through the neighborhood of an initial 

solution in order to find the best sequence around 

its local area. After that, the method repeats the 

neighborhood search procedure from the obtained 

best sequence, as a new basic solution in decision 

space, and the process will be continued. Moreover, 

the system of a tabu list is introduced to avoid 

cycling. The components of the tabu list indicate the 

current tabu moves (i.e., the forbidden sequences in 

the current neighborhood search are determined by 

these elements). When the TS find a new basic 

sequence in the neighborhood search procedure, the 

oldest element of the tabu list should be exchanged 

with the related new one. The search procedure 

stops when a stop criterion holds. The design of the 

TS components influences the performance of the 

TS, convergence speed, or its running time. 

 

5.1. Initial Solution   Various methods can be 

applied to yield an initial solution, such as a related 

priority dispatching rule or a random method. 

We apply a random method to several numerical 

experiments in different sizes. The results 

expressed a little influence of the random method 

on the quality of the solutions. Thus, we use the 

random method to generate the initial solution (as a 

basic sequence) as follows. Since we consider n 

jobs and m machines in the OSSP, each feasible 

point of the solution space is connected to an n × m 

array of operations Oik. Thus, we yield the random 

basic sequences through generating a random 

permutation of Oik in an n × m operation-based array. 

 

5.2. Moves and Neighborhood   As mentioned 

before, a function which transforms a sequence to 

another sequence in the current neighborhood, 

called a move function. Since the neighborhood 

structure directly affects on the performance of the 

algorithm, the infeasible moves not allowed in our 

search and unnecessary moves were eliminated 

too. Three types of move functions have been 

considered in the literature: 
 

• Swap each two adjacent jobs that are placed 

at the positions p and (p+1); p = 1, 2,...,n × 

m, in the above-mentioned operation-based 

array. 

• Swap two jobs that are placed at the 

positions p and p′; p, p′ = 1,2,...,n × m, in the 

related operation-based array. 

• Remove a job that is placed at the p-th 

position and insert it to the p′-th position of 

the operation-based array. 
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After applying these move types to some random 

test problems, we choose the first move type in our 

proposed TS, because of its feasibility adaptation 

and solution diversification. 
 

5.3. Move Evaluation   The yielded solution 

from each move is evaluated as follows. As 

mentioned before, each feasible sequence of the 

solution space considered as an n × m operation-

based array. Since moves yield feasible arrays, 

thus for evaluating each array, at first an n × m 

completion time matrix with zero elements is 

defined. Considering the order of arranged 

operations Oik in an array, we start calculating from 

position one (p=1), then go to position two (p=2), 

and finally continue to position n × m (p= n×m). 

Thus, each element of the related completion time 

matrix can be calculated as: 
 

{ } { }





+=

==
ik

mk
ik

ni

p
ik

p
ik ccpc

.,..,2,1,...,2,1
max,maxmax  (29) 

 

With these completion times, the mean job tardiness 

and mean completion time can be computed. 

Furthermore, applying the proposed Equations 19 

and 20, ( )XZ1
µ  and ( )XZ 2

µ  can be computed as 

well. To calculate the overall satisfactory level (λ), 

the following system of inequalities should be 

solved: 
 

( )
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[ ]
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∈

≥

≥

1,0

2

1

λ

λµ

λµ

X

X

Z

Z

 (30) 

 

Since only λ is unknown in this system, thus we 

can calculate λ as follows: 
 

( ) ( ){ }XX ZZ 21
,min µµλ =  (31) 

 

Consequently the above calculated parameters are 

located into the aggregation function of the LH 

method. The obtained value is used to evaluate the 

related move. A move with the greatest value of 

the LH aggregation function is the best move in the 

current neighborhood. 

 

5.4. Tabu List   In the search procedure, there 

may exist some moves that bring the TS method 

back to recently obtained solutions. These moves 

should be considered as tabu moves for a certain 

number of iterations. Thus the characteristics of 

these moves must be kept in a list, called a tabu 

list. To update the tabu list, when the TS finds a 

best sequence in a neighborhood, the associated 

characteristics of this move should be exchanged 

with the oldest element of the tabu list. The size of 

the tabu list is an important parameter, because a 

large tabu list may restrict the search procedure 

and a small tabu list may lead to cycling risk. The 

size of the tabu list is usually selected from the 

set {5-9}. We applied these sizes of the tabu list 

to some test problems with different sizes. 

Considering the yielded results, the size of tabu list 

for small and medium to large-sized problems is 

set to 5 and 7, respectively. 

 

5.5. Stopping Criteria   In general, there are 

three stopping criteria commonly used in the 

literature: 
 

• The obtained best sequence is close enough 

to a lower bound of the optimum value.  

