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Abstract   The goal of theory of constraints (TOC) is to maximize output, which is achieved by 
identifying and managing the critically constrained resources. To manage the constraints, Goldratt 
proposed five focusing steps (5FS). If we increase constrained output, the output of system will be 
increased. In this paper, we focus on step four of the 5FS and use the remained capacity of non-
constraint to elevate the system’s constraint. 
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بيشينه نمودن خروجي است، که از طريق شناسايي و مديريت ) TOC(ها  هدف تئوري محدوديت   چكيده
پيشنهاد ) 5FS(ها، گلدرات پنج مرحلة اجرايي  به منظور مديريت محدوديت. شود منابع محدود حاصل مي

. ش خواهد يافتاگر ما خروجي محدوديت را افزايش دهيم، خروجي بدست آمده از سيستم افزاي. نموده است
ها تمرکز نموده و از ظرفيت باقيمانده در  گانة تئوري محدوديت در اين مقاله، ما بر روي گام چهار از مراحل پنج

 .کنيم غير محدوديت در جهت بالابردن سطح محدوديت سيستم استفاده مي
 

1. INTRODUCTION 
 
Theory of constraints (TOC) is a systems 
management philosophy and an effective approach 
to production planning and control developed by 
Goldratt [1-3]. It is based on the fact that 
constraints determine the performance of a system 
and that any system contains only a few 
constraints. Goldratt and Fox [4] define three 
important performance indicators, which are: 

 
(a) Throughput. Defined as the rate at which the 
manufacturing business sells its finished 
products. 
(b) Inventory. Inventory is the storage cost of 
the raw material components and finished 
goods which are not yet been sold. 
(c) Operational expenses. It is the cost incurred 
in turning inventory into throughput. 

 
     If any of the aforementioned performance 
indicators change, it will affect the financial 

measurement at the strategic level. To overcome 
these difficulties, theory of constraints has been 
emerged as an efficient management philosophy. It 
focuses on the goal of manufacturing organizations 
i.e. to increase throughput with the reduction in 
inventory and operational cost [5].  
     The TOC has two major components. First, a 
philosophy which underpins the working principles 
of TOC. This is often referred to as TOC’s 
‘logistics paradigm’ and consists of five steps for 
on-going improvement, the drum-buffer-rope 
(DBR) scheduling methodology and the buffer 
management information system. To address the 
policy constraints and effectively implement the 
process of on-going improvement, Goldratt [3, 6] 
developed a generic approach called Thinking 
process (TP). This is the second component of 
TOC. The working principles of TOC and the 
application procedure of the TP are discussed in 
the following two subsections. 
 
1.1 On-going improvement process   Main 
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focus of TOC is to determine the system 
constraints and effectively manage it. To manage 
the constraints, Goldratt [7] proposed five steps 
process of on going improvement also known as 
five focusing steps or 5FS. These steps are: 

 
1. Identify the system’s constraint(s). These may 

be physical (e.g. materials, machines, people, 
demand level) or managerial. Constraints 
determine the systems throughput and should 
therefore attract serious attention from 
managers. 

2. Decide how to exploit the system’s 
constraint(s). If the constraint is physical, then 
the objective should be to make the constraint 
as effective as possible. A managerial 
constraint should not be exploited but be 
eliminated and replaced with a policy which 
will support to increase throughput. 

3. Subordinate everything else to the above 
decision. This means that every other 
component of the system (non-constraints) 
must be adjusted to support the maximum 
effectiveness of the constraint. Because 
constraints dictate a firm’s throughput, 
resource synchronization with the constraint 
will lead to more effective resource utilization. 

4. Elevate the system’s constraint(s). If existing 
constraints are still the most critical in the 
system, rigorous improvement efforts on these 
constraints will improve their performance. As 
the performance of the constraints improve, the 
potential of non-constraint resources can be 
better realized, leading to improvements in 
overall system performance. Eventually the 
system will encounter a new constraint. 

