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Abstract   Strains are applied to the integration procedure in nonlinear increments to 
decrease the errors arising from the linearization of plastic equations. Two deformation 
vectors are used to achieve this. The first vector is based on the deformations obtained by 
the first iteration of the equilibrium step, and the second is acquired from the sum of the 
succeeding iterations. By applying these vectors and using sub-increments, the total strain 
increment can vary nonlinearly during the integration of the flow rule. Four individual 
variation schemes are presented for this purpose. In this paper, the strain space formulation 
is investigated. Numerical examples are analyzed using the traditional linear method and 
the suggested schemes. The examples are solved using the von Mises yield criterion and 
Prager's linear hardening rule. Results indicate that all nonlinear techniques increase the 
convergence rate of plastic analysis. In addition, such integration methods are shown to 
increase the stability of incremental-iterative analyses. 
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rate, Analysis stability, Numerical methods 

 

روشي پيشنهاد شده است که در آن , هاي مومساني سازي تحليل براي کاهش خطاي حاصل از خطي  چكيده
براي رسيدن به اين . شوند ارد ميومومساني  ه هایگيري رابط بع اوليهاتخطي درناهاي کرنش به صورت  مؤلفه
و  استنخستين تکرارگام بارگذاري  ه ینتيج, کي از اين بردارهاي. می رودکار ه دو بردار تغيير شکل ب, هدف

ها را  کرنش, با استفاده از اين دو بردار و تقسيم کردن نمو. می باشدجمع تکرارهاي بعدي  ديگري نيز حاصل
مختلف براي انجام اين کار  ه یچهار شيو. کرد وارد توان به صورت غيرخطي در قانون جريان مومساني مي

هاي عددي  مثال. سازي اين روش در فضاي کرنش پرداخته شده است به رابطه, در اين مقاله. خواهد شد پيشنهاد
. اند با يکديگر مقايسه شده پاسخ هاو  می گرددپيشنهادي و نيز روش متداول خطي حل  فنبا استفاده از چهار 

. گي خطي پراگر استفاده شده استميسز به همراه قانون سخت شوند -ها از معيار تسليم وان اين مثال حل در
تکراري را افزايش  - هاي نموي هاي غيرخطي سرعت همگرايي تحليل دهد که تمامي شيوه نشان مي ه هاجينت

ها نيز  گونه تحليل افزايش پايداري اين سببخطي ناهاي  که روش آشکار خواهد شد, بر اين افزون. دهند مي
  .گردند مي
 

 

1. INTRODUCTION 
 
Rules of plastic analysis are introduced in the form 
of constitutive equations. However, numerical 
manipulation of these equations is performed in 
small, rather than differential, increments. 
Conforming to the flow rule and maintaining the 
stress on the yield surface are the most important 
factors and need to be adapted carefully. 
Integration of the rate equations consist both 