• The number of iterations without any 

improvement in the objective function value 

passes a specified limit. 

• The computational time or total number of 

iterations passes a certain restriction. 
 

Two latter stopping criteria are simultaneously 

applied in our proposed TS method. 

 

 

 

6. NUMERICAL EXPERIMENTS 
 

In this section, several numerical instances with 

different combinations of jobs and machines are 

generated randomly in small, medium, and large 

sizes in order to evaluate the performance of the 

proposed TS method and fuzzy MODM 

approaches. The obtained results of small-sized 

instances are compared with the proposed mixed-

integer mathematical formulation given in Section 

4.2. This mathematical model can yield the non-

dominated (Pareto-optimal) solutions by applying 

the Lingo 9 commercial software for small-sized 

problems in a few minutes. However for the 

medium and large-sized problems (e.g., when the 

number of jobs and machines are bigger than 4), 

the Lingo cannot yield a Pareto-optimal solution 
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even after several hours running. However, 

fortunately the Lingo can yield a feasible solution 

for these instances in reasonable run time, which 

can help us to construct the related positive and 

negative ideal solutions. Also, for all instances the 

TS method is coded in MATLAB R2008a on a 32-

bit operation system with Intel(R) core(TM) 2 Duo 

CPU 2.2 GHz and 2038 MB of RAM VAIO 

computer. 

 
6.1. Instances Generation   In the literature 

there is a classical method to generate the 

numerical instances of n|jobs and m|machines 

scheduling problems randomly [28]. This method 

is implemented as follows. The processing times 

and due dates are uniformly distributed in the 

intervals [0,100] and 















+−








−−

2
1,

2
1

R
TP

R
TP , 

respectively. In this formulation, two parameters R 

and T are taken into consideration in the sets {0.2, 

0.6, 1.0} and {0.4, 0.6, 0.8}, respectively. Also in 

the case of n|jobs and m|machines scheduling, we 

have | ( )pnmP 1−+= , where p  is the mean of total 

processing times. 

     Considering this instance generating method, 

the number of jobs can be 4 to 6, and the number of 

machines can be 2 to 4 for small-sized problems. 

Also for medium and large-sized problems, the 

number of jobs can be 10, 12, 15, and 30, and the 

number of machines can be 6 to 9. For each of 

these random instances, the manufacturing system 

is defined as a number of jobs|×|number of 

machines, for example the problem 10 × 6 indicates 

a manufacturing environment with 10 jobs and 6 

machines. 

 
6.2. Defining The Positive and Negative Ideal 

Solutions   As mentioned before, in the proposed 

fuzzy MODM approach, a linear membership 

function is considered for each objective. 

Therefore, we can define an uncertain boundary for 

each membership function as [ ]NIS
i

PIS
i ZZ , . On the 

other hand, let X denotes a decision vector is 

solution space. In this case Xx ∈∀  if ( ) PISZxZ < , 

the membership value of x will be greater than 

zero. Thus, x will be taken into consideration in the 

related fuzzy MODM aggregation function. Since 

the MODM algorithm defines a membership value 

for each point of solution space, if the membership 

value of a feasible solution is equal to zero, that 

point will not be considered in the algorithm any 

more (see Figure 3). Therefore, if we choose a 

large/small value for Z
NIS

, the diversity of yielded 

solutions ( Xx ∈ ) in our proposed TS will 

increase/decrease, because the large/small values 

of Z
NIS

 increase/decrease the [ ]NIS
i

PIS
i ZZ ,  interval 

with the fixed amount of Z
PIS

. 

     To yield the Z
PIS

 and Z
NIS

, each generated test 

problem is solved, according to the presented 

Equations 16 to 19. This is clear that for all test 

problems the obtained value of the NIS
kZ  will be 

unbounded, thus we consider the subsequent 

heuristic method which considered in literature 

[19,22]. Let X
i
 denotes the associated decision 

vector with the PIS
iZ  (i.e., positive ideal solution of 

the i-th objective); the related NIS
kZ  can be 

estimated as follows: ( ){ } 2,1;max
2,1

==
=

kXZZ i
i

i

NIS
k . 