5. If in any of the previous steps a constraint is 
broken, go back to step 1. Do not let inertia 
become the next constraint. TOC is a 
continuous process and no policy (or solution) 
will be appropriate (or correct) for all time or 
in every situation. It is critical for the 
organization to recognize that as the business 
environment changes, business policy has to be 
refined to take account of those changes. 

 
1.2. Five step thinking process   According to 
Goldratt [3], while dealing with constraints, 
managers are required to make three generic 
decisions. These are: 

(a)  Decide what to change. 
(b) Decide what to change to. 
(c)  Decide how to cause the change. 

 
     To address these questions, the TP prescribes a 
set of five tools in the form of cause-and-effect 
diagrams. 
1. Current reality tree. Current reality tree 

identifies the root causes and the core problem 
of an organization. The effectiveness of the 
current reality tree depends on the experience 
and intuition of the involved individuals. 

2. Evaporating cloud. Evaporation cloud try to 
identify the solution of the core problem 
generated in the previous step. 

3. Future reality tree. This is also known as 
evaluation and improvement step. It deals with 
the implementation process of the solution 
identified in previous step. After the 
implementation, evaluation is carried out to 
improve the solution before they are really 
implemented. 

4. Prerequisite tree. Prerequisite tree helps to 
surface and eliminate the obstacles in the 
implementation process of a chosen solution, 
by determining all the intermediate steps that 
are necessary to execute the chosen solution. 

5. Transition tree. This step is generally carried 
out when the people executing the plan are not 
the same as one who develops it. Its function is 
to identify all the action needed in the current 
environment to achieve the intermediate 
objectives that were identified earlier in the 
prerequisite tree. 

 
     The product mix decision problem is one 

important application of the TOC’s ongoing 
improvement process. Extensive studies have been 
carried out to identify the optimal product mix to 
maximize the profit [8]. Goldratt [2] proposed 
traditional TOC algorithm for solving the product 
mix problem. Although, TOC algorithm is capable 
to solve the problems of this nature, in cases of 
multi constraint resource problem it is unable to 
provide optimal or near optimal solution [9]. The 
failure of TOC algorithm to identify the solution 
under the existence of multi constraint resources 
promoted the various researchers to refine the TOC 
algorithm to overcome its deficiency. The Integer 
linear programming (ILP) has been explored with 
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TOC product mix heuristic by Luebbe and Finch 
[10]. Lee and Plenert [11] and Plenert [9] tested 
ILP formulation to identify a product mix and 
compared how it fully utilized the bottlenecks and 
proved its superiority over the TOC heuristic’s 
solution. However, the computational time 
required to achieve the optimal solution using the 
ILP is high, thus required some other heuristics to 
surmount it. Fredenall and Lea [12] proposed a 
revised TOC (RTOC) heuristic that identifies the 
optimal product mix for the problems where the 
TOC product mix heuristic failed previously. 
RTOC provided same results as ILP in most of the 
cases. Aryanezhad and Komijan [13] proposed an 
improved algorithm, which could reach optimum 
solution in determining product-mix under TOC. 
Efficiency of their improved algorithm in reaching 
the optimum solution was compared with the ILP 
method of Fredendall and Lea [12] through an 
example. Tsai et al [14] developed an algorithm for 
optimizing a joint products further processing 
decision under the theory of constraints. 
Bhattacharya et al. [15] presented results over their 
fuzzy linear programming approach to the 
problem. Wang et al. [16] used immune-based 
approaches, such as self-adaptive regulation and 
vaccination. 
     All above papers and the literature has focused 
more on the first two steps of the TOC. In this 
paper, we focus on step four of the 5FS and use the 
remained capacity of non-constraint to elevate the 
system’s constraint. 
     In the current section, a brief idea of TOC is 
presented. A review of literature on TOC product 
mix problem is also discussed. Section 2 provides 
the description of the problem. Section 3 is 
devoted to model. Section 4 contains proposed 
heuristic algorithm. The illustrative example is 
presented in section 5. Section 6 deals with 
computational results. The conclusion is given in 
section 7. 
 
