
IJE Transactions A: Basics Vol. 24, No. 1, January 2011 - 65 

A PARTICLE SWARM OPTIMIZATION ALGORITHM FOR 
MIXED VARIABLE NONLINEAR PROBLEMS 

 
 

H. Nahvi* and I. Mohagheghian 
 

Department of Mechanical Engineering, Isfahan University of Technology 
P.O. Box 84156-83111, Isfahan, Iran 

hnahvi@cc.iut.ac.ir - imaniut81@me.iut.ac.ir  
 

*Corresponding Author 
 

(Received: August 26, 2008 – Accepted: July 2, 2009) 
 

Abstract   Many engineering design problems involve a combination of both continuous and 
discrete variables. However, the number of studies scarcely exceeds a few on mixed-variable 
problems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixed-
variable nonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convex 
optimization problems. In this paper, it will be shown that PSO is one of the best optimization 
algorithms for solving mixed-variable nonlinear problems. Some changes are performed in the 
convergence criterion of PSO to reduce computational costs. Two different types of PSO methods are 
employed in order to find the one which is more suitable for using in this approach. Then, several 
practical mechanical design problems are solved by this method. Numerical results show noticeable 
improvements in the results in different aspects. 
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با اين . رود هاي پيوسته و گسسته به کار مي در بسياري از مسائل طراحي مهندسي ترکيبي از متغيرچكيده       

در اين تحقيق از روش حرکت دسته جمعي . وجود مطالعات کمي بر روي اين گونه مسائل انجام پذيرفته است
روشي  PSO. کيبي استفاده شده استهاي تر سازي غير خطي داراي متغير براي حل مسائل بهينه (PSO)ذرات 

در اين . کار رود محدب به خطي و غير سازي غير تواند براي يافتن جواب بهينه مطلق مسائل بهينه است که مي
با تغييراتي . هاي ترکيبي است ها براي حل مسائل با متغير يکي از بهترين روش PSO شود که مقاله نشان داده مي

کار رفته و از روش  بهPSO دو نوع مختلف از روش . وريتم کاهش يافته استدر اين روش زمان اجراي الگ
  .مهندسي استفاده شده است ئل طراحي تر در حل تعدادي از مسا دقيق

 
 

1. INTRODUCTION 
 
In many engineering optimization problems, the 
variables cannot accept arbitrary values. That is to 
say, for practical reasons, some or all of the 
variables must be selected from a list of integer or 
discrete values. For example, structural members 
such as sheets or springs may have to be selected 
from sections available as standard sizes. Also, the 
numbers of reinforcement rods in concrete 
members, bolts in connections, or gear teeth are all 
integers. 
     In recent years, considerable interest has been 
expressed by researchers in the area of mixed-
variable optimization. Schmit, et al [1] used dual 
method for discrete-continuous variables. Sandgrern 