However after some experiments, we find out in 

the OSSP that this method not only yields a small 

value for NIS
kZ , but also requires more 

computational times and limit the search procedure 

greatly. Therefore, we consider the following 

heuristic formulations. The formula PIS
MC

NIS
MC ZZ ×= 3  

is being applied to small-sized problems, also 
PIS
MC

NIS
MC ZZ ×= 4  is being studied for medium and 

large-sized instances optionally for the mean 

completion time objective to cover several 

 

 
 

( )XZµ  

PIS
Z  NIS

Z  

1 

( )XZk

( ) NIS
ZxZ ≥  

( )
( ) 0=

≥
XNISZxZ

µ  

 
 

Figure 3. Lost feasible solutions with respect to selection of a 

small ZNIS. 
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solutions in the feasible decision space. Similarly, 

( )nmZZ PIS
MT

NIS
MT ++=  is also being considered for 

the mean tardiness objective in all instances. The 

number of jobs and machines are inserted into the 

latter formula to connect that to the size of 

instances. The results of several experiments show 

that these proposed values of Z
NIS

, either do not 

limit the search algorithm, or do not increase the 

solution time widely. 

     Since for medium and large-sized problems Z
PIS

 

cannot be obtained in a reasonable runtime, 

because they are time-consuming instances (e.g., 

for a 10 × 6 problem), the Lingo cannot yield the 

Z
PIS

 after 7 hours running. But fortunately, for 

these problems, the Lingo can give us a feasible 

solution with its objective value in a few minutes. 

Thus, in our study, the Lingo is run several times 

for each medium and large-sized instance. 

Consequently for each of them some different 

feasible solutions are yielded. Since for these 

instances, the objective functions of their related 

feasible solutions are known, the minimum value 

them is selected for their corresponding Z
PIS

 (see 

Tables 1 and 2). 
 

6.3. Solution Quality and Efficiency   We can 

evaluate the solutions efficiency by considering the 

overall satisfactory level (λ) of all objectives 

yielded from the LH method. For example the λ = 

0.9 for an obtained solution, indicates that in the 

current solution all of the objectives are satisfied 

90 percent. Thus the greater values of λ denote the 

higher degree of the efficiency. Moreover in small-

sized instances, the quality of an obtained solution 

from our proposed TS method can be evaluated by 

making a comparison with the yielded optimal 

solution. The obtained solutions from the Lingo 

and TS in the small-sized problems are shown in 

Tables 3 and 4, respectively. By considering these 

results, we can conclude that in small-sized 

problems the proposed TS method can yield the 

efficient solutions with high quality. Moreover, 

Table 5 contains the achieved solution results of 

medium to large-sized problems. In this table, the 

value of the overall satisfactory level for 

eachsolution is close to one (or equal to one); this 

implies that the degree of the efficiency in yielded 

solutions by our proposed TS method is very high. 

Figure 4 illustrates the convergence of this method 

for a small-sized (5×3 a) problem. In this figure, 

notations □, ○, and ∆ denote the random initial 

solution, each move, and best solution in each 

neighborhood, respectively. 

 

 

 
7. CONCLUSION 

 

In this paper, a novel, bi-objective mixed-integer 

mathematical programming for an open shop 

scheduling problem (OSSP) was proposed. The 

considered objectives were to minimize the mean 

completion time and mean tardiness. An efficient 

fuzzy MODM approach, called LH method, was 

applied to obtain the efficient solutions. By using 

this method, the auxiliary single objective model 

was achieved. This single objective model offered 

an efficient solution by maximizing the overall 

satisfactory level of all objectives and weighted 

average of objectives membership functions (the 

LH aggregation function). Since the OSSP are 

known as NP-hard, to solve several medium to 

large-sized numerical instances in reasonable 

runtime, a tabu search (TS) method was adopted. 

Our proposed TS results for small-sized instances 

are compared with the Lingo. This comparison 

indicated the high quality and the efficiency of 

the obtained solutions. Moreover, the value of the 

overall satisfactory level of the TS solutions in 

medium to large-sized test problems was close to 

one (or equal to one). This implies the efficiency 

of the yielded solutions by the proposed TS 

method. 

     The earliness objective, sequence dependent 

setup times, removal times, transportation times, 

ready times, fuzzy due dates and fuzzy processing 

times can be considered in the OSSP formulation 

for future researches. These items may result in a 

complicated OSSP formulation. However, with 

these considerations, the obtained model will be 

close to real production scheduling conditions. 
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TABLE 1. Calculated Positive and Negative Ideal Solutions for Small-Sized Instances. 
 

Problem 
MC MT 

Z
PIS

 Z
NIS

 Z
PIS 

Z
NIS

 
 

6 × 2 a 119.5 359 5 29 
 

6 × 2 b 119.3 357 0 24 
 

6 × 2 c 131.4 393 2.1 26.1 
 

6 × 2 d 114 342 4 28 
 

5 × 3 a 92.6 276 7 31 
 

5 × 3 b 152 456 3.3 27.3 
 

5 × 3 c 144.7 432 6 30 
 

5 × 3 d 107.2 321 1.2 25.2 
 

4 × 4 a 140.5 420 3.2 27 
 

4 × 4 b 92.9 275 8.3 32.3 
 

4 × 4 c 85.2 255 7.1 31.1 
 

4 × 4 d 117.3 351 8.02 32 
 

 

 

 
TABLE 2. The Exact Solutions of Small-Sized Instances. 