 
 

2. PROBLEM DESCRIPTION AND 
NOTATION 

 
2.1 Problem description   We consider simple 
manufacturing system that has one capacity-
constrained resource (CCR). We focus on two 

stations in this system: CCR and one of non-
constraint resource named, NC. Demands arrive to 
the CCR in a Poisson manner with rate   
demands/hour. Operations at CCR are done 
independently with exponential operation times, 

with mean operation time equal to 1 . The work 
in the NC is interruptible, allowing a worker in the 
NC to switch to CCR with little delay or lost 
productivity. The switch from NC to CCR would 
occur at those moments when the queue of waiting 
demands in the CCR becomes “too long”. The 
reverse switch from the CCR to the NC occurs 
once the number of demands is sufficiently small. 
For the NC, we must have sufficiently many 
workers there (on average) so that the NC due to 
switching workers stays non-constraint. The goal is 
find thresholds for switching workers between 
CCR and NC to increase the output of system. 
 
2.2 Notation   The following notations are made 
for the remainder of this paper in order to make the 
analysis mathematical. 

 
i index for number of workers at CCR 

j index for the integer value of demand at 
CCR 

w total workers at CCR and NC stations 
(a positive integer) 

cw number of workers permanently 
assigned to the CCR 

ncw time-average number of workers at NC 

0w minimum specified threshold for ncw  

 demands arrival rate at CCR 

 service rate for CCR worker 

k finite capacity of demand for CCR 

ijC minimum value of i and j 

cw time-average number of workers at 
CCR 

ij steady-state probability of the system 
being in state (i, j) 

L lower threshold for switching worker 
from CCR to NC 

U upper threshold for switching worker 
from NC to CCR 
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3. THE MODEL 
 
We assume that the CCR is a continuous time 
Markov process having a two-dimensional state 
space. 

(i, j)=system state having i workers and j 
demands in the CCR. wwwi cc ,,1,  ; 

kj ,,2,1,0   
 
     In the (i, j) state space, probabilistic flows tend 
to travel in two-dimensional loops or cycles. This 
behavior is distinctly different from the more 
familiar birth and death queues found in queueing 
textbooks. A typical loop may start near the 
beginning  with the system nearly empty, i.e., 
index j at or near zero and index i at cw . Then, as 

more demands enter the CCR, the state of the 
system moves positively along with j direction. 
Eventually, a worker from the NC comes to the 
CCR, perhaps twice or even three times. As these 
workers are added, the state of the system then 
moves positively along with i direction. 
Eventually, CCR queue subsides, moving the state 
toward lower values j, and ultimately the one or 
more workers come back to the NC. As the number 
of CCR workers decreases, the system state tends 
back toward low values of all two indices, toward 
system states having few demands and few 
workers. This cycle repeats continuously. 
     There are two events, which lead to change the 
state: a demand arrives at the CCR and the 
operation completion of a demand at CCR. 
 
3.1 Switching thresholds   We define two 
thresholds: the “upper threshold”, used for 
determining the time when the workers move from 
the NC to the CCR, and “lower threshold”, used 
for the reverse assignment. For simplicity, we 
consider policies in which (i) worker movements 
can occur only upon either entrance of a new 
demand at the CCR queue or operation completion  
of a demand at CCR (the former allows a worker to 
be switched from the NC to the CCR; the latter 
allows the reverse). (ii) only one worker may be 
switched at a time. We want to determine optimal 
values of thresholds for moving workers from one 
station to the other. 
     Define the upper threshold as 
     U : Whenever the ratio of j (number of 

demands at CCR) to the i (number of workers at 
CCR) is greater than or equal to U , the number of 
active CCR workers increases from i to i+1. where 

1,,1,  wwwi cc   and kj ,,2,1,0  . 