[2] and Hajela, et al [3] proposed nonlinear branch 
and bound algorithms where a solution is first 
obtained by ignoring the discrete conditions. 
Typical approach to the solution of optimization 
problems composed of discrete variables includes 
sequential linear approach [4], penalty function 
approach [5], simulated annealing [6] and fuzzy 
programming [7]. 
     Genetic algorithms (GA) are recently 
developed optimization techniques and rapidly 
become popular. Many researchers, including Lin, 
et al [8], Wu, et al [9], Cheung, et al [10] and Rao, 
et al [11] considered genetic algorithm to deal with 
such problems. 
     Another novel evolutionary computational 
technique, Particle Swarm Optimization (PSO), 
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has been proposed by Kennedy, et al [12]. The 
development of PSO was based on observations of 
animals, social behavior such as birds flocking 
and fish schooling. PSO is initialized with a 
population of random solutions. Each individual 
is assigned a random velocity according to both 
its own flying experience and that of its 
companions. The individual, namely particle, is 
then flown through hyperspace. PSO has memory 
so, knowledge of good solution is retained within 
all particles; whereas for example in GAs, 
previous knowledge of the problem will be 
destroyed once the population changes. In PSO 
there is a mechanism of constructive cooperation 
and information sharing between particles. Due to 
its simple concept, easy implementation and 
quick convergence, PSO has gained much 
attention and has been successfully applied in a 
variety of fields. 
     Several researchers used PSO as a basic 
algorithm for solving mixed variable problems. 
Guo, et al [13] presented a hybrid swarm intelligence 
approach (HSIA) for solving problems containing 
integer, discrete, zero-one and continuous variables. 
Zhang, et al [14], and He, et al [15] proposed a co-
evolutionary particle swarm optimization approach 
and a hybrid particle swarm with differential 
evolution operator, respectively. They also solved 
some benchmark problems comprised of mixed 
variable problems. 
     Elbeltagi, et al [16] compared five evolutionary-
based search methods consisting of genetic 
algorithms, memetic algorithms, particle swarm, 
ant-colony and shuffled frog leaping. They showed 
that PSO method performs better than the other 
algorithms in terms of success rate and solution 
quality while is preceded by ACO with respect to 
processing time. 
     In this paper, two common PSO algorithms 
are compared and advantages and disadvantages 
of these algorithms when dealing with mixed 
discrete nonlinear problems are expressed. Then, 
by manipulating the convergence criterion, 
efficiency of the algorithm is improved. Also, two 
rounding techniques are employed to treat discrete 
values and the results are compared. Finally, by 
applying the proposed PSO to numerical examples, 
it is shown that particle swarm optimization is one 
of the best methods of solving mixed discrete 
nonlinear problems. 

2. PARTICLE SWARM OPTIMIZATION 
 
The particle swarm optimization (PSO) was 
inspired by the observations of birds flocking and 
fish schooling. It differs from other well-known 
Evolutionary Algorithms (EA) as in EA a 
population of potential solutions is used to probe 
the search space; but, no operators, inspired by 
evolution procedure, are applied on the population 
to generate a new promising solution. Instead, in 
PSO, each individual (named particle) of the 
population (called swarm), adjusts its trajectory 
towards its own previous best solution (called 
pbest) and the previous best solution attained by 
any member of its topological neighborhood. 
There are different kinds of sharing information 
between particles. In the global variant of PSO, the 
whole swarm is considered as the neighborhood. 
Thus, global sharing of information takes place and 
the particles benefit from the discoveries and the 
previous experiences of all other companions 
during the search for promising regions of the 
landscape [17]. Alternatively, there are some local 
variants of PSO wherein particles only make use of 
their own information and that of the best of their 
adjacent neighbors. 
     Each particle in PSO has two main 
characteristics: its position and its velocity. 
Assume that the current position and velocity 
vector of the i-th particle in the d-dimensional 
search space are denoted as )x,......,x,x(X id2i1ii   

and )v,........,v,v(V id2i1ii  , respectively. The best 
earlier position of the i-th particle is represented as 

)pbest,......,pbest,pbest(Pbest id2i1ii  . 
     There are different kinds of PSO including 
global vision of PSO with inertia weight 
(GWPSO), local vision of PSO with inertia weight 
(LWPSO), global vision of PSO with constriction 
factor (GCPSO), and local vision of PSO with 
constriction factor (LCPSO) [18]. 
     In GWPSO, which is very popular among 
researchers, there are two methods for updating 
position and velocity of each particle. The best 
position of entire group at k-th iteration is used in 
the first method while in the second method; the 
best position of entire group up to the current 
search is employed. 
     In the first method, the position k

idx  and 

velocity k
idv  of particle i  in the k-th iteration are 
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updated as follows: 
 

1k
idvk

idx1k
idx   (1) 

 

)k
idxgbest(2r2c)k

idxk
idpbest(1r1c

k
idwv

1k
idv




 (2) 

 
In Equation 2 w  is the inertia weight, 1c  and 2c  
are positive constants called cognitive and social 
parameters, respectively, and 1r  and 2r  are random 
numbers selected in the interval [0 1]. The 
constants 1c  and 2c  represent the weighting of the 
stochastic acceleration terms that pull each particle 
towards pbest  and gbest  positions and usually are 

set 2cc 21  . 