 

Problem 
Obtained Solution Results by the LH Method 

Overall Satisfactory Level (λ ) Run Time (s.) MC MT 
 

6 × 2 a 0.98 15 119.6 5.1 
 

6 × 2 b 0.99 5 119.42 0 
 

6 × 2 c 0.99 5 131.42 2.1 
 

6 × 2 d 0.99 4 144.1 4.04 
 

5 × 3 a 0.98 14 93.14 7 
 

5 × 3 b 0.96 15 162.46 3.35 
 

5 × 3 c 0.99 43 144.74 6.07 
 

5 × 3 d 1 16 107.2 1.21 
 

4 × 4 a 1 15 140.5 3.23 
 

4 × 4 b 0.99 4 92.95 8.3 
 

4 × 4 c 0.99 14 85.3 7.14 
 

4 × 4 d 0.99 11 117.32 8.07 
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TABLE 3. Calculated Positive and Negative Ideal Solutions for Medium and Large-Sized Instances. 
 

Problem 
MC MT 

Z
PIS

 Z
NIS

 Z
PIS 

Z
NIS

 
 

Problem 
MC MT 

Z
PIS

 Z
NIS

 Z
PIS 

Z
NIS

 
 

10 × 6 a 309.6 1236 6.3 54.3 
 

15 × 8 a 560.74 2240 5 97 
 

10 × 6 b 315.95 1260 0 48 
 

15 × 8 b 622.57 2488 4.6 96 
 

10 × 6 c 268.14 1072 8.2 56.2 
 

15 × 8 c 816.28 3264 9 101 
 

10 × 6 d 278.38 1122 9 57 
 

15 × 8 d 574.37 2296 9.2 101 
 

12 × 7 a 312.98 1248 7.1 83 
 

30 × 9 a 1205 4820 8 184 
 

12 × 7 b 356.76 1424 12.6 88.6 
 

30 × 9 b 1217.4 4869.6 9 185 
 

12 × 7 c 347.31 1308 10 86 
 

30 × 9 c 1200 4800 3.7 179 
 

12 × 7 d 484.21 1936 0 76 
 

30 × 9 d 1202.5 4810 8 184 
 

 

 
 

TABLE 4. The Obtained Results of TS Algorithm for Small-Sized Instances. 
 

Problem 

The Obtained Best Solutions 

from 10 Times Running 

MC
 

MT λ  
 

The Average of Yielded Solutions 

in 10 Times Running 

MC MT λ  
 

Average of 

Converging 

Time (s.)  

Average of 

Moves 

Number  

6 × 2 a 131.5 5.1 0.96 
 

141.2 5.18 0.92 
 

2 10 

6 × 2 b 130.9 0 0.97 
 

132.9 0 0.955 
 

2 11 

6 × 2 c 148 2.11 0.94 
 

158 2.12 0.92 
 

1 7 

6 × 2 d 129.1 4.1 0.95 
 

131.1 4.15 0.935 
 

1 9 

5 × 3 a 110 7.08 0.91 
 

112 7.1 0.905 
 

2 12 

5 × 3 b 226 3.3 0.85 
 

237 5.01 0.73 
 

3 17 

5 × 3 c 187.2 6.09 0.87 
 

189.4 6.11 0.855 
 

3 18 

5 × 3 d 140.5 1.23 0.86 
 

145.5 1.24 0.83 
 

1 8 

4 × 4 a 180.1 3.3 0.87 
 

188 3.45 0.84 
 

5 24 

4 × 4 b 153.7 9.04 0.68 
 

155 10 0.65 
 

4 22 

4 × 4 c 126.2 7.8 0.77 
 

129.9 8 0.74 
 

7 29 

4 × 4 d 151 8.31 0.87 
 

157 8.5 0.845 
 

4 25 
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TABLE 5. The Obtained Results of Ts Algorithm for Medium and Large-Sized Instances. 
 

Problem 

The Obtained Best Solutions 

from 10 Times Running 

MC
 

MT λ  

 

The Average of Yielded Solutions 

in 10 Times Running 

MC MT λ  

 

Average of 

Converging 

Time (s.)  

Average of 

Moves 

Number 

10 × 6 a 401.1 6.4 0.92 

 

402.5 6.9 0.91 

 

19 8 

10 × 6 b 385.4 0 0.94 

 

403.5 0.7 0.915 

 

21 8 

10 × 6 c 429.8 8.21 0.84 

 

434.5 8.4 0.828 

 

18 10 

10 × 6 d 425 9.03 0.83 

 

437.45 9.32 0.82 

 

28 11 

12 × 7 a 457.6 7.2 0.86 

 

459 7.21 0.84 

 

32 10 

12 × 7 b 489 37.6 0.67 

 

0.65 38.8 0.65 

 

34 14 

12 × 7 c 553.8 11.2 0.8 

 

573.7 12 0.775 

 

37 16 

12 × 7 d 555.9 1.02 0.96 

 

587.4 1.02 0.94 

 

27 7 

15 × 8 a 623.3 5.2 0.97 

 

648.3 5.7 0.955 

 

42 14 

15 × 8 b 668.5 4.65 0.98 

 

714 5 0.96 

 

40 18 

15 × 8 c 816.2 9 1 

 

816.9 9.7 0.997 

 

40 17 

15 × 8 d 598.7 9.21 0.996 

 

636.2 9.3 0.973 

 

39 14 

30 × 9 a 1204.6 8 1 

 

1210 8 0.99 

 

82 26 

30 × 9 b 1217 9.02 1 

 

1212 9.02 0.985 

 

90 32 

30 × 9 c 1260.4 3.71 0.97 

 

1302.5 4.01 0.945 

 

88 25 

30 × 9 d 1261.1 8.06 0.98 

 

1269 8.1 0.965 

 

97 29 
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Figure 4. Convergence of the proposed TS method for Problem 5×3 a. 

Archive of SID

www.SID.ir

www.SID.ir


 

282 - Vol. 22, No. 3, October 2009 IJE Transactions B: Applications 

16. Tseng, L.Y. and Lin, Y.T., “A Hybrid Genetic 

Algorithm for the Flow Shop Scheduling Problem”, 

Lecture Notes in Artificial Intelligence, Vol. 4031, 

(2006), 218-227. 

17. Liaw, C., “A Hybrid Genetic Algorithm for the Open 

Shop Scheduling Problem”, European Journal of 

Operational Research, Vol. 124, (2000), 28-42. 

18. Sule, D.R., “Industrial Scheduling”, PWS Publishing 

Company, Boston, U.S.A., (1997). 

19. Torabi, S. A., Hassini, E., “An Interactive Possibilistic 

Programming Approach for Multiple Objective Supply 

Chain Master Planning”, Fuzzy Sets and Systems, Vol. 

159, (2008), 193-214. 

20. Zimmermann, H.J., “Fuzzy Programming and Linear 

Programming with Several Objective Functions”, Fuzzy 

Sets and Systems, Vol. 1, (1978), 45-55. 

21. Lai, Y.J. and Hwang, C.L., “Possibilistic Linear 

Programming for Managing Interest Rate Risk”, Fuzzy 

Sets and Systems, Vol. 54, (1993), 135-146. 

22. Lai, Y.J. and Hwang, C.L., “Fuzzy Multiple Objective 

Decision Making Methods and Applications”, Springer-

Verlag, Berlin, Germany, (1994). 

23. Werners, B., “Aggregation Models in Mathematical 

Programming, in: Mitra, G., Greenberg, H.J., Lootsma, 

F.A., Rijckaert, M.J., Zimmermann, H.-J. (Eds.), 

“Mathematical Models for Decision Support”, Springer-

Verlag, Berlin, Germany, (1988), 295-305. 

24. Selim, H. and Ozkarahan, I., “A Supply Chain 

Distribution Network Design Model: An Interactive 

Fuzzy Goal Programming-Based Solution Approach”, 

International J. of Advanced Manufacturing 
Technology, Vol. 36, (2008), 401-418. 

25. Li, X.Q., Zhang, B. and Li, H., “Computing Efficient 

Solutions to Fuzzy Multiple Objective Linear 

Programming Problems”, Fuzzy Sets and Systems, Vol. 

157, (2006), 1328-1332. 

26. Glover, F., “Tabu Search-Part I”, ORSA Journal on 

Computing, Vol. 1, (1989), 190-206. 

27. Glover, F., “Tabu Search-Part II”, ORSA Journal on 

Computing, Vol. 2, (1990), 4-32. 

28. Loukil, T., Teghem, J. and Tuyttens, D., “Solving 

Multi-Objective Production Scheduling Problems using 

Metaheuristics”, European Journal of Operational 

Research, Vol. 161, (2005), 42-61. 

 

Archive of SID

www.SID.ir

www.SID.ir