factors and is investigated as one individual 
operation. 
     Commonly used integration algorithms are 
categorized as explicit, implicit or semi-implicit 
methods, which essentially differ in how internal 
variables are evaluated. Explicit algorithms use the 
current stress state and its gradients to assess the 
elastic-plastic updates during the strain increment 
and have the advantage of being more 
straightforward. However, explicit techniques are 
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bound to drift from the yield surface if correction 
is not enforced [1,2]. Various schemes of explicit 
integration have been compared with and without 
stress correction and strictly state that not 
employing stress correction leads to inaccurate 
results [1]. Some methods of correction are stated 
and examined in [3]. Error control can also be used 
to increase accuracy. Various methods of 
automatic error control are also available [4]. 
Substepping may also be used to limit the 
unfavorable drift from the yield surface [5,6,7]. 
Researchers have combined various explicit 
methods with different error control and 
substepping schemes in order to develop more 
accurate, stable and convergent methods. 
     On the other hand, implicit methods 
automatically satisfy the consistency condition at 
the end of the increment. In contrast to explicit 
algorithms, in implicit algorithms, internal 
variables are updated at unknown stress states 
which eventually require a set of nonlinear 
equations to be solved iteratively. The general 
form of implicit methods is the backward Euler 
algorithm. The first implicit method introduced 
was the radial return algorithm used for von-Mises 
Elastic perfectly plastic models. The radial return 
algorithm is actually the backward Euler algorithm 
which reduces to radial return mapping when used 
for the three dimensional von-Mises criteria. 
Properties of the method were attained in [8] and 
later in [9]. Implicit methods were originally 
developed for metal plasticity, which incorporate 
simple yield criteria. However, more complex 
yield surfaces have garnered additional interest 
recently [10,11]. The stability and accuracy 
properties of the backward Euler scheme are 
considered in [12] which states the B-stable 
condition of the scheme with linear hardening and 
its reaction to large steps. 
     The midpoint and trapezoidal methods 
suggested in [13] are the general form of 
representing an integration algorithm. These 
methods can reduce to a full forward or backward 
Euler scheme by adjusting the integration 
parameter. For example, the general midpoint 
algorithm is used to form the midpoint integration 
scheme in [14] and the well-known backward 
Euler algorithm in [12]. 
     Although semi-implicit methods exhibit higher 
orders of accuracy, their processes require more 

computational time and expense. An example is 
the method introduced in [15] which utilizes an 
exponential-based algorithm for the integration of 
J2 plasticity. This method was further pursued in 
[16,17,18]. Comparison of an exponential-based 
algorithm and the midpoint method [13] was made 
in [19] which implies that both methods behave 
quite similar. 
     It should be noted that the forward and 
backward Euler schemes, the complete forward 
Euler technique, the radial return method and other 
similar procedures are based on the trial-correction 
of the stress increment. All of these methods have 
one similar shortcoming i.e. they employ the total 
strain increment in the integrating process of each 
equilibrium step as a linearly increasing variable. 
Substepping the strain increment is the primary 
method used to decrease the error due to 
linearization. The advantages of increasing the 
number of sub-increments are threefold; 
improvement of results, increasing the 
convergence rate, and reducing the instability of 
incremental-iterative analysis. 
     The strain-space formulation is utilized in this 
paper. The evaluation of stress and strain in a three 
dimensional loaded structure is considered during 
plastic analysis. Three integration techniques using 
bilinear, multilinear and parabolic variations of 
strain components are proposed. The suggested 
algorithms are compared with the commonly used 
linear scheme. The results indicate that the 
proposed methods increase the convergence rate of 
elasto-plastic analysis. 
 
 
 

2. INETGRATING THE FLOW RULE 
 
The yield surface for strain space plasticity using 
the kinematic hardening rules is generally defined 
as: 
 

(  ) 0f ,k    (1) 

  
where   is the strain tensor,   is the backstrain 
tensor and establishes the center of the yield 
surface, and the scalar k  represents the size of the 
yield surface, which will be constant in the 
kinematic hardening rules. The incremental stress-
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strain relation for an associated flow rule is given 
below: 
 

1
ij ijkl kl

ij kl

f f
dσ C dε

h ε ε

  
     

 (2) 

 
where the scalar h  is related to the employed 
hardening rule and has the following form: 
 

ijkl ijklp p
kl klij ij

f f f k f
h D D

ε k εε ε

    
  

   
 (3) 

 
In stress-space plasticity, the evolution of the 
backstress tensor, ij , is obtained  using any 

desired hardening rule. For example, Prager's 
linear hardening rule is defined as: 
 

p
ij ijBd   (4) 

 

where B  is a material constant and p
ijd  is the 

plastic strain increment. As noted, hardening rules 
are primarily expressed in stress space, where in 
section 3 their equivalent strain-space relation is 
formulated. 
     Using Equation (2) in the above mentioned 
form is not quite applicable for a numerical 
solution. Therefore, it is common to manipulate it 
in two steps. If the sum of the strain increments up 
to the last iteration is denoted as  , the first step 
for integration is to assume that   is a 
completely elastic increment. This assumption 
takes the state of strain to tr  which is obtained 

using: 
 

e
tr o      (5) 

