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Abstract Potential flow over rotating cylinder is usually solved by the singularity method. However,
in this paper a mathematical solution is presented for this problem by direct solution of the Laplace's
equation. Flow over the cylinder was considered non-viscous. Neumann and Dirichlet boundary
conditions were used on the solid surfaces and in the infinity, respectively. Because of non-viscous flow,
the Laplace equation is the governing equation of the flow field. The entire flow field was divided into
two parts including tree stream over a stationary cylinder and flow over a rotating cylinder with no free
stream. Because of linearity of the govell}jng equation, solutions of these flows were superposed to
obtain velocity potential function from whfch velocity and pressure distribution was obtained. Pressure
forces acting on the cylinder were obtained by integrating pressure distribution over the cylinder surface
that was exactly the same as the results of the singularity method. Present work achieved the famous
Kutta-Joukowski theorem in the aerodynamics and fluid mechanics. In addition, the proposed analytical
model was validated by numerical solution. " c~

Keywords Bernoulli equation, Laplace equation, Potential flow, Kutta-Joukowski theorem,
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1. INTRODUCTION

Flow over stationary and rotating cylinders is of
high interest in industry and theoretical fluid
mechanics and aerodynamics. In 1924, Flettner
used a couple of rotating cylinders to produce
propulsive force for his famous ship [1]. Recently,
Peebles has invented a new airplane called
FanWing that utilizes a mechanism as in rotating
cylinder for generating lift force. In his innovative
model, a cross flow fan plays role of the rotating
cylinder [2-7]. Mirzaee, et al [8] studied flow over
a cylinder by Finite Volume Method (FVM) that
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was consistent with the available experimental and
numerical data. Lopez, et al [9] investigated
instability and mode interactions in a differentially
driven rotating cylinder by solving Navier-Stokes
equations and experimental measurements. Rahimi
calculated pressure in the flow between two
eccentric rotating cylinders by using perturbation
method [10]. Heidarinejad and Delfani surveyed
the wake flow behind a cylinder using random
vortex method. They showed that variation of
geometrical and physical parameters of the flow
strongly depends on the Reynolds number [11].
Objective of this work is to present a mathematical
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model for the potential flow over a rotating
cylinder by exact solution of the Laplace equation.
Traditionally, in aerodynamics and fluid
mechanics, flow over the rotating cylinder is
solved by superposition of a doublet, an
irrotational vortex and a free stream [1,12,13].
Doublet and irrotational vortex are artificial
singularities not existing in reality. Because some
concepts like vortex and doublet strength are
physically ambiguous, the approach presented in
this paper is more understandable than singularity
method. For example, the angular velocity of the
rotating cylinder is more tangible than the strength
of a vortex.

2. ANALYTICAL SOLUTION

Flow over a rotating cylinder is shown in Figure 1.
It can be decomposed into two flows, a rotating
cylinder with no free stream and a stationary
cylinder with a free stream.

y

.,
f

x

C)
Vo

CJ CJ
' VO! --! !--

10 §+ 10 = 10 §
~2(r,e) ~k,e) ~(r,e)

Figure 1. Potential flow over a rotating cylinder

The governing equation of the flow field is linear
and velocity potential is obtained from
superposition of solutions of these subproblems.

~(r,e) = ~l (r,e) + ~2 (r,e)

One of the basic boundary conditions for potential
flows is that component of the velocity vector
normal to any solid surface in the flow field should
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be zero. Velocity of the flow at the surface of the
cylinder is equal to the tangential component of the
velocity vector and consequently boundary
conditions for ~l(r,8) are as

u =(~ ) =0
r ar r=ro

(
1 ~

)

=>~1(r,8)=[2ffi8

tie = -~ 0r ae =roffi
r;I{)

Free stream velocity is Vo and its velocity

potential is as followings [1,12,13]

~o(x,y)=-Vox

It can be written in polar coordinates system as

$0(r,8) = -Vorcos8 (1)