     Define the lower threshold as 
     L : Whenever the ratio of j (number of demands 
at CCR) to the i (number of workers at CCR) is 
less than or equal to L , the number of active CCR 
workers decreases from i to i-1. where 

wwwi cc ,,2,1   and kj ,,2,1,0  . 

 
3.2 Markovian balance equations   In this 
section, we develop the required Markovian 
balance equations for a specific values of 
thresholds. In order to clarify the balance equation, 
all possible transitions for (i,j) are shown in Figure 
1. 
 

 
 
     The general detailed balance equation can be 
written as follows: 

(1)  

     
  

   
  

   
  
   jiFB

BFG

ECAµ

DECAµ

FCAµ

FGCAµ

EBDEB

jijji

jijiji

jijjiji

jiijjiji

ijjijij

jiijij

jijijij

,11

11

11

11

11

11

1111

11

1111

111

111111



































 

 
     This equation holds for any 

wwwi cc ,,1,   and kj ,,1,0  . where 

(2)  




 


otherwise

L
i

j
if

A ji

0

1  

 
 

Figure 1. All possible transitions for (i,j) where wc < i < w 
and 0 < j < k 
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(3)  




 


otherwise

U
i

j
if

B ji

0

1  

 

(4)  ),(min jiCij   
 

(5)  


 


otherwise

wiif
Di 0

1  

 

(6)  


 


otherwise

jif
Fj 0

01  

 

(7)  


 


otherwise

kjif
E j 0

1  

 

(8)  


 


otherwise

wiif
G c

i 0

1
 

 
The left hand side of equation (1) represents the 
average transitions from state (i, j). The first two 
terms in the bracket specify the transitions due to 
receiving demand, Specifically with switching 
worker from NC to CCR and not respectively. The 
last two terms in the bracket specify the transitions 
due to satisfying demand, Specifically with 
switching worker from CCR to NC and not 
respectively. Also the right hand side of equation 
(1) represents the average transitions into state (i, 
j). The first two terms denote the transitions due to 
satisfying demand. Specifically, with switching 
worker from CCR to NC and not respectively. The 
last two terms indicate the transitions due to 
receiving demand. Specifically, with switching 
worker from NC to CCR and not respectively. 
     ijA  and ijB  state whether the ratio of j (number 

of demands at CCR) to i (number of workers at 
CCR) is less than or equal to U and the ratio of j to 
i is greater than or equal to U , respectively. ijC  is 

minimum of  i  and  j. iD  and iG  state whether the 

number of workers at CCR is equal to w  and cw , 

respectively. Besides, jF  and jE  state whether the 

number of demands at CCR is equal to zero and k , 
respectively. To find the steady-state probabilities 
for a specific value of thresholds, we can solve the 
corresponding system of linear equations, which 
contain the balance equations given in equation 
(1), and the normalizing constraint: 

 (9)  1
0


 

w

wi

k

j
ij

c

  

 
3.3 NC constraint   For the NC, we must have 
sufficiently many workers there (on average) so 
that the NC due to switching workers stays non-
constraint and switching worker can’t make this 
NC into a bottleneck resource. Therefore, we 
require that the time-average worker complement 
in the NC to be  equal or exceeds some minimum 
specified threshold. 

(10)  0wwnc   
 
The time-average number of workers at NC is 
 

(11)  cnc www   
 

(12)  



w

wi
ic

c

iw   

 (13)  



w

wi
inc

c

iww   

where the “dot” (•) notation signifies summation 
over all values of the missing index. 
 
3.4 Objective function and optimization 
problem   Every system has at least one 
bottleneck which limits the system's ability to 
improve its goal. 
     The Theory of Constraints is based on the 
principle that the goal of any economic enterprise 
is to make money, now and in the future, and that 
the system’s constraints determine its capacity to 
make money. If we increase CCR output, the 
output of system will be increased. Therefore, the 
main objective function conceptualized here is 
related to the maximization of CCR output. 
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(14)  
 


w

wi

k

j
ijij

c

Coutput
0

  

s.t. (1) - (10) 
 

3.5 Model with no cooperation   If there is no 
switching of workers (CCR and NC are separate 
non-interacting stations), then CCR can be 
regarded as the kwMM c ///  queueing system, 

which has a finite capacity of size k  and 

cw servers. Demands arrive to the CCR in a 

Poisson manner with rate   demands/hour. 
Operations at CCR are done independently with 
exponential operation times in which  mean 

operation time equal to 1 . steady-state 
probability of the system being in state j (number 
of demands at CCR) is denoted herein by j  and 

written as follows [17]: 
 

(15)  
1

1

1
0

1

!