     In the second method gbest  is replaced 

by kgbest . As will be shown later, in the numerical 

examples of mixed-variables or in the problems 
that only have discrete variables, usage of kgbest  

is more suitable compared to the use of gbest . In 

other words, the success rate of kgbest  is higher 

than that of gbest . The reason is firstly due to the 

fast convergence of gbest and secondly, the 
inability of particles to escape from local minima 
in gbest  method. In other words, since the discrete 
variables are rapidly converged the continuous 
variables will be obliged to search in a limited 
specific area which might not be the optimum area. 
     The role that inertia weight w  plays in the 
convergence behavior of PSO is very important. 
The inertia weight is employed to control the effect 
of the previous velocities on the current velocity. 
This way, the parameter w  makes a compromise 
between global and local exploration abilities of 
the swarm. In PSO, when the search continues, the 
inertia term decreases linearly as: 
 

k)
maxk

minwmaxw
(maxww


  (3) 

 
where maxw  and minw  are the maximum and 

minimum values of the inertia term, respectively, 
and maxk  is the maximum number of iterations. In 

this paper, these parameters are assumed to be: 
 

1maxw  , 0minw   (4) 

 
Sometimes as particle oscillations become wider, 
the system will gain tendency to explode [12]. The 
usual means of preventing explosion is simply to 
define a parameter maxv  and curb the velocity of 
every individual i from exceeding that velocity on 
each dimension d. In the case that velocity violates, 
it will be modified as follows: 
 
If maxvidv   then maxvidv   

 
If maxvidv   then maxvidv   (5) 

 
The effect of this is to allow particles to oscillate 
within the bounds [12]. 
 
2.1. Mathematical Formulation of Constraint 
Problems   Problem definition: 
 
Minimize f(x) 
 
Subject to 
 

U
ixixL

ix     n,.....,2,1i   (6) 
 

0)x(hg     m,.....,2,1h   (7) 

 

where n is the number of continuous variables, L
ix  

and U
ix  are the lower and upper bounds of 

continuous variables, respectively, )x(gh  are 
applied constraints and m is the number of 
constraints. 
      Penalty function is defined as: 
 







n2m

1h
)}x(hg,0max{r)x(f)x(F  (8) 

 
where r is the penalty parameter, m + 2n is the 
number of all inequality constraints including 

)x(gh  and two supplemental constraints, related to 
the upper and lower bounds of each continuous 
variable. 
 
2.2. Treatment of Discrete Variables   Assuming 
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the number of discrete variables in the problem is s: 
 

iDinx   
 

}f,id,.....,2,id,1,id{iD    s,...,2,1i   (9) 

 
At first these variables are treated as continuous 
and similar to above, the following supplemental 
constraints are applied for the upper and lower 
bounds 
 

f,idinx1,id      s.,,.........2,1i   (10) 

 
The new objective function incorporates the 
behavior constraints as: 
 







s2n2m

1h
)}x(hg,0max{r)x(f)x(F  (11) 

 
At any iteration, after finding the new position of 
particles )x( 1k , appropriate variables can be made 
discrete using two methods. The first method is to 
find the nearest discrete value to the current 
continuous variable as follows: 

q,idinxq,idinxf,idinx

,.......,2,idinx,1,idinxmin







 

 (12) 

 

The second method is to check the upper and lower 
discrete values of the current continuous variable 
and determine which one is the best. It is obvious 
that second method imposes additional fitness calls 
to the solution and accordingly increases 
computational costs. However, when the range 
of discrete variables is vast, usage of second 
method leads more accurate results and better 
convergence [19]. 
     Using these two methods, at any iteration, all of 
discrete variables that are treated as continuous 
become discrete. These methods are very simple 
and efficient and do not have the complexities of 
the penalty approach. They also surmount 
shortcomings existing in the methods that adopt 
discrete values near the optimal solution or use 
discrete values obtained by rounding off. 
 