Laplace equation and its boundary conditions for
these problem are given as followings [1,12,13]

a2$2 +.!. Ocp2+~ a2$2 =0
ar2 r ar r2 ae2

(a) lim$2(r,8)=-Vorcos8
(2)r->'"

Ocp2(r=ro,8)_ 0 0 <8:<;;2n
(b) ar ' -

Equation 2 describes a Neumann problem over a
- disk of radius ro with a Dirichlet condition at

-infinity. Using the separation of variables method,
solution of Equation 2 is considered as [14,15]

~2(r,8) = R(r)0(8) (3)

Plugging Equation 3 into Equation 2, results in

r2R"+rR'
r2R"0 + rR'0 +R0"= 0 => +

R
0" r2R"+rR' 0"
-=O=> ---=k=>
0 R 0

r2R"+rR'-kR = 0 and 0"+k0 = 0

It is obvious that velocity potential should be a 21t-

periodic function of 8 as $2(r,8) = ~2(r,8 + 2n) and

consequently k must be a positive integer as k =n 2 .
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en (e) = an cosne + bn sinne, n = 0, I,... (4)

Equation rZR"+rR'-kR = 0 is known as the Euler
equation and its characteristic equation is given by
[14,16]

~z+(l-I)~-nz =0 =>~,=n, ~z=-n

Thus, R is as followings [14,16]

(i).Ifn*O:R(r)=C{~r +cz(~rn

(ii).Ifn = 0: R(r) = C3+C4In( ~)

R is equal to sum of the above solutions

Rn(r) = C,(~t + Cz(~)-n +C3 +C4In(~)
ro fO ro (5)

Using Equations 3, 4 and 5, Eigenfunctions of the
Laplace equation are as

hn (r,e) =

(
(

f n
(

f -n r

)
C,-) +Cz-) +C3+C4In(-) x

fo fO ro

(an cosne + bn sinne)
(6)

Superposing these Eigenfunctions yields

$Z(f,e)=

I (
c,(~t +Cz(~)-n +C3 +C4In(~»

)
x

n~ ~ ~ ~

(an cos ne + bn sin ne)
(7)

Where C" Cz, C3, C4, au and bn can be obtained by
applying Neumann and Dirichlet boundary
conditions given in Equation 2.
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Applying the first boundary condition, Equation
2(a), on Equation 7 gives

lirn$z(f,e) =
r~oo

lirn I (
CI(~)n +Cz(~)-n +C3 +C4In(~»

)
x

n=1 fO ro fO
r~oo

(an cos ne + bn sin ne)=

I (
c,(~)n +C3 +C4In(~»

)
x

n=1 fO fo

(an cosne + bn sin ne)= -Vorcose =>

n=I,C4 =0,C3 =0

(al cose+ bl sine)cl ~=-Vorcose=>
fO

a,C, =-Vof, blCI =0

The first order partial derivative of the velocity
potential function with respect to r is

8$z(r,e) -
ar

~
(c

n
(

f
)
n-I C

n
(

f
)
-n-' C

r

)L 1-- - z-- + 4- x
n=1 fO fO fO fO fO

(an cos ne + bn sin ne)

Using the second boundary condition, Equation
2(b), and above equation yields

n(C, -CZ)+C4 =0,n=I,C4 =O=>CI =Cz =>

$(r,e)=
(

CI(~)1 +cz(~)-'
)

(al cose+ bl sine)
fO ro

=
(
~+~

)
(c,al cose+C,b, sine)=

fO r

(
r fO

)
-+- (-Vofocose)=>
ro r

$z(r,e) = -v{r+ ff }ose =>

$(f,e)=-VO(f+ff }ose+rlooe
(8)
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According to the definition of the stream function
it can be obtained as followings [1,12,13]

Ur =.!. ocp=-vo
[
l_ri

)
cose=>

r De r2

[

2

)

ocp ro
De =-yo r-7 cose

=>cp(r,e)=-v{r- r! }ine+f(r)

ocp

[

ri
)