 
At this stage, the strain tensor tr  may lye inside 

or outside the yield surface. If tr  lies within the 

yield surface, then the complete-elastic increment 
assumption proves to be correct, and there will be 
no need for further considerations. On the other 
hand, if the complete-elastic assumption leads to 

tr  being positioned outside the yield surface, the 

assumption is violated, and some portion of the 

strain increment   is understood to be plastic. 
Therefore, the trial strain , tr , must further be 

corrected, as in Figure 1. 
     Various methods of correction for the stress 
space formulation have been introduced [2,20]. 
These methods can also be used in strain space 
plasticity. However, as further discussed, 
employing the substepping strategy with a large 
number of substeps diminishes the difference 
between various correction schemes. In the present 
work, the backward Euler method has been 
employed using the following process: 
 

( )e p p
c A A B                   (6) 

 

The corrected stress tensor must satisfy the 
consistency condition which leads to: 
 

( ) ( ) 0p p
B B

f
f f   




     


 (7) 

( )p Bf
f




  



 (8) 

 
In the above equation, only the two first terms of 

the Taylor's expansion have been used, and 
f





 is 

the correction path, which is normal to an 
imaginary yield surface at B . This normal is 
denoted by Ba , as in Figure 1, and the resulting 

procedure is very similar to the backward Eulerian 
procedure [2]. The evolution of the backstrain 

tensor  , may be obtained using P . 
     It should be mentioned that the backward 
Eulerian procedure may not place the stress tensor 
exactly on the yield surface. In this case, the 
relaxation process can be performed as many times 
needed to eliminate the unfavorable drift. 

 
 
 

3. YIELD SURFACES AND HARDENING 
RULES IN STRAIN SPACE 

 
Granular materials such as concrete and soil have 
characteristics, such as strain softening and 
stiffness degradation, which can be effectively 
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considered using the strain-space plasticity 
formulation [20]. The traditional stress-space 
formulation is only able to take these 
characteristics into account with great difficulty. 
The advantages of strain space formulation have 
been discussed by researchers [21,22]. Proper yield 
surfaces and hardening rules have also been 
developed [24,25]. In this section, a general 
method of transformation is developed to transfer 
the yield surfaces and kinematic hardening rules 
from stress-space to strain-space. 
     Although well established yield surfaces are 
formulated using stress components, converting 
their equations to relate strain components can be 
easily achieved. Since the yield surface designates 
the linear elastic region of the stress/strain state, 
the following linear elastic relations can be used 
for the conversion: 
 

ij ijkl klσ C ε  (9) 

   
2

2 1 1 2ijkl ij kl ik jl il jk

E υ
C δ δ δ δ δ δ

υ υ

 
     

 (10) 

1ij ij

E
s e





 (11) 

 
For example, the von-Mises criteria can be 
transformed into its strain space counterpart using 
Equation (11). This leads to: 

1
( )

2
1

  0
2 1 1

ij ij ji

ij ji

f f σ ,k s s k

E E
e e k
υ υ

  

         

 (12) 

which can be further reduced to: 
 

2
1 1

( ) 0
2ij ij ji

υ
f f ε ,k e e k

E

      
 

 (13) 

 
In order to develop hardening rules in strain space, 
the geometric definition of the yield surface and its 
position is assumed according to Figure 2. 

 
 
 
 
In Figure 2-a , ijσ  is the current stress state, ijα  is 

the current back stress tensor and r
ijσ  is the radial 

stress tensor, which assesses the position of ijα  

from ijσ . Since r
ijσ  is an elastic reallocation of ijσ  

to ijα , the following relation will be valid: 

 

 r r
ij ijkl ij ijkl kl klε D σ D σ α    (14) 

 
In Figure 2-b, the location of the yield surface in 
strain space is denoted by ij , which can be 

 
(a) 

 
(b) 

 
Figure 2. Yield surface in stress/strain space. 