1

!

1
1








 



























 

k

wn

n

wn
cc

nw

n c

c

c

wwn 



  

(16)  
































 kjwif
ww

wjif
j

cwj
cc

j

c

j

j

c
0

0

1

!

1

10
!

1










 

 
In addition, CCR output is written as follows: 

(17)  


k

j
jjwc

C
0

  

 
 
 

4. HEURISTIC ALGORITHM 
 
The following three conjectures are used in our 
heuristic to limit two thresholds that will be 
considered: 
Conjecture 1. Increasing upper threshold decreases 
CCR output but also increases time-average NC 
manpower. 
Conjecture 2. Increasing lower threshold decreases 
CCR output but also increases time-average NC 
manpower. 

Conjecture 3. If for 1LL   and 1UU  , the  time-

average worker is less than 0w  , then there exists 

no feasible solution for 1LL   and 2UU   or 

2LL   and 1UU   where 12 LL   and 12 UU  . 
 
     Conjecture 1 states that, a policy that pulls 
workers from the NC at a large threshold will 
result in decreased CCR output but also better 
time-averaged manpower in the NC. Conjecture 2 
states that, allowing workers to stay shorter in the 
CCR before switching to the NC provides less 
output CCR and thus the NC will “get better” in 
terms of time-average NC manpower. Conjecture 3 
state that, decreasing lower or upper threshold 
decreases time-average NC manpower. 
     Our proposed algorithm solves the problem as 
follows: 

 
     Step 1: Calculate the ijR  ratio as follows: 

     
i

j
Rij   

     where wwwi cc ,,1,   and kj ,,2,1,0  . 

 
     Step 2: Sort values in ascending order of ijR  

with no repetitions and call them mRRR ,,, 21  . 

 
     Step 3: Determine   nUUUCU ,,, 21   

 mtRt ,...,2,1 , mn   where CU is the set of 

candidate values for the upper threshold with 
1tR . 

 
     Step 4: Determine   mLLLCL ,,, 21   

 mtRt ,...,2,1 , where CL is the set of candidate 

values for the lower threshold. 
 
     Step 5: Set 1L and 11 UU . 
 
     The heuristic starts with total cooperation that 
all w  workers treat as workers in the CCR 
(meaning L=1 and U=1). In these state we have 
maximum output but time-average NC manpower 
maybe infeasible. 
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     Step 6: Calculate steady-state probability of the 
system and time-average worker in NC. If the  
time-average worker is greater than or equal to 0w  

go to step 7 (current solution is a feasible solution) 
else set the next member of CU as U and L=U, 
repeat step 6. 
 
     Step 7: If L is equal to 1L  stop and the current 
values of thresholds provide best solution else set 
the pervious member of CL as L; calculate steady-
state probability of the system and time-average 
worker in NC.  
     If the time-average worker is greater than or 
equal to 0w  repeat step 7 else stop and the pervious 

values of thresholds provide best solution. 
     A flow chart of the heuristic method is included 
in Figure 2. 
 
 

 
5. EXAMPLE 

 
To illustrate the steps described in the previous 
section, consider the following example: 12 , 

4 , 6.00 w , 5k , 3w  and with two 

dedicated workers in the CCR. The algorithm 
solves the problem as follows: 
     Step 1: ijR ratio is shown in Table 1. 
 

 
     Step 2: Sort values in ascending order of 

ijR and call them mRRR ,,, 21  . 