2.3. Convergence Criterion   In practice, after 
some iterations all of the particles converge to a 

specific part of problem’s space and with 
subsequent iterations, particles only oscillate in 
that region. These oscillations only increase the 
precision of results. Most of the times such high 
precision is unnecessary so, a convergence 
criterion is introduced based on the required 
accuracy. When the results attained such accuracy, 
iterations will be terminated and do not need to 
reach maxk . This can decrease the number of fitness 
calls and as a result reduce the computational 
costs. This reduction is more significant in the 
cases of mixed or discrete variable problems. The 
convergence criterion is determined as: 
 

)ijVmin(minv   c....,2,1i   d....,,2,1j  

 
Terminate   if minv  < e (13) 

 
where c and d are the number of variables and 
particles, respectively, and e is the required 
accuracy. 
 
2.4. Optimization Algorithm of Mixed 
Discrete Variables Problems   The algorithm 
of the proposed method is as follows: 
 
1. The number of particles and maximum 

number of iterations are determined. The 
iteration number k is set to k = 1. 

2. The position and velocity for every 
particle are set at random. 

3. The due variables are made discrete.  
4. The values of kpbest , kgbest  and gbest  

are determined. 
5. The value of inertia weight is calculated. 
6. The position and velocity of every 

particle are updated by kpbest  and 
kgbest . 

7. If the velocity of particles violate maxv  

and maxv  they are modified. 
8. If the minimum value of the particle’s 

absolute velocity is lower than what was 
chosen; jump to 11. 

9. k = k + 1 
10. The number of iterations is checked. If 

maxkk  , then return to 3. Otherwise: 

11. The value of gbest  is displayed. 
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3. NUMERICAL EXAMPLES 
 
To demonstrate the effectiveness of the proposed 
approach, several applications of optimum design, 
each corresponds to a particular class, are 
considered. In the welded beam design the entire 
variables are continuous while, in the speed 
reducer design, all of the variables are discrete. In 
the pressure vessel problem variables are 
combination of discrete and continuous. In the coil 
compression spring design problem continuous, 
discrete and integer variable are exist. 
 
3.1. Example 1. Welded Beam Design   The 
welded beam shown in Figure 1 is designed for 
minimum cost subject to constraint on shear stress 
in weld,  , bending stress in beam, , buckling 
load on the bar, cP , end deflection of the beam,  , 
and side constraints. This problem involves 
four continuous variables; the fillet weld leg 
size, h, the fillet weld length, l, the bar’s 
width, t, and the bar’s thickness, b. Using the 
design vector TT

4321 ]b,t,l,h[]x,x,x,x[X  , the 
objective function and constraints are 
 

)2x14(4x3x0481.02x2
1x10471.1)x(f   (14) 

 

0max)x()x(1g   (15) 

0max)x()x(2g   (16) 
 

04x1x)x(3g   (17) 

 

05)2x14(4x3x04811.02
1x10471.0)x(4g   (18) 

 
01x125.0)x(5g   (19) 

 
0max)x()x(6g   (20) 

 
0)x(cPP)x(7g   (21) 

 
)x(8g  to )x(11g : 0.2ix1.0   4,1i   (22) 

 

)x(12g  to )x(15g : 0.10ix1.0   3,2i   (23) 

 
where 
 

2)(
R2
2x

22)()x(     (24) 

2xx2

P
 , 

J

MR
   (25) 

 

)
2
2x

L(PM  , 2)
2

3x1x
(

4

2
2x

R


  (26) 

 
and 
 

]}2)
2

3x1x
(

12

2
2x

[2x1x2{2J


  (27) 

 

2
3x4x

PL6
)x(   (28) 

 

4x3
3Ex

3PL4
)x(   (29) 

 

)
G4

E

L2
3x

1(
2L

)36/6
4x2

3x(E013.4
)x(cP   (30) 

 

The parameters and material properties are 
assumed as: P = 6000 lb, L = 14 in, E = 61030  psi, 
G = 61012  psi, 13600max   psi, 30000max   psi 

and 25.0max   in. 

 
 
 

 
Figure 1. Welded beam design problem. 
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TABLE 1. Comparison of the Best Solution for Example 1 Found by Different Methods. 
 