. riro
Us =--=vo 1+- sme+-=

Or r2 r

[
ri

)
. df df riro

Vo 1+- sme--=>-=--=>
r2 dr dr r

fer) = -riro Inr =>

cp(r,e)=-v{r- r! }ine-rirolnr
(9)

3. STAGNATION POINTS
.-

Components of the v.elocityvector are as below
[1,12,13]

Del>

(
ri

)Ur=a;:-=-Vo I-?" cose

.::M,

(

2

)

2
I V'I' ro. roro

Us =-~=Vo 1+- sme+-
r oe r2 r

By definition, velocity components are zero at
stagnation point [1,12,13]. Thus,

(

rg
)

. rgro
Vo I+?" sme+7=o

-Vo(l- :qcose=o=>r=ro

1. If roro< 2V0, there are two stagnation points on

the cylinder.
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s{r =ro,e=-sin-l( ;~))

s{r= ro,e=n-sin-l( ;~))

2. If roro= 2Vo, there is one stagnation point on the
cylinder.

{r= ro,e=-%)

3. If roro> 2Vo, there is one stagnation point away

from the cylinder surface.

(

riro+~r~ro2-4Viri n

)
S r= 2 ,e=--

2Vo 2

r?ro-~r.4ro2 -4V2r2
The other value of r is r = 0 0 2 0 0

2Vo

which is less than roand is not acceptable.

4. If Vo= 0, there is no stagnation point.

Equation of equipotental lines is obtained as
followings [1,12,13]

~(r:e) = -vo(r + r; )cose + riroe = c =>

- VO(X2+ y2 + ri)x + r~(x2 + y2) x

rotan-l(~) = c(x2 + y2)
(10)

Equation of stream lines is as below [1,12,13]

cp(r,e)=-vo[r- r! }ine-rirolnr=c=>

- VO(X2+y2 -ri)y-iri(x2 +y2)x

roln(x2+ y2) =C(X2 + y2) (11)
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According to the Bernoulli equation, pressure
distribution over the cylinder is as followings
[1,12,13]

1 2 2 1
P = Po + -p(Vo - V ) = Po+ -p x2 2

[vg(l- 4sin2 e) - 4Vorocosine- rgco2]

Pressure coefficient is defined as [1,12,13]

P-Po ~
cp = 1 2

-pVo
2

Cp=1-4sin2e-{ ~~ }ine-( ~~ r
Drag force is defined as the component of ~esultant
force in the opposite direction of the free stream
[1,12,13].

21t

D = Jpcoserode ~
0

D=O (12)

Lift force is defined as the component of resultant
force normal to the free stream direction [1,12,13].

21t

L = Jpsinerode~
0

L = 21tpVorgco (13)

Circulation is defined as [1,12,13]

21t

f = fueds = Juerode ~
0

f = 21trgco (14)

From Equations 13 and 14 lift force can be written
as:
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L=pVof (15)

This equation that relates lift force to the
circulation is known as the Kutta-Joukowski

theorem [1,12,13].

4. VALIDATION OF THE ANALYTICAL
MODEL WITH THE CFD ANALYSIS

For validation of the analytical solution, a CFD
code was established to solve the flow flied.
Boundaryconditionsfor numericalsolutionare as
Po = 0,co= 0, Vo = lOm/s,p = 1.225kg/m3 ,ro = 0.05m

Free stream Reynolds number (ReD = pVoD/Il) is
3.42xl04 < 5 x 105and consequently flow over the
cylinder is laminar [1]. Computational domain for
CFD solution is depicted in Figure 2. By solving
Navier-Stokes equations, static pressure
distribution was obtained [17,18].

".