 

0 3
1

2
1

3
2 1 3

4
2

3
3

5 2 2
5

          

1R 2R 3R 4R 5R 6R 7R 8R 9R 10R
 
     Step 3: Determine the set of candidate values 

Table 1. ijR ratio 

5  4  3  2  1  0  j 
i 

2
5  2  2

3  1  2
1  0  2  

3
5  3

4  1  3
2  3

1  0  3  
 

 

 
 

Figure 2. A flow chart of our heuristic method 
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for the upper threshold. 
 

    
 
 2

5,2,3
5,2

3,3
4,1

,,,,, 654321





CU

UUUUUUCU
 

 
     Step 4: Determine the set of candidate values 
for the lower threshold. 
 

     
 
 2

5,2,3
5,2

3,3
4,13

2,2
1,3

1,0

,,,,,,,,, 10987654321





CL

LLLLLLLLLLCL
 

 
     Step 5: Set 1L and 11 UU . 
 
     Step 6: Calculate steady-state probability of the  
 
system and time-average worker in NC. 
     According to the section 3.2, we write balance 
equations for current values of thresholds as 
follows: 

 
     2120 412    

     222021 81216    

     332122 121220    

     342233 121224    

     353334 121224    

     3435 1212    

 
     To find the steady-state probabilities for current 
values of thresholds, we solve the corresponding 
system of linear equations, which contain above 
equations and the normalizing constraint: 
 
     1353433222120    

 
     Steady-state probabilities for current values of 
thresholds are: 
 

0.045520  , 0.136421  , 0.204522  ,  

 
0.204533  , 0.204534   and 0.204535  . 

 
     Thus, the time-average worker complement in 
NC is calculated as follows: 

     



w

wi
inc

c

iww   

 

     0.38643
3

2

 



i

inc iw   

 
     The time-average worker less than 6.00 w , 

therefore set the next member of CU as U 
( 3/42 UU ) and 3/46  LL ; repeat step 

6. Summary of step 6 is shown in Table 2. 
     When 3/5UL , the time-average worker 
is greater than 0w . Therefore, we go to step 7. 

 
     Step 7: Set 2/37  LL ; calculate steady-

state probability of the system and time-average 
worker in NC. The time-average worker is greater 
than 0w , therefore repeat step 7. Summary of step 

7 is shown in Table 3. 
 
     When 1L  and 3/5U  , the time-average is 
less than 0w . Therefore, The algorithm stops and 

the pervious values of thresholds ( 3/4L  and 
3/5U ) provide best solution. It means 

whenever ijR  ratio is greater than or equal to 3/5 , 

the number of active CCR workers are increased 
from i to i+1 (for 2i ; 5,4,3,2,1,0j ) and 

whenever ijR  ratio is less than or equal to 3/4 , 

the number of active CCR workers are decreased 
from i to 1i  (for 3i ; 5,4,3,2,1,0j ). 
     The optimum output is calculated as follows: 
 

  
 


w

wi

k

j
ijij

c

Coutput
0

  

 35342423222120

3

2

5

0

3322210)4(

)4(








 i j

ijijCoutput
 

 8.9094output  

 
     According to the section 3.5, if there is no 
switching of workers, steady-state probability of 
the system is calculated as follows:  
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1
5

2
20 4

12

2

1
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1

4

12

!

1
1






























 

n

n

n

n

n
  

 
     0.02470   

     





























 52
2

1

!2

1

4

12

10
!