 Ragsedell Deb Coello He Research 
)h(x1  0.245500 0.248900 0.208800 0.202369 0.20572276 

)(x2 l  6.196000 6.173000 3.420500 3.544214 3.4707008 

)t(x3  8.273000 8.178900 8.997500 9.048210 9.03681306 

)b(x4  0.245500 0.253300 0.210000 0.205723 0.20572878 

)x(g1  -5743.8265 -5758.6037 -0.337812 -12.839796 -0.4287188 

)x(g2  -4.715097 -255.5769 -353.902604 -1.247467 -1.13037 

)x(g3  0.000000 -0.004400 -0.001200 -0.001498 -0.0000006 

)x(g4  -3.020289 -2.982866 -3.411865 -3.429347 -3.4329389 

)x(g5  -0.120500 -0.123900 -0.083800 -0.079381 -0.0807227 

)x(g6  -0.234208 -0.234160 -0.235649 -0.235536 -0.2355411 

)x(g7  -3604.275 -4465.2709 -363.23238 -11.681355 -0.0088613 

)x(f  2.385937 2.433116 1.748309 1.728024 1.7248965 

 
 
 

TABLE 2. Statistical Results of Different Methods for Example 1. 
 

Ragsdell [22] 2.385937 N/A N/A N/A 

Deb [23] 2.433116 N/A N/A N/A 

Coello [24] 1.748309 1.771973 1.785835 0.011220 

He [15] 1.728024 1.748831 1.782143 0.012926 

This Research 1.724897 1.730813 1.767000 0.010281 

      In this example, the number of particles, 
maximum iterations number and convergence 
criterion value are assumed to be 30, 1000 and 10-

6, respectively. The results are obtained through 30 
independent runs. Table 1 lists the welded beam 
design results obtained by different researchers. 
     As can be seen, the objective function value 
gained in this research is the best compare to the 
results of other researches. The statistical results 
are shown in Table 2. It is evident that not only the 
best feasible solution obtained in this paper is the 
best among other researches also, the average 
searching quality and the worst solution is better 
than those of other techniques. The standard 
deviation of the results of this research is very 
small. 

3.2. Example 2. Pressure Vessel Design   
Optimum design of a pressure vessel is one of 
the most famous benchmarks for mixed discrete 
nonlinear programming (MDNLP) problems and 
several studies of it are available. The pressure 
vessel is an air storage tank (as shown in Figure 2) 
with a working pressure of 3000 psi and a minimum 

volume of 750 3ft . The cylindrical pressure vessel 
is capped at both ends by hemispherical heads. 
Using rolled steel plate, the shell is to be made in 
two halves that are joined by two longitudinal 
welds to form a cylinder. Each head is forged and 
then welded to the shell. Four design variables are 

considered as T
hs

T
4321 ]L,R,T,T[]x,x,x,x[X   

which indicate thickness of the shell, Ts, thickness 
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of the head, hT , the inner radius, R and length of 
the cylindrical section, L. Among the variables R 
and L are continuous while, sT  and hT  are discrete 
and required to be a standard size (multiple of 0.0625 
in). This problem is formulated according to the 
ASME boiler and pressure vessel code. The 
objective function is to minimize the total cost of 
material used, forming, and welding of the pressure 
vessel. The problem may be mathematically stated 
as: 
Minimize 
 

3x2
1x84.194x2

1x1661.3

2
3x2x7781.14x3x1x6224.0)x(f




 (31) 

 

Subject to the following behavior and side constraints 
 

01
1x
3x

0193.0)x(1g   (32) 

 

01
2x
3x

00954.0)x(2g   (33) 

 

01

4x2
3x

3
3x

3

4
1728750

)x(3g 



  (34) 

 

01
240

4x
)x(4g   (35) 

 

25.1ix0625.0     2,1i   
 

k0625.0ix       20...,2,1k   (36) 

1503x25   (37) 
 

2404x25   (38) 
 

Different techniques are employed by researchers 
for solving this problem. Table 3 indicates a 
number of results obtained by researchers using 
particle swarm optimization as the basic solution 
algorithm while Table 4 shows the results gained 
by using other methods. 
      The results of this research, shown in Table 3, 
are obtained by considering 50, 500, 610  as the 
number of particles, maximum iterations number 
and convergence criterion, respectively. 
     As shown in Table 4, the best objective function 
value obtained by methods excluding particle 
swarm is 5850.77, credited to adaptive range genetic 
algorithm (ARGA) [20]. The presented approach 
found a slightly better optimal solution (5850.385) 
of the pressure vessel problem. Additionally, it 
is the best solution among the methods that 
implemented PSO. On the other hand, the average 
of function calls in the present solution is 22200 
while this value is 30000, and 49000 according to 
binary method [21] and DEPSO [14], respectively. 
The number of function calls in CPSO [13] is 
200000 and in GA-base is 900000 [9]. The 
number of function calls is a criterion of 
measuring the computational cost. Since this value 
is not reported by all researchers the computational 
cost can not be properly compared in all the 
researches. 
      The statistical results of different methods are 
shown in Table 5. Significant improvement can be 
seen in three fields of best solution, worst solution 
and the average search quality as a result of the 
work done in this study. As discussed in the 
previous sections, when the problem consists of 
a combination of both discrete and continuous 
variables the usage of kgbest  is more efficient 

than use of gbest . This fact can be concluded from 
Table 6. It is evident from the table that by 
increasing the number of particles or the maximum 
iterations value, the improvement will be more 
significant in attempts that use kgbest . 
 

3.3. Example 3. Coils Spring Design   This 
example deals with the design of a coil spring 
under constant axial load. The objective is to design 

 
Figure 2. Center and end section of pressure vessel. 
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TABLE 3. Results of Example 2 using Particle Swarm Optimization as the Basic Solution Technique. 
 

This 
Research 

Zhang Kitayama He He Guo  

38.860 42.1 36.684 42.1 42.091 58.29 R 

221.365 176.64 224.096 176.64 176.747 43.7 L 

0.75 0.8125 0.75 0.8125 0.8125 1.125 sT  

0.375 0.4375 0.375 0.4375 0.4375 0.625 hT  

0 0 -0.004 0 0 0 1g  

-0.0014 -0.08 -0.016 -0.08 -0.036 -0.0689 2g  

0 -0.26 -0.066 --0.26 0.036 -69.24 3g  

-0.0776 0 0.00 0 -63.26 -196.3 4g  

5850.385 6059.7 5875.254 6059.7 6061.077 7197.9 Cost 

 
 
 

TABLE 4. Results of Example 2 Obtained by Different Methods Excluding Particle Swarm Optimization Technique. 
 

Arakawa Lewis] Rao] Coello] Wu Fu Sandgren  

ARGA RS + NLP MDHGA  MGA  Penalty Method 

38.858 38.76 61.4483 40.324 58.19 48.38 47.000 R  

221.402 223.299 27.4037 200 44.29 111.75 117.70 L  

0.75 0.75 1.1875 0.8125 1.125 1.125 1.125 sT  

0.375 0.375 0.625 0.4375 0.625 0.625 0.625 hT  

0 -0.003 -0.0013 -0.0421 -0.0017 -0.191 -0.194 1g  

-0.011 -0.014 -0.0621 -0.1207 -0.0698 -0.163 -0.283 2g  

-0.078 -0.07 -0.003 0 -974.58 -75.875 -0.510 3g  

0 -1.519 -0.8858 -0.1667 -195.7 -128.26 0.054 4g  

5850.77 5980.95 7284.02 6288.74 7207.5 8048.6 8129.8 Cost 
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TABLE 5. Statistical Results of Different Methods for Example 2. 
 

6408.792 6126.658 6062.74 Zhang (DE) [14] 

6820.410 6332.784 6059.714 Zhang (PSO) [14] 

6410.087 6108.177 6059.714 Zhang (DEPSO) [14] 

6363.804 6147.133 6061.077 Guo (CPSO) [13] 

6308.15 6293.843 6288.745 Coello [24] 

6469.32 6177.25 6059.946 Coello [27] 

6090.526 5921.195 5850.385 This Research 

 
 
 

TABLE 6. Comparison of gbest and kgbest  for Different Solutions of Example 2. 

 

5/30 6090.6 6009.7 5850.38 2000 10 kgbest  

7/30 6163.9 6002.0 5850.38 2000 15 kgbest  

9/30 6090.7 5991.7 5850.38 4000 10 kgbest  

16/30 6090.5 5921.95 5850.38 500 50 kgbest  

4/30 6424.1 6146.6 5850.38 2000 10 gbest  

4/30 6726.5 6125.3 5850.38 2000 15 gbest  

7/30 6820.4 6082.1 5850.38 4000 10 gbest  

5/30 6411.0 6083.6 5850.38 500 50 gbest  
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a helical compression spring (Figure 3) with 
minimum volume of material. There are three 
different kinds of variables in this example including 
the integer variable N that is the number of coils of 
the spring, the wire diameter d that is a discrete value 
chosen as per ASME code and the outside spring 
diameter D that is a continuous variable. Using 
the design vector TT

321 ]D,d,N[]x,x,x[X  , the 
objective function can be obtained as: 
 

4

)21x(2
2x3x2

)x(f


                                       (39) 

 
The following constraints, defined in [2], are 
considered 
 

0
3
2x

3xmaxPsK8S
)x(1g 




  (40) 

 
0maxl)2x)21x(05.1()x(2g   (41) 

 

02xmind)x(3g   (42) 
 

0maxD3x)x(4g   (43) 

0C3)x(5g   (44) 
 

0pm)x(6g   (45) 

 

02x)21x(05.1
K

)loadPmaxP(

fl)x(7g 


  (46) 

 

0w
SK

)loadPmaxP(
)x(8g 


  (47) 

 

where 
 

4
2Gx

1x3
3xmaxP8

  (48) 

 

2x
3x

C   (49) 

 

C

615.0

)4C4(

)1C4(
sK 




  (50) 

 

3
3x1x8

4
2Gx

K   (51) 

 

In the above relations, S, maxl , mind , maxD , pm  and 

w  are the maximum shear stress, the maximum 
spring free length, the minimum wire diameter, the 
maximum outside coil diameter, the maximum 
initial deflection, and the allowable deflection from 
preload to maximum load, respectively. 
 

Also 
 

15,...,1,0k;k51x;201x5   (52) 

 
5.02x207.0   (53) 

 

}5.0,4375.0,394.0,362.0,331.0,307.0

,283.0,263.0,244.0,225.0,207.0{2x 
 (54) 

 

33x1   (55) 
 

The values of pre-assigned parameters are chosen 
as: 1000Pmax  lb, 51089.1S  psi, 71015.1G   
psi, 14lmax   in, 2.0dmni   in, 3Dmax   in, 6pm   

in, 300Pload   lb, 6.6lf   in and 25.1w   in. 

 
 
 

 
 

Figure 3. Coil compression spring. 
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     In this example, the number of particles, 
maximum iterations value and convergence criterion 
are assumed to be 10, 1000, 10-6, respectively. 
     The optimum results obtained by the present 
approach are compared with the results reported in 
the literature, presented in Table 7. Results of this 
research is similar to those achieved by Guo, et al 
[13] using HSIA and is the best result compare to 
the other researches. Among 30 independent runs, 
24 runs find the global optimum (2.6586). The 
average of function calls in this problem is 7738.  
 
3.4. Example 4. Speed Reducer (Gear Train)   
In this example optimum design of a the 
speed reducer, shown in Figure 4, is considered. 
     Design variables are face width, b, the teeth 
module, m, the number of pinion teeth, n, length of 
shaft 1 between bearings, 1l , length of the shaft 2 

between bearings, 2l , diameter of shaft 1, 1d  and 

diameter of shaft 2, 2d . The design vector is defined 

as: T
2121

T
7654321 ]d,d,l,l,n,m,b[]x,x,x,x,x,x,x[X   

where 3x  is an integer variable, 1x , 2x , 4x and 5x  

are defined as integer multiples of 0.1, 6x  and 7x  
are defined as integer multiples of 0.01. The 
objective is to minimize the total weight of speed 
reducer. The constraints include limitation on the 
bending stress and surface stress of the gear teeth, 
and transverse deflection of the shafts 1 and 2 [11]. 
The mathematical formulation of the problem is: 
 
Minimize 
 

)2
7x5x2

6x4x(7854.0)3
7x3

6x(477.7)2
7x2

6x(1x508.1

)0934.433x9334.142
3x3333.3(2

2x1x7854.0)x(f





 (56) 
 

Subject to the following constraints 
 

01

3x2
2x1x

27
)x(1g   (57) 

 

01
2
3x2

2x1x

5.397
)x(2g   (58) 

 

01
4
6x3x2x

3
4x93.1

)x(3g   (59) 

01
4
7x3x2x

3
5x93.1

)x(4g   (60) 

 

01100

}3
6x1.05.0]610)9.16(2)

3x2x
4x745

[({)x(5g




 (61) 

 

0850

}3
7x1.05.0]610)5.157(2)

3x2x
5x745

([{)x(6g




 (62) 

0403x2x)x(7g   (63) 
 

0
2x
1x

5)x(8g   (64) 

 

012
2x
1x

)x(9g   (65) 

01
4x

)9.16x5.1(
)x(10g 


  (66) 

 

01
5x

)9.17x1.1(
)x(11g 


  (67) 

 
6.31x6.2   (68) 

 

8.02x7.0   (69) 
 

283x17   (70) 
 

3.84x3.7   (71) 
 

3.85x3.7   (72) 
 

9.36x9.2   (73) 
 

5.57x0.5   (74) 
 

The problem is solved with 10 particles and 500 
maximum iterations. As mentioned in the previous 
sections, when the problem only consists of 
discrete variables, using the second approach is 
more efficient, so this method is used to solve 
this problem. The optimum solution obtained is 
X*

 = [3.5,0.7,17,7.3,7.8,3.36,5.29] and the optimum 
objective function value is 3000.8. This solution is  
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TABLE 7. Best Results Obtained by Other Researches for Example 3. 
 

Research Guo Rao Wu Fu Sandgren]  

9 9 9 9 9 10 N 

1.223 1.223 1.2253 1.2274 1.2287 1.1807 d 

0.283 0.283 0.283 0.283 0.283 0.283 D 

-1008.8 -1008.8 -772.22 -550.993 -415.97 -543.09 g1 

-8.9458 -8.9458 -8.9357 -8.9264 -8.9207 -8.8187 g2 

-0.083 -0.083 -0.083 -0.083 -0.083 -0.083 g3 

-1.777 -1.777 -1.7747 -1.7726 -1.77 -1.189 g4 

-1.322 -1.322 -1.3297 -1.3371 -1.342 -1.172 g5 

-5.464 -5.464 -5.4613 -5.4585 -5.4568 -5.464 g6 

0.0 0.0 0.0 0.0 0.0 0.0 g7 

0.0 0.0 -0.007 0.0134 -1.0174 0.0 g8 

2.6586 2.6586 2.6634 2.6681 2.6709 2.7995 )x(f  

 
 
 

 
 

Figure 4. Speed reducer. 
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identical to the solution reported by Rao, et al [11], 
obtained by MDHGA method. The constraints 
values )x(g1  to )x(g11  are -0.0739, -0.198, -0.5050, 
-0.9017, -9.5826, -1.5978, -28.1, 0, -7, -0.0493, 
-0.0104, respectively. This implies that the 
optimum solution is in the feasible region. 
 
 
 

4. CONCLUSION 
 
In this paper the particle swarm optimization 
algorithm is employed to solve mixed-variable 
nonlinear problems. Two common PSO algorithms 
were compared and results of engineering design 
problems show that for mixed-discrete problems 
gbestk has better performance. Also some changes 
are performed in the convergence criterion. 
Simulation results for four constrained engineering 
design problems are compared with the previously 
reported results. Noticeable improvements are 
observed in the results. 
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