Figure 2. Computational domain over the cylinder

The computed values of the pressure coefficient
over the cylinder are given in Table 1.
Comparison of numerical and analytical pressure
coefficients is shown in Figure 3. It is observed
that behind the cylinder, flow is separated at e =
151.87°. For e < 90°, there is a good agreement
between the computed and the analytical Cp.
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TABLE 1. Computed pressure coefficient by the CFD
h.

0

0 .,
0

0

135 90
en

45

Figure 3. Comparison of numerical and analytical
pressure coefficient for Po= 0, (0 = 0, V0= 10 mis, p =
1.225 kg/m3, ro = 0.05 m

Because of adverse pressure gradient at e > 90°,
discrepancies between the CFD results and the
analytical equation increases and after separation
point, the analytical formula fails to be matched
with the computed data.
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5. RESULTS AND DISCUSSIONS

Lift force of the cylinder versus rotational speed
and radius is depicted in Figure 4. At negative
rotational speeds, because free stream and
rotational speeds are in the opposite directions at
the upper surface and in the same direction at the
bottom surface, lift force decreases. Higher radius
of the cylinder is tantamount to higher induced
speed due to rotation that increases absolute value
of the lift force at constantrotationalspeed.

-10

Figure 4. Lift force versus ro and (0 at Vo = 10 mls

0

Lift- fgrce is shown Figure 5 at various rotational
and ftee stream velocities. It is perceived that when
both (0 and Vo are negative or positive, the
maximum lift is obtained.

The streamlines over the cylinder are shown in
Figure 6 at various rotational speeds. This figure
has four parts as followings
(a) 0) = 0 and roO)< 2Vo , there are two stagnation

points, one at e = 0and the other at e = n .
(b) roO)< 2Vo, there are two stagnation points.

(c) roO)=2Vo, there is one stagnation point at
e=-n/2.

(d) roO)> 2Vo, there is one detached stagnation

point at e = -n/ 2.
As depicted in this figure, for 0) = 0, stagnation
points lay on the cylinder surface at e = 0, n,
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_n--- --
x(m) CD x(m) CD x(m) CD

-0.0500 -0.088 -0.0226 -1.474 0.0293 -1.460
-0.0496 -0.131 -0.0190 -1.798 0.0323 -1.161
-0.0493 -0.171 -0.0154 -2.056 0.0353 -0.877
-0.0484 -0.191 -0.0116 -2.284 0.0379 -0.585
-0.0475 -0.186 -0.0078 -2.446 0.0404 -0.308
-0.0460 -0.170 -0.0039 -2.573 0.0425 -0.029
-0.0445 -0.156 0.0000 -2.632 0.0445 0.215
-0.0425 -0.1498 0.0039 -2.643 0.0460 0.450
-0.0404 -0.147 0.0078 -2.598 0.0475 0.639
-0.0379 -0.172 0.0116 -2.504 0.0484 0.801
-0.0353 -0.262 0.0154 -2.370 0.0493 0.910
-0.0323 -0.485 0.0190 -2.184 0.0496 0.981
-0.0293 -0.786 0.0226 -1.977 0.0500 1.003
-0.0260 -1.151 0.0260 -1.717

0.5

0

-0.5 \ 0

Cp -1

-1.5

-2

-2.5

-3 I-
180-
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Figure 5. Lift force versus Vo and (0 at ro = 0.2 m

however, by increasing rotational speed, they.move

downward and finally when fOO)is goinf; tS be
greater than 2Vo, they leave the cylinder surface at
8=-1t/2.

The streamlines over the cylinder are depicted"in
Figure 7 at various free stream velocities.'
(a) Vo= 0, there is no stagnation point.

(b) fOO)> 2Vo, there is one detached stagnation
point at e = -1t/ 2.
(c) fOO)< 2Vo, there are two stagnation points.

(d) fOO)< 2Vo, there are two stagnation points.

As illustrated in this figure, when Vo= 0, there is ~
no stagnation point. By increasing free stream
velocity, one detached stagnation point forms far
from the cylinder surface at 8 = -1t /2 and as free
stream speed increases, this point moves toward
the cylinder and finally lay on its surface at
e = -1t/ 2. By further enhancement of Vo, two

stagnation points appear on the cylinder surface.
The streamlines at high free stream and rotational
speeds are shown in Figure 8. At high free stream
velocity, flow is similar to the case in which
rotational speed is zero and there are two
stagnation points at 8 = 0, 1t . At high rotational
speed, flow is similar to the case in which free
stream velocity is zero and there is no stagnation
point.

Variation of the pressure coefficient at various
rotational speeds is illustrated in Figure 9. It is
perceived that at upper wall ofthe cylinder,

IJE Transactions A: Basics

(b)

~,
/ 0

le(e)
Figure 6. The streamlines at various rotational speeds
for Vo = 10 mis, ro = 1 m, (a) (0 = 0 rad/s, (b) (0 = 10
rad/s, (c) (0 = 20 rad/s and (d) (0 = 30 rad/s'

£:

0

(a)

----

(d)

Figure 7. The streamlines at various free stream

velocities for (0 = 15 rad/s, ro = 1 m, (a) Vo = 0 mis, (b)
Vo = 5 mis, (c) Vo = 10 mls and (d) Vo = 15 mls

~o]Cb) C@) I

Figure 8. The streamlines over the cylinder at high free
stream and rotational velocities for ro = 1 m, (a) (0= 15
rad/s, Vo = 1000 mis, (b) (0 = 4000 rad/s, Vo = 10 m/s
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pressure coefficient decreases with the rotational
velocity and on the bottom wall increases that
causes higher lift force at high rotational velocities
as shown in Figures 4 and 5. Symmetric
distribution of the pressure coefficient
demonstrates that drag force should be zero as
obtained in Equation 12. However, pressure
distribution is not symmetric in realty and drag
force would not be zero as depicted in Figure 3.

0

-2

-4

Cp -6

-8

-10

-12
180 0

0

Cp
-1

-2

-.0
180 360

Figure 9. Pressure coefficient distribution at
various rotational velocities for p = 1.225 kg/m3,

--"V0 = 5 m/s, ro = 0.2 m (Numbers written on the
figure denote rotational speed in rad/s.)

Pressure coefficient at various radii of the cylinder
is shown in Figure 10. It is observed that on the
upper wall, pressure coefficient decreases as radius
increases. However, at the bottom wall, changes of
the pressure depended on the interaction of the free
steam and rotational velocities. At low radii,
difference of Vo and fOCOis low which is

equivalent to high pressure coefficient and at
higher radii, this difference is greater and causes
lower pressure coefficient.
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0

Figure 10. Pressure coefficient distribution at various
radii for co= 35 rad/s, V0= 5 m/s, p = 1.225 kg/m3
(Numbers written on the figure denote radius of the
cylinder in m)

6. CONCLUSIONS

>

. -':low over stationary and rotating cylinders was
investigated by direct solution of the Laplace
equation and numerical solution. Results of the
mathematical solution were exactly identical to the
singularity method. Because of dealing with real
physical parameters, this solution is more
perceptible and tangible than conventional
singularity technique. For verifying accuracy of the
mathematical analysis, a CFD code was
established to solve the flow field over the cylinder
using the Finite Volume Method (FVM). The
proposed analytical model was in good agreement
with the numerical simulation before the separation
point. Velocity potential and stream functions of
the flow were derived from the solution of the

Laplace equation and equipotential and stream
lines were obtained from these functions,

IJE Transactions A: Basics

0

-5

-10

Cp-15

-20

-25

L
180

r;
0

-2

-4
Cp

-6

-8

-10
V

240 en
300180

Archive of SID

www.SID.ir

www.SID.ir


respectively. Stagnation points for various free
stream conditions, cylinder radius and rotational
speed were located and discussed. Drag and lift
forces and circulation were calculated that were the

same as the singularity technique.
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