
IJE Transactions A: Basics                                                                           Vol. 24, No. 1, January 2011 - 87 
 

FREQUENCY ANALYSIS FOR A TIMOSHENKO BEAM 
LOCATED ON AN ELASTIC FOUNDATION 

 
 

M. Sadeghian   
 

Department of Mechanical Engineering, Ferdowsi University of Mashhad 
Postal Code 9177948944-1111, Mashhad, Iran, mo_sa257@stu-mail.um.ac.ir 

 
H. Ekhteraei Toussi * 

 

Department of Mechanical Engineering, Ferdowsi University of Mashhad 
Postal Code 9177948944-1111, Mashhad, Iran, ekhteraee@um.ac.ir 

 
*Corresponding Author 

 
(Received: April 8, 2009 – Accepted in Revised Form: March 11, 2010) 

 
Abstract   It is quite usual to encounter a beam with different types of cross section or even structural 
discontinuities such as a crack along its length. Furthermore, in many occasions such a beam may 
happen to be exposed to the oscillatory fluctuations. Therefore, any information about its natural 
frequencies may be worthwhile. Amongst the problems of discontinues beam analysis, in this paper a 
special kind of frequency analysis for a cracked and stepped beam located on an elastic foundation is 
considered. Accordingly, following a look out at the definition of Timoshenko beams, a special 
modeling trend known as the wave method is introduced. Based on the d'Alembert’s approach for the 
solution of wave differential equations, the technique of wave method is mainly depended on the study 
of transmission and reflection of waves colliding to a barrier. The method results in a global frequency 
matrix, which its determinant gives out the natural frequencies. The wave method is employed for the 
frequency analysis in some kinds of cracked and stepped beams with different types of boundary 
conditions.  In some typical cases, the results are compared to other similar works and confirmed to be 
convincing. 

 
Key words   Timoshenko beam, elastic foundation, Wave approach, Cracked stepped beam, 
Frequency analysis 
 

بدليل وجود ناپيوستگی های ساختاری متفاوت در طـول تيرهـا از يکسـو و اهميـت مطالعـه فرکـانس          چکيده
بر   در اين مقاله عوامل موثر بر فرکانس طبيعی تيرهای تيموشنکو پله و ترکدار واقع ،طبيعی تيرها از سوی ديگر

اسـتخراج   شـيوه  ، م بـه روش مـوج  موسو راه حل تشريحضمن  در اين راستا .بستر ارتجاعی بررسی شده است
ويـژه  با اتکا بـه روش  موج در روش . شده است معرفیام متنوعی از تيرهای ناپيوسته ساق طبيعی  فرکانس های

قيود مرتبط با گذر و انعکاس موج از موانع به شکل روابـط ماتريسـی    ،دالامبرحل موسوم به معادلات موج حل 
های دترمينـان   ريشه.  شود میماتريس اساسی تحليل فرکانسی توليد  ،قيودگرديده و با الحاق مجموعه اين  تنظيم

استخراج فرکانسهای مربـوط  در اين مقاله روش حل موج برای . های طبيعی تير هستند فرکانس ،ماتريس اساسی
بطـور  . شده اسـت  ارائه با شرايط کرانی متفاوت از نوع آزاد، مفصلی يا گيرداربه تيرهای واقع بر بستر ارتجاعی 

در برخی موارد نتايج حاصل با پاسخ های بدست آمده از روش های ديگر مقايسه و صحت نتـايج تائيـد   نمونه 
  .شده است

  
 

1. INTRODUCTION 
 

In the last decades due to the growing industrial 
need and in competition with experimental tests a 
tendency toward the analysis of vibration behavior 
of discontinues and cracked structures has been 
aroused. The presence of a crack in a structure 