1

4

12

02

0

jif

jif
j

j

j

j

j




  

     0.07401   

     0.11092   

     0.16643   

     0.24964   

     0.37445   

     CCR output is calculated as follows: 

     



5

0

)4)(,2min(
j

jjoutput         

     
     












3744.022496.021664.02

1109.020740.010247.00
)4(

output

 
     7.5069output  
     Our heuristic method identifies an output of 
8.9094. The total output for this problem assuming 
no cooperation ( kwMM c ///  queueing system) 

Table 2. Summary of step 6 
 

L U steady-state probabilities ncw 

1 1 
0.045520  , 0.136421  , 0.204522  , 0.204533  ,

0.204534  , 0.204535   
0.3864 

(infeasible) 

3
4

3
4 0.034820  , 0.104321  , 0.156522  , 0.234823  , 

0.234834  , 0.234835   
0.5304 

(infeasible) 

2
3

2
3 0.034820  , 0.104321  , 0.156522  , 0.234823  , 

0.234834  , 0.234835   
0.5304 

(infeasible) 

3
5

3
5 0.028220  , 0.084521  , 0.126822  , 0.190123  , 

0.285224  , 0.285235   
0.7148 

(feasible) 

 
 

Table 3. Summary of step 7 
 

L U steady-state probabilities ew  

2
3

3
5 0.031820  , 0.095421  , 0.143122  , 0.214623  , 

0.128824  , 0.128834  , 0.257635   
0.6137 

(feasible) 

3
4

3
5 0.031820  , 0.095421  , 0.143122  , 0.214623  , 

0.128824  , 0.128834  , 0.257635   
0.6137 

(best solution) 

1 3
5 0.037120  , 0.111221  , 0.166822  , 0.131723  , 

0.079024  , 0.079033  , 0.158034  , 0.237135   
0.5259 

(infeasible) 
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is 7.5069. 
     The above example shows that the heuristic 
method solution exceeds kwMM c ///  queueing 

system output by an additional 1.4025, which is a 
19% increase over kwMM c ///  queueing 

system output. 
 
 
 

6. COMPUTATIONAL RESULTS 
 
For the example discussed in the previous section, 
consider the following sets of parameter values: 

87,6,5;1210,8,6,4 andkand  . Table 4 

contains the results of all combinations of   and 
k  values. The third column of the table contains 

the output obtained from heuristic method ( HMO ). 

The fourth column contains NoCO , total output 

assuming no cooperation ( kwMM c ///  

queueing system). The fifth column provides the 
percentage that output of heuristic method over the 
no-cooperation solution. 

Several conclusions can be drawn from Table 4: 
 

 Our heuristic method clearly performs better 
than kwMM c ///  queueing system. 

 
 By increasing of   and keeping other 

characteristics as constant, the output obtained 
from our heuristic method and kwMM c ///  

queueing system will be increased. 
 

 By increasing of k  and keeping other 
characteristics as constant, the output obtained 
from our heuristic method and kwMM c ///  

queueing system will be increased. 
 

 

Table 4. Results of the example for variety of  and k  values 

 

  k  HMO  NoCO  100

NoC

NoCHM

O

OO
 

4 5 3.9730 3.9149 1.48 
4 6 3.9910 3.9579 0.84 
4 7 3.9970 3.9791 0.45 
4 8 3.9990 3.9896 0.24 
6 5 5.8169 5.4893 5.97 
6 6 5.9098 5.6400 4.78 
6 7 5.9553 5.7416 3.72 
6 8 5.9777 5.8123 2.85 
8 5 7.3934 6.5455 12.95 
8 6 7.6150 6.7692 12.49 
8 7 7.7181 6.9333 11.32 
8 8 7.8164 7.0588 10.73 

10 5 8.3559 7.1635 16.65 
10 6 8.6580 7.3824 17.28 
10 7 8.7631 7.5347 16.30 
10 8 8.9725 7.6443 17.38 
12 5 8.9094 7.5069 18.68 
12 6 9.0037 7.6843 17.17 
12 7 9.0991 7.7949 16.73 
12 8 9.1594 7.8656 16.45 
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7. CONCLUSION  
 
This paper proposed a policy for managing the 
system constraint. A model was developed based 
on that policy and heuristic algorithm was 
suggested to solve this model. The proposed 
heuristic algorithm compared with kwMM c ///  

queueing system. The computational results 
indicate that the proposed algorithm clearly 
performs better than kwMM c ///  queueing 

system. 
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