 
 
Figure 1. Relaxation normal to an imaginary yield surface 
through B. 
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defined as: 
 

r
ij ij ij     (15) 

 
Introducing Equation (14) into (15) gives: 
 

      

r
ij ij ij

p
ij ij ij ijkl kl

dβ dε dε

dε dε dε D dα

 

     
 (16) 

 
which can be further reduced to the following 
form: 
 

p
ij ijkl kl ijdβ D dα dε   (17) 

 
Equation (17) reveals many aspects of hardening 
rules in strain-space, that contrast to those of 
stress-space. According to this equation, the 
"backstrain" tensor is composed of two 
components; the first is a function of the ordinary 
hardening rule developed in stress space, which is 
trivial. The second component is merely the 
evolution of the plastic strain. Therefore, as an 
example, the perfect plastic model which 
constrains the position of the yield surface in stress 
space will not be so restrictive in strain space. In 
fact, this is why strain softening can be so easily 
implemented in the strain space formulation. 
 
 
 

4. USING SUBSTEPS 
 

Utilizing substepping schemes is the simplest 
approach to reduce the error due to linearization of 
the differential equations. The concept is to 
progressively introduce fractions of ε  into (2), as 
shown in Figure 3, instead of introducing it all at 
once. 
     The exact relation between the number and size 
of the substeps and the ultimate error is unknown. 
In fact, if such a relation exists, it should be 
dependent of the direction of the incremental stress 
and strain vectors. Regardless of such knowledge, 
the considerable advantage of substepping is 
definite to analysts. Some researchers use a non-
substepping prior analysis to estimate the potential 
error and then choose the number of substeps [5]. 

 
It should be noted that the substepping process 
should rather start with the initiation of plastic 
flow. Such a claim is rational, since substepping in 
the elastic range is pointless. 
     The simplest substepping scheme is to 
introduce ε  into the integration process using m  
equal intervals. Any method of relaxation can be 
used at the end of each interval or at the end of the 
total increment, causing the strain increment to 
attain a more realistic trace. Increasing the number 
of substeps diminishes the dependence of the final 
strain position on the return vector used in the 
relaxation process. Therefore, the choice of the 
relaxation method will only become an issue of 
convenience. Figure 4 illustrates the movement of 
strain on the yield surface using a large number of 
substeps. 
 
 
 

5. THE PROPOSED METHOD 
 
The evolution of stress and strain will be discussed 
for an arbitrary point of a loaded structure during  
 

 

 
 
Figure 4 The effect of increasing the number of substeps. 

 
 
Figure 3. Relaxation using three substeps. 
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elasto-plastic analysis. Six stress components and 
six independent strain components evolve in their 
respective spaces. The incremental stress-strain 
relation is defined by the elastic stress-strain tensor 
in the linear regime and by the elastic-plastic 
tensor in the nonlinear range. 
     During elastic deformation, the incremental 
stress-strain relation is linear and is depicted by the 
elastic tensor. At the onset of plastic flow, this 
relation becomes nonlinear and, from a completely 
theoretical viewpoint, is only governed by the 
elastic-plastic tensor. However, from a numerical 
viewpoint, the incremental stress values not only 
depend on the elastic-plastic tensor, but also on the 
method used to integrate the flow rule. Various 
integration techniques have been utilized by 
researchers. All of their algorithms rely on a 
nonlinear relation, only between the stress and 
strain increment tensors. However, components of 
the strain tensor also evolve nonlinearly with 
respect to each other during plastic deformation of 
the structure. In other words, the strain components 
reach their final values with different paths and 
rates in the strain space. 
     The importance of acknowledging nonlinearity 
in the evolution of strain components is realized by 
pointing out that in an incremental-iterative 
analysis strategy, the current strain values obtained 
at the end of each increment are used in the 
calculations of the next increment. This feature 
gains more importance when using a kinematic 
hardening rule. 
     In order to introduce the strain increment in the 
integration process by a nonlinear variation, at 
least two incremental strain vectors from the 
iterative procedure are required. For this purpose, 
the authors have chosen the deformation increment 
vector from the first iteration and the sum of the 
deformation increment vectors from the 
subsequent iterations. The first iteration is the most 
important, since it originates from a true 
equilibrated state of the structure. Each of the 
subsequent corrective vectors has no significance 
by itself, but the sum of all the corrective vectors 
gains an incredible value, since it repositions the 
non-equilibrated result of the first iteration to an 
actual equilibrium state. A schematic illustration of 
the strain increments (solid lines) and the actual 
strain path (dashed curve) is shown in Figure 5. 
     After the initial strain increment vector and the 

net corrective strain increment vector are obtained, 
the total subincrement should be introduced in the 
integration process in a special manner. Different 
schemes are employed to achieve this goal. In the 
succeeding text, the initial and corrective strain 
increment vectors are denoted by iε  and cε , 

respectively. 
 

 
 
5.1  Linear Scheme   The linear scheme is the 
common nonvariational method used for 
integrating the rate equations. The vectors iε  and 

cε  are summed up and as in Figure 6, the sum is 

employed monotonically during the substeps. This 
method does not bring in the nonlinear features of 
the strain evolution. The steps of the numerical 
algorithm are presented below. 
The following steps are repeated N  times: 
The strain subincrements are calculated. 

 1
Δ Δ Δ

N i c ε ε ε  
 

 
The stress tensor is calculated. 

1n n      

 
The condition ( ) 0nf    is checked and if valid, 

the strain tensor is corrected. 
p

n n      

Where 
( )p f
f





  



σ
 

The backstress tensor is updated according to the 
hardening rule. 

 
 
Figure 5. Variation of strain during an equilibrium step. 
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5.2  Bilinear Scheme   The simplest approach to 
nonlinear variation of strain components is the 
bilinear scheme. The vector iε  is initially 

introduced in the integration process and then 
followed by cε  as in Figure 7. The bilinear 

scheme varies the strain evolution in a nonuniform 
manner. The numerical algorithm is given below. 

The following steps are repeated 
N

2
 times: 

The strain subincrements are calculated. 

 1
 Δ Δ

N
2

iε ε  
 

 

Steps 2-5 from the linear scheme are conducted. 

The following steps are repeated 
N

2
 times: 

The strain subincrements are calculated. 

 1
 Δ Δ

N
2

cε ε  
 

Steps 2-5 from the linear scheme are conducted. 
 
5.3  Multilinear Scheme   The bilinear method 
illustrated earlier can be extended to a multilinear 
technique. For example a three-line method can be 
proposed, where the total number of substeps is 
divided into three equal phases. In the first phase, 
2

3 iε  is introduced in the integration process, 

followed by 
1 1

3 3i cε ε    in the next phase, and 

 

finally 
2

3 cε  in the final phase. The number of 

substeps and the portions of iε  and cε  

employed in each phase are arbitrary, however, the 
sum of all strain increments must equal i cε ε   , 

as illustrated in Figure 8. The numerical algorithm 
for this three-line scheme is given below. 

The following steps are repeated 
N

3
 times: 

The strain subincrements are calculated. 
1 2

Δ Δ
N 3

3
i

   
 

ε ε  
 

 

Steps 2-5 from the linear scheme are conducted. 

The following steps are repeated 
N

3
 times: 

The strain subincrements are calculated. 
1 1 1

 Δ Δ Δ
N 3 3

3
i c

   
 

ε ε ε  
 

 
Steps 2-5 from the linear scheme are conducted. 

The following steps are repeated 
N

3
 times: 

The strain subincrements are calculated. 
1 2

 Δ Δ
N 3

3
c

   
 

ε ε  
 

 
Steps 2-5 from the linear scheme are conducted. 

 
 
Figure 7. The bilinear scheme (solid line) and the actual strain
path (dashed line). 
 

 
 
Figure 6. The linear scheme (solid line) and the actual strain 
path (dashed line). 
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5.4 Parabolic Scheme   The linear, bilinear and 
multilinear schemes introduced earlier vary the 
portions of iε  and cε  in a nonuniform manner. 

In order to overcome this disadvantage and 
smoothly transfer iε  to cε  during the substeps 

(Figure 9), their portions can be defined by a 
uniform function. For example, a parabolic 
function can be implemented as: 
 

2

2

  

i i i i

c c c c

n n
ε A B C

N N

n n
A B C

N N





           
     

           
     

 (18) 

 
where N  is the total number of substeps and n  is 
the current substep. iA , iB , iC  and cA , cB , cC  

are constants that correspond to the influence of 

iε  and cε  respectively. The sum of all strain 

subincrements must equal i cε ε   . 

     In this work, the constants are defined 
according to the desired boundary conditions, 
leading to: 
 

   2 N 2Δ Δ
Δ

N N N N
i c

n n
 

- ε ε
ε  (19) 

 
The steps of the numerical algorithm are indicated 
below. 

 
 
The following steps are repeated N  times: 
The strain subincrements are calculated. 
 

   2 N 2Δ Δ
Δ

N N N N
i c

n n
 

- ε ε
ε  

 

 
Steps 2-5 from the linear scheme are conducted. 
 
5.5 Trigonometric Scheme   Similar to the 
parabolic scheme, trigonometric variation also 
allows a smooth transfer from iε  to cε  (Figure 

10). The relation for a trigonometric variation 
scheme can be written as: 
 

Δ cos Δ sin Δ
2N 2N 2N 2Ni c

n n          
   

ε ε ε  (20) 

 
where N  is the total number of substeps and n  is 
the current substep. Yet again, it should be 
emphasized that the sum of all strain 
subincrements must be equal to i cε ε   . 

     The steps of the numerical algorithm are 
indicated below. 
The following steps are repeated N  times: 
The strain subincrements are calculated. 
 

Δ cos Δ sin Δ
2N 2N 2N 2Ni c

n n          
   

ε ε ε  

 
Steps 2-5 from the linear scheme are conducted. 

 
 
Figure 9. The parabolic scheme (solid line). 

 
 
Figure 8. The multilinear scheme using three phases (solid 
line). 
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6. NUMERICAL EXAMPLES 
 
In the proceeding text, numerical examples are 
presented to show the effectiveness and advantages 
of the proposed method. In all of the problems, 
parameters and dimensions are presented without 
units in order to provide generality in the solutions. 
The examples are modeled using 8-node brick 
elements. A von-Mises yield criteria is 
implemented with either no hardening (perfect 
plasticity) or the linear kinematic hardening rule of 
Prager. Each example is analyzed using the linear, 
bilinear, multilinear, parabolic and trigonometric 
variational schemes individually, wherein the 
number of iterations required for convergence is 
attained. Results indicate that nonlinear variation 
schemes not only increase the convergence rate of 
elatoplastic analysis, but also have the advantage 
of increasing stability during the incremental-
iterative solution. 
 
6.1  Simple Cube   The first numerical example 
presented specifically demonstrates the basic idea 
and convergence advantages of the integration 
method. A simple 101010 cube, modeled by a 
single element, is subjected to controlled strains in 
the x  and y  directions in one loading step. Only 
the z  component of strain is free to show its 
nonlinear variation. This provides a clear view of 
the nonproportional behavior of strain components. 
The cube and its material properties are shown in 
Figure 11. A perfectly plastic model is 
incorporated using the von-Mises yield criteria. 

 
The number of iterations required for convergen ce 
using each of the proposed schemes is shown in 
Table 1. These results clearly indicate the 
advantage of the proposed integration method in 
accelerating the convergence rate. In this table, the 
resulting stress values are also compared with a 
more exact value, which is obtained by using a 
larger number of loading steps.  
     The rapid convergence can be explained by 
examining Figure 12, where the variation of strain 
components x  , y  and z  are plotted against a 

quasi-time variable. The curve is obtained using a 
10-step loading procedure of the cube, where the 
nonlinear variation of z  with respect to the other 

two strain-controlled components is immediately 
recognized. Unlike the common linear scheme, the 
nonlinear schemes identify the nonlinear variation 
of the strain components against each other. 
Therefore, their algorithms result in less error 
during incremental-iterative analyses. 
 

 

 
 

Figure 12. Nonlinear variation of z  with respect to x  and 

y . 
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Figure 11. Simple cube problem. 

 
 
Figure 10. The trigonometric scheme (solid line). 
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TABLE 1. Comparison of different integration schemes for the simple cube problem. 
 

 Resulting Stresses Error ( % )  

 
x  y x y No. of Iterations 

Linear 0.9373 -0.1153 1.32 23.45 9 

Bilinear 0.9760 -0.0462 2.75 50.54 4 

Multilinear 0.9690 -0.0593 2.01 36.51 5 

Parabolic 0.9607 -0.0743 1.14 20.45 7 

Trigonometric 0.9625 -0.0724 1.33 22.48 7 

Exact Answer 0.9499 -0.0934    

 
 
 
 
 

 
 
6.2 Cantilever Beam   The second example 
incorporates Prager's linear hardening rule with the 
von-Mises yield criteria. The 60 40 10   
cantilever beam of Figure 13 is considered and 
rotation is applied at the free end of the beam from 
0  to 0.4 rad  in four equal steps. 
The total number of iterations to convergence for 
each proposed scheme is shown in Table 2. The 
resulting bending moment at the end of the beam is 
also introduced in Table 2 for comparison. The 
value stated as the exact bending moment is 
obtained using the material properties of the beam 
and basic theory of materials. All of the 
incorporated integration schemes introduce similar 
accuracy whereby the nonlinear schemes definitely 
show convergence advantages. Table 2 indicates  
that between the nonlinear integration schemes, the 

TABLE 2. Comparison of different integration schemes 
for the cantilever problem. 
 

 Resultin
g 
Moment 

Error (%) 
No. of 
Iteration
s 

Linear 8722 7.59 44 

Bilinear 8676 7.02 15 

Mutilinear 8642 6.60 18 

Parabolic 8723 7.60 22 

Trigonometric 8617 6.29 25 

Exact Answer 8107 
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Figure 13. Cantilever beam. 

1000000.0, 0.3, 100.0, 1000.0yE B    

 
  

Figure 14. Portal frame problem  
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 bilinear method provides faster convergence than 
the other techniques. It appears from the results 
that the nonuniform integration methods (bilinear 
and multilinear) have convergence advantages over 
the uniform integration techniques (parabolic and 
trigonometric). 
 
6.3 Portal Frame   The next example is presented 
to consider stability issues of the integration 
schemes. The example consists of a one bay frame 
with unit thickness demonstrated in Figure 14. 
Only half of the problem is considered for the sake 
of computational convenience. The material is 
modeled using Prager's linear hardening rule and 
the von-Mises yield criteria. The frame is subjected 
to nonproportional loading, where a vertical load 
of 200  units is initially applied at point A, and is 
followed by a horizontal load of 16  units. The 
vertical load is applied in one step, but the 
horizontal load is applied using different numbers 
of steps. It should be noted that half of the loads 
are applied to each face of the structure. A number 
of 1, 2 and 4 equal steps are considered in each 
run. 
     Table 3 shows the number of iterations required 
for convergence. The spaces marked by "-" are the 
instances which the solution did not converge. 
Advantages of the proposed nonlinear algorithms 
are evident from the results, where the nonlinear 
schemes are apparently more stable than the linear 
method. The linear method does not converge 
when large loading steps are applied. This is one of 
the main disadvantages of this traditional 
integration technique. The rapid convergence of 
the bilinear and the multilinear schemes is also 
seen in this example. 
 
 
TABLE 3. Comparison of different integration schemes 
for the portal frame problem. 
 

 No. of Loading Steps 
(vertical + horizontal) 

 1+1 1+2 1+4 

Linear - - 164 

Bilinear 172 86 48 

Multilinear 171 87 56 

Parabolic - 91 64 

Trigonometric 205 102 78 

6.4 Fixed End Plate Under Torsion   The next 
example is a 661 plate (Figure 15) with no 
hardening. The plate is fixed at one end and is 
subjected to a rotation of 0.1, 0.2, 0.3 and 0.4 
radians at the other end. 

 
     The total number of iteration steps required for 
convergence is plotted in Table 4, where the 
proposed nonlinear integration schemes prove to 
converge more rapidly than the traditional linear 
method. The accuracy of the nonlinear schemes 
can be seen in Table 5, where the resulting fixed-
end torsion moment T  is evaluated and compared 
to a more accurate result acT  obtained by a 4-step 

analysis. 
 

 
 
TABLE 4. Number of iterations using different integration 
schemes. 
 

 
No. of iterations for each 
analysis 

 
0.1 

(rad) 
0.2 

(rad) 
0.3 

(rad) 
0.4 

(rad) 

Linear 3 8 14 19 

Bilinear 3 4 5 6 

Multilinear 3 5 6 7 

Parabolic 3 7 8 9 

Trigonometric 3 7 9 9 

 

1000.0

0.3

10.0

0.0

y

E

B








  

 
Figure 15. Fixed plate under torsion 
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TABLE 5. Results of different integration schemes. 
 

 
0.1 (rad) 0.2 (rad) 0.3 (rad) 0.4 (rad) 

T  
Error 
(%) T  

Error 
(%) T  

Error 
(%) T  

Error 
(%) 

Linear 13.368 0.04 17.104 0.24 17.772 0.29 18.220 0.71 

Bilinear 13.356 0.12 16.944 1.46 17.908 0.47 18.848 2.71 

Multilinear 13.268 0.79 16.956 1.37 17.876 0.29 18.780 2.34 

Parabolic 13.380 0.05 17.128 0.06 17.856 0.18 18.808 2.49 

Trigonometric 13.386 0.10 17.103 0.19 17.873 0.27 18.643 1.59 

acT   13.373  17.136  17.824  18.351  

 
 
 
 
6.5 Simple Notch   The last example demonstrates 
stability characteristics of different schemes. A 
controlled displacement of 0.01125  units is 
applied in two stages to the simple notch of unit 
thickness shown in Figure 16. Considering the 
symmetry of the problem, only a quarter of the 
notch is analyzed. The first stage is a displacement 
of  0.0025  units which takes the structure to the 
verge of plastic deformation, while the second 
stage evokes its plastic behavior. 

 
 
     Table 6 shows the stability issues of the 
schemes. It is observed that the linear and the 
bilinear schemes become unstable during the 
process, while all other schemes converge. This 
example indicates that in contrast to the rapid 
convergence advantage of the bilinear method, its 
instability is quite disadvantageous.  

 
 
TABLE 6. Number of iterations using different integration 
schemes. 
 

 No. of iterations

Linear unstable 

Bilinear unstable 

Multilinear 9 

Parabolic 11 

Trigonometric 10 
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6. CONCLUSION 
 
A new integration technique which takes into 
account the nonlinear variation of strain 
components is presented. Four schemes 
incorporating this idea have been employed. These 
schemes are referred to as the bilinear, multilinear, 
parabolic and trigonometric integration algorithms. 
Numerical examples were analyzed to investigate 
the performance of the proposed schemes and 
compare them to the commonly used linear 
scheme. Results indicate that the proposed 
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Figure 16. Simple notch 
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algorithms increase the convergence rate of elasto-
plastic analysis. Furthermore, although the bilinear 
algorithm demonstrates more rapid convergence, 
the parabolic and trigonometric schemes have the 
advantage of extreme stability. 
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