results in the increase of the overall compliance of 
the body and the decrease of its natural frequency.  
In recent years, different attempts have been 
focused to study the effect of local defects in 
structures. In harmony with this bias, herein using 
the wave method, natural frequencies of different 
cracked beams located on elastic foundations are 
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analyzed. The literature of vibration analysis is 
filled with different analytical techniques for the 
analysis of free vibrations. Some types of these 
solution techniques include the using of the Finite 
Element Method [1-4], Galerkin and Ritz Method 
[5], approximate methods such as the one proposed 
in [6], transfer matrix method [7], dynamic 
stiffness matrix [8] and the methods given in [9] 
and [10] which are mainly based on the variational 
approaches in which one looks for a solution that 
optimizes a functional.  
    Using the d'Alembert's approach in the solution 
of differential equations of wave, the formulated 
technique of wave method is mainly based on the 
pursuit of the waves along the waveguides. In this 
method, one should follow the movements of 
waves, which transmit, reflect or propagate via the 
interior body barriers. The waves are divided to 
different types comprising of propagated, 
transmitted and reflected waves in waveguides [11-
13]. Reflective and transitive features of waves are 
studied by different researchers [14-17]. The 
method of waves has recently used in an extensive 
level for the analysis of Timoshenko beam 
vibrations [18-21]. In line with this situation, in 
this paper different transmission and reflection 
matrices are derived for several types of 
discontinuities located in a Timoshenko beam 
placed on an elastic foundation. These 
discontinuities may include crack, change of cross 
section and even abrupt change of properties in the 
boundaries. By combining, these matrices a 
general method of solution for the analysis of free 
vibration of cracked Timoshenko beam located on 
elastic foundation can be obtained. To this ends, in 
the next section some minor wave matrices and the 
method of their synthesis are introduced. Natural 
frequencies of a structure are the roots of the 
determinant of its relevant synthesized wave 
matrix. In this paper, in order to find the roots of 
the frequency determinant a special algorithm of 
optimization is employed. The algorithm entitled 
as BFGS is named after its inventors Broyden, 
Fletcher, Goldfarb and Shanno [22] is briefly 
introduced in Section 4. So compared to the earlier 
works, the main advantages of this research are the 
inclusion of the foundation elasticity and another 
type of crack into the previous analyses, which in 
turn results in the wide range of revisions, and 
analyses for the determination of wave matrices. 

Moreover, due to the complexity of the resulting 
wave equation, in the root finding stage a special 
solution technique is employed.  
 
 
 

2. WAVE AND MOTION PROPAGATION 
 
Subsequently the equations of motion of a beam on 
an elastic foundation considering the effects of 
shear deformation and rotary inertia are derived. 
The sum of the moments of all forces about the 
point O, in Figure 1 gives, 
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The third term is negligible and can be ignored. So,  
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 It is known that, 
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Now, substituting Eqs. (3) and (4) in Eq.(2) gives, 
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Figure 1. An infinitesimal span of a Timoshenko beam. 
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moreover, the balance of forces in the y direction 
gives, 
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Similar formulas for the moment and force 
equilibrium but in the absence of foundation 
reaction can be found in [11]. 
Using Eq. (4) and Eq.(6) one obtains, 
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 (7) 
 
Where x is the position along the beam axis, t is 
the time, y(x,t) is the transverse deflection of the 
centre line of the beam, q(x,t) is the external force, 
E,G and   are the Young’s modulus, shear 
modulus and mass density, K* is foundation 
flexibility, respectively. Moreover, I is the area 
moment of inertia of the cross section, A is the 
cross-sectional area, k is the shear coefficient of 
the beam, t)(x,  is the slope due to bending, 

x/t)y(x,   is the slope of the centerline of the 

beam and t)(x,x/)t,x(y   is the shear angle. It 
can be seen that Eqs. (5) and (7) are coupled via 

t)ψ(x,  and y(x,t) that are the slope and transverse 
deflection of the beam.  
By using Eqs. (2) and (3) shear force V(x,t) at any 
section of the beam can be interrelated to the 
transverse deflection y(x,t) and slope t)ψ(x, as, 

 

2t
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x

t)ψ(x,
EIt)V(x,

2
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    (8) 

 
Some other requirements of this analysis are the 
three coefficients of Cb , Cs and Cr that will be used 
in the next sections. The coefficients are 
proportional to the bending, shear and rotational 
stiffness respectively. They are, 

ρA

EI
Cb  , 

ρA

GAk
CS  , 

ρA

GJ
Cr    (9) 

 
The shear beam model, the Rayleigh beam model 
and the simple Euler–Bernoulli beam model can be 
obtained from the Timoshenko beam model by 
setting Cr equal to zero (that is, ignoring the 
rotational effect), moving Cs to infinity (ignoring 
the shear effect) and setting both Cr equal to zero 
and Cs to infinity, respectively. 

Assuming time harmonic motion and using 
separation of variables, the solutions to Eqs. (5) 
and (7) can be written as,  

 
 tiωiKx

0 eeyt)y(x,   (10) 

 
and  
 

 tiωiKx
0 eet)(x,   (11) 

 
where ω  is the frequency and K is the wave 
number.  
  Substituting Eqs. (10) and (11) into Eqs. (5) and 
(7) gives, 
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The determinant of matrix in Eq. (12) should 
vanish. This gives a second-order polynomial in 
K2, which is, 
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or simply, 
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Where 
 

1a 0   (14a) 
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Wherein b1K  and b2K , i.e., the wave numbers of 

the tension free beam are, 
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The solution to Eq. (12) gives a set of wave 
numbers which are functions of the frequency )(  
as well as the properties of the structure, i.e. 
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Here the )(  sign outside the brackets indicates 
that waves travel in both positive and negative 
directions along the beam. 

The mode shape of the vibrating beam can 
now be derived by using of the K values in a 
linearly combination of the solution functions 

while at the same time the term
 tiωe should be 

discarded. So the solution to Equations (5) and (7) 
can now be written as, 
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Clearly, the wave amplitudes (a) and  ( a ) are 
related to each other. The relation can be found 
from Eq. (12) as, 
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Thus, the relations between the coefficients of 
y(x) and ψ(x) are as follows: 
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In Eq. (17) P and N are,  
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Plus and minus signs show the right or left 
direction of the propagated wave, respectively. 
 
 

3. PROPAGATION, REFLECTION, AND 
TRANSMISSION OF WAVES 

 
From the wave standpoint, any vibration 
propagating along a beam component will be 
reflected and transmitted upon discontinuities and 
boundaries. The propagation is governed by the so-
called propagation matrix. Consider two points A 
and B on a vibrating uniform beam at distance x 
apart. Denoting the positive- and negative-going 

wave vectors at points A and B as 
a  and 

a , and 
b  and b , respectively, they are related by 

 

 
  bfa (x) ,  

  afb (x)  (18) 
 
where, 
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and, 
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is known as the propagation matrix for a distance 
x. 

The reflection and transmission characteristics 
of the waves are governed by the reflection and 
transmission matrices. A derivation of the 
reflection and transmission matrices at some 
discontinuities such as boundary barriers, cracks 
and cross-section changes are given in the 
following. 
 
 
3.1. Reflections at the boundaries 

 
A general boundary is shown in Figure 2. The 

incident wave 
a gives rise to the reflected wave 

a . They are related by 
 

 
  ar a  (19) 

 
The reflection matrix r can be determined by 
considering the equilibrium at the boundary. That 
is 
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)t,x(yK)t,x(V T   (19b) 
 
Using (5) and (4) equation (19b) gives, 
 

 )t,x(yKt)ψ(x,ρIω
x

t)ψ(x,
EI T

2
2

2




  (20) 

 

Where, TK and RK are the translational and 
rotational stiffness of the support, respectively, and 
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If the boundary is at x = 0 , then the equilibrium 
conditions become 
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From Eqs. (19) and (22), it follows that 
 

 12
1

11 ααr   (23) 

 
Three main boundary conditions are simply 
supported, clamped and free edge boundaries. 
Corresponding to these boundary conditions, TK  

and RK  are either zero or infinite. The reflection 
matrices for simply supported, clamped and free 
boundary conditions are found as,                                                 

 

 
 

Figure 2. General Boundary condition. 
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3.2. Crack 

 
In this study, the local flexibility model is adopted 
from the Fracture Mechanics literature. In this 
approach the presence of crack is replaced by a 
local change in the beam flexibility [18]. In this 
work, the crack closure phenomenon, which 
encounters the crack edges tendency to remain 
closed despite the presence of an opening force, is 
neglected and the perpetually open crack model is 
assumed. 

Considering an open single crack at x = 0 as 
shown in Figure 3 or similarly a double edge 
cracked beam as in Figure 4 a set of positive-going 

waves 
a is sent out towards the crack and gives 

rise to the transmitted and reflected waves b and 
a , which are related to the incident waves 

through the transmission and reflection matrices t 
and r by 

 
  at  b , 

  ar  a  (25) 

 
Denoting the transverse displacements and the 
slopes of the beam on the left- and right-hand sides  

 

 
 

 
of the crack as y , y , ψ and ψ respectively, one 
has 
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Since the beam is continuous, one has 
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Figure 3. Single edge cracked beam. 

 
 

 
Figure 4. Double edge cracked beam. 
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where the term x)/ψCEI(   represents a jump in 
the bending slope caused by the local flexibility 
change at the crack and C is the so-called 
flexibility coefficient. As in [19] C is related to the 
crack size )μ  ( , which is the ratio between the 
depth of the crack and the thickness of the beam, 
i.e. 
 

 )μ  f(
EI

)hν(1 6Π
C

2
  (29) 

 
Based on [19] )μ  f( in Eq. (29) for the single edge 
crack  6.00  can be given by,  
 

 

1098

765

432

μ  19.6μ  40.7556μ  47.1063

μ  33.0351μ  20.2948μ  9.973

μ  4.5948μ  1.0533μ  0.6272)μ  f(







 

 (29a) 
 
and similarly for the double edge cracked beam 
where  3.00  it can be given by, 
 

 

161211

1098

765

432

μ42308.5μ93036.6μ7367.9

μ  55976.2μ  3391.2μ  49091.2

μ  33244.7μ  55301.7μ  17738.5

μ  72015.3μ  03508.1μ  63845.0)μ  f(









(29b) 

 
Using the continuity conditions in matrix form, one 
obtains, 
 

  aβaβbβ 131211  (30) 
 
where 
 












NiP

11
11β , 












21

12 KNIECNKPIECPi

11
β ,  

 










21

13 KNIECNKPIECPi

11
β . (30a) 

  
Furthermore, by considering the equilibrium of the 
support, 
 

   VV  ,   MM  (31)  
 

One has 

   aβaβbβ 232221  (32)  

 
where 
 














N)KGAk(iP)iKGAk(

EINKEIPK

21

21
21β ,














N)KGAk(iP)iKGAk(

EINKEIPK

21

21
22β ,  

 












N)KGAk(iP)iKGAk(

EINKEIPK

21

21
23β . (32a) 

 
Eqs. (25), (30) and (32) can be solved to obtain the 
reflection and transmission matrices at the crack 
discontinuity as 
 

   13
1

12222311
1

122221

1

  


t , 

   13
1

11212312
1

112122

1

ββββββββr  


. (33) 
 
 
 
3.3. Change in section 

 
As shown in Figure 5 let two beams of different 
properties be joined at x = 0 . Due to the 
mismatch of impedances, the incident waves from 
one side, give rise to the reflected and transmitted 
waves at the junction. 

 
 
However, the displacement, slope, bending 

moment and shear force are all continuous at the 

 
 

Figure 5. Change in cross section 
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junction. The reflection and transmission matrices 
can then be obtained from the continuity and 
equilibrium conditions. 

Denoting the parameters related to the incident 
and transmitted sides of the junction with the 
subscripts L and R, respectively, choosing the 
origin at the point where the section changes, at 
x = 0 , one has 

 

 RL yy  , RL ψψ  , RL VV  ,
RL MM   (34) 

 
Using Eqs. (25), Eqs. (34) can be put into a 

matrix form in terms of the reflection and the 
transmission matrices LLr  and LRt : 

 

13LR12LL11 γtγrγ   (35a) 

 
 23LR22LL21 γtγrγ   (35b) 

 
where 
 

,
NiP LL
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
11

11γ  

,
NiP

11

RR
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NiP

11
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13 



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γ  

 

L L L1 L L L2
2 2 2 221

L L L1 L L L L2 L

(EI) P K -(EI) N K
γ = ,

i(EI) P K - iρIω P -(EI) N K -ρ Iω N

 
    

 

R R R1 R R R2
2 2 2 222

R R R1 R R R R2 R

-(EI) P K (EI) N K
γ = ,

i(EI) P K - iρ Iω P -(EI) N K -ρIω N

 
    

 

L L L1 L L L2
2 2 2 223

L L L1 L L L L2 L

-(EI) P K (EI) N K
γ = .

i(EI) P K - iρ  Iω P -(EI) N K -ρIω N

 
  

 
 (35c) 
 

The equations can be solved for the reflection and 
transmission matrices LLr  and LRt , which provides, 
 

   23
1

2213
1

1221
1

2211
1

12LL

1

γγγγγγγγr  


, 

   23
1

2113
1

11

1

22
1

2112
1

11LR γγγγγγγγt    (36) 

 

 
 

4. BFGS OPTIMIZATION ALGORITHM 
 

An important stage of this work was the solution of 
the frequency equation. Due to the complexity of 
the frequency equation, its solution demanded 
special root finding techniques. Consequently, 
based on some examinations an optimization 
technique was selected for the root finding stage. 
The selected method entitled as BFGS (named 
after its inventors Broyden-Fletcher-Goldfarb-
Shanno [21]) is the technique, which rapidly 
converges to the solution. The method is an 
enhanced version of the Newton optimization 
technique. 
In an optimization problem, a multivariable 
objective function such as F(X) should be 
minimized. Here the main ambition is to find a 
proper optimal vector X such that the n variable 
objective function F becomes minimized. To 
introduce the method, let us primarily reconsider 
the structure of Newton's method. In Newton 
Method, a truncated approximation of the Taylor 
series around the point kX  is used. It results in, 
 

T
k

1
kk1k )()]([ XFXHXX  

  (37)  

 
Where )(X kH is the Hessian matrix, i.e. the 

second derivative or )(XkF2  of a function F in 

a point kX . However, in BFGS, in each step the 
Hessian matrix is approximated by a formula as, 
 

kk
BFGS

1k NHH   (38) 

 
In which kN  is the modifier term. Therefore, 
using Pseudo-Newtonian BFGS algorithm, to find 
the roots of the wave matrix determinant an 
optimization approach is employed. In this case   
is the only variable of the complex determinant of 
matrix A in Eq. (42 ).  Therefore, the object is to 
find the roots of the equation 0)( A . The real 

and complex parts of )(A  are, 
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 

 )ωIm(EI

)ω (ReER

A

A




 (39) 

 
Assuming a new variable TE as, 22 EIERTE   to 
find the roots of the )(A  one may try to find the 

extremum value of TE, which at the same time is 
the root of the wave matrix.  
 
 
 

5. VIBRATION ANALYSIS USING WAVE 
METHOD 

 
The reflection and transmission matrices for the 
waves passing a discontinuity located along a 
beam are obtained in the preceding sections. To 
prepare the global wave matrix of a problem this 
matrices must be combined. To find the natural 
frequencies of the beam the determinant of this 
matrix should be vanished.  In this paper in order 
to assess the method this procedure of finding 
natural frequencies will be verified on the beams 
having single or double edge cracks and the beams 
with stepped change in their cross sections.   
Now some typical applications of the systematic 
solution method for the analysis of free vibration 
of simply supported and cracked beams are given. 
The physical parameters of the beam are shown in 
Table (1) 
 

 

 
Figure 6 depicts a cracked beam assumed to have 
uniform cross section and its deformation pattern 
obeys the model of Timoshenko beam. A 
geometrical discontinuity is located at D. The 

incident and reflected waves across the A and B 
support a and on both sides of the D crack are 

shown as
a ,

b ,

2d ,



3d .   

 

 
The connection between the incident and reflected 
waves in the boundaries are described by the 
following equations: 
 

  ara a  (40a) 

 

 
  brb b  (40b)  

 
In the geometrical discontinuity located in D the 
incident and reflected waves are related as, 
 

  233 tdrdd  (41a) 

 
  322 tdrdd  (41b)  

 
In which the reflection and transmission matrices 
are given in section 3 and Propagation 
relationships are: 

 
  bfd )(L23     (41c)  

 
  32)(L dfb  (41d)  

 
  21)(L dfa  (41e) 

 
 

Figure 6. Cracked simply supported beam 

 

Table 1. The parameters of the sample cracked beam 

 

Elastic const: 
     E(GPa) 

Shear 
factor: k

Poisson’s 
ratio:   

 Width: 
   b(m) 

    72   5.6    0.35   0.006 

Thickness: 
h(m) 

Length:
   L(m) 

  Density: 
 (kg/m3) 

  Crack 
 position

    0.0254  0.235     2800   0.5L 
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  afd )(L12  (41f)  
 
In which )(L1f  and )(L2f  are the propagation 
matrices between AD and DB. In matrix form the 
equations can be reshaped as, 
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To find a nontrivial solution for the variable   as 
the natural frequency of cracked Timoshenko beam 
the determinant of A matrix should vanish. The 
natural frequencies of the respected beam with and 
without a crack are studied in the following 
section.  
 

 
Case 1. Single edge cracked beam 
 

Assuming different stiffness factor for the 
foundation and different crack length i.e. 

  6.00  a variety of calculations have been 
done to show the variation of natural frequency of 
the defined beam in different instances.  

As can be seen in Figure 7 the more is the 
stiffness of the foundation the more will be the 
natural frequency of the whole beam while as usual 
the deeper crack results in a lower beam frequency. 

Figure 8 is the normalized type of Figure 7. A 
similar graph to Figure 8 can be found in [19], 
which shows a close agreement to this work. 

In Figure 9 the Influence of foundation 
flexibility upon the natural frequency of the 
cracked beam is represented. Based on the results 
given [20] it is expected that the change in 
foundation flexibility have mostly effective on the 
lower frequencies. Figure 9 backs up this 
anticipation. 

Now the effect of beam length on the natural 

frequency of the beam is studied. 
Figure 10 reveals that the more is the length of 

the beam the less will be its natural frequency. The 
Figure also shows that the effect of crack length in 
short beams is more severe than in long beams.  

In this part, the effect of crack position (L1) 
upon the natural frequencies is studied. In order to 
do this, different cracks are placed in different 
locations on the beam and the first natural 
frequency of the cracked beam is calculated.  

Based on Figure 11 when crack is near the 
beam support, the natural frequency of the beam is 
less than a middle length cracked beam. 
 

 
Case 2. Double edge cracked beam 

 
Assuming different stiffness factor for the 

foundation and different crack length i.e. 
  3.00  a variety of calculations have been 

done to show the variation of natural frequency of 
the beam in different instances. 

 As it can be seen in Figure 12 the more is the 
stiffness of the foundation the more is the natural 
frequency of the whole beam while as usual the 
deeper crack results in the lower beam frequencies. 
Fig. 13 is the normalized type of Figure 12.  

A similar graph to Figure 13 can be found in 
[19], which show a close agreement. 
Now the effect of the beam length on the natural 
frequencies is studied. 

Figure 14 reveals that the more is the length of 
the beam the less will be its natural frequency. The 
Figure also shows that the effect of crack length in 
short beams is more severe than in long beams.  

Once again, in this part the effect of crack 
position (L1) on the natural frequencies is studied. 
In order to do this, crack is assumed to be placed in 
different locations on the beam and the first natural 
frequencies of the cracked beam are calculated.  

Based on Figure 15 when crack is close to the 
beam support the natural frequency of the beam is 
less than a mid-length cracked beam. 

In this part the natural frequencies of the single 
and double edge cracked beam are compared. It is 
assumed that the beam may includes one crack in 
(L1) position or two cracks located in opposite 
sides in an equal (L1') distance from each end. 
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Figure 7. First natural frequency of the single edge cracked simply supported beam versus the crack depth ratio for different 
foundation flexibilities. 
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Figure 8. First relative natural frequency of the single edge cracked simply supported beam (cracked beam relative to un-cracked 
beam, =0, natural frequency) versus the crack depth ratio for different foundation flexibilities. 
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Figure 9. The first three natural frequencies of the single edge cracked simply supported beam versus the foundation 
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Figure 10. First natural frequency of the single edge cracked simply supported beam versus crack depth ratio for different 

beam lengths. 
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Figure 11. First natural frequency of the single edge cracked simply supported beam versus the crack depth ratio for 

different relative crack position. 
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Fig 12. First natural frequency of the double edge cracked simply supported beam versus the crack depth ratio for different 
foundation flexibilities 
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Now the effect of crack position for two 

different types of cracked beams is studied. In one 
case, the beam is a single edge cracked beam while 
in the other case a beam with similar shape, 
material and boundary condition except for the 
shape of the crack is considered. For the former 
one the beam is taken to be a double edge cracked 
beam such that both cracks are equal in length, 
total length of the cracks is equal to the crack 
length of a single edge cracked beam, and that 
cracks are located in a line perpendicular to the 
beam axis. The graph shows that in this case a 
double edge beam has greater natural frequency. 

In this stage the natural frequency of the beams 
with length L (for the single edge cracked beam) 
and L' (for the double edge cracked beam) are 
compared.  

Figure 17 shows that in single edge cracked 
beam the length effect on the natural frequency is 
more severe than in a similar double edge cracked 
beam. 
Now the effect of foundation flexibility, K*, is 
studied. In the graphs, the sign K' designates a data  
 

point for the natural frequency of a double edge 
cracked beam while the simple K sign introduces a 
single edge cracked beam natural frequency. 

Here also it can be seen that in similar 
conditions the natural frequency of a single edge 
cracked beam is lower than a double edge cracked 
one. 

Based on the results given in Figures, It can be 
seen that the presence of a crack on a beam can 
reduce natural frequency of the beam. Thus the 
crack presence works as like as the increase of 
structural flexibility or compliance. The increase of 
the crack and beam lengths can increase the 
flexibility of the beam. While increasing the 
proportion of crack position symmetry relative to 
the beam axis as well as the foundation flexibility 
decreases the flexural stiffness. 

Notice that in this manner a single edge 
cracked beam is assumed less symmetric than a 
double edge cracked beam. All the natural 
frequencies obtained by this method for the beams 
without any crack are similar to the results given in 
reference [23]. Note that in Figure (7) the  
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Figure 13. First natural normalized frequency of the double edge cracked simply supported beam versus the crack depth 

ratio for different foundation flexibilities 
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Figure 14. First natural frequency of the double edge cracked simply supported beam versus crack depth ratio for different beam 
lengths. 
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Figure 15. First natural frequency of the double edge cracked simply supported beam versus the crack depth ratio for different relative 

crack position. 
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Figure 16.  A comparison between the natural frequencies of the single and double edge cracked simply supported beam versus the 
crack depth ratio for different relative crack positions. 
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Figure 17. A comparison between the natural frequencies of the single and double edge cracked simply supported beam versus the 
crack depth ratio for different length of the beam 
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intersections between the curves and the ordinate 
pinpoint the natural frequencies of a crack-free 
beam, which can similarly be obtained by the 
formulas derived in the foresaid Ref. [23]. 
 
Example 2. A stepped beam with a crack 

Figure 19 shows a cracked stepped Timoshenko 
beam. The stepwise discontinuity is located at point 
E. The analysis follows the same procedures 
described above, except that there is additional 
wave reflection and transmission at the step change. 
Waves on both sides of the step discontinuity are 
related as the following: 

 
  4RL3LL3 etere ,

  3LR4RR4 etere     (43)  

 
The subscripts of r and t identify the incident and 
transmitted sides of the junction. The propagation 
relations are redefined as 

  afd )(L12 ,
  21)(L dfa ,   323 )(L dfe , 

  323 )(L efd ,   43)(L efb ,   bfe )(L34  (44) 

 
 
Where )(L1f , )(L2f and )(L3f are the propagation 

matrices between AD, DE and EB, respectively. 
Writing Eqs. (37), (43) and (44) in matrix form 
results in Eq. (45). 
 Eq. (46) gives the characteristic equation from 
which the natural frequencies of cracked and 
stepped Timoshenko beams can be found. Using 
Eq. (46) the algorithm of the computer code is 

 

 
Figure 19. A cracked stepped simply supported beam. 
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Figure 18. A comparison between the natural frequencies of the single and double edge cracked simply supported beam versus the 
crack depth ratio for different flexibility of foundation. 
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                                                                            (46) 
 
 

 
 
revised, the values of natural frequencies of a 
double edge cracked, and stepped beam are 
calculated. In this case, the crack is still assumed to 
be at 0.5L and the step change occurs at 0.75L. 
Using a step size or a degree of precision of 

0.001 rad/sec for the root finding of the 
characteristic equation given in (46) the values of 
natural frequencies are calculated and its results for 
sample values of foundation flexibility and crack 
length are displayed in Figure 20. The figure shows 
that decreasing the cross section results in the 
decrement of the natural frequency. 
 
 
 

6. Conclusion 
 

In this paper, the wave method approach is used for 
the free vibration analysis of a Timoshenko beam 
located on an elastic foundation with structural 
discontinuities in the shape of stepwise cross 
section change or an open edge crack. In order to 
perform this analysis different matrices of 
reflection, transmission and propagation are 
obtained and used to construct a global frequency 
matrix. To find the roots of the frequency matrix 
determinant a computer code has been devised 
which is based on the optimization technique of 
BFGS.  

The implicated code is verified by the solution 
of a few benchmarking problems. Different 
examples are picked out and solved to show the 
effect of the factors such as the crack type or 
position, change of cross section and foundation 
flexibility. For example, the results reveal that a 
crack in the middle of a beam is more influential 
than a crack near by a beam support and the 
reduction of cross section results in the decrease of 
the beam natural frequency and that the stiff 
foundation gives up high natural frequencies. 

 
 

 
7. Nomenclature: 

 
A  beam cross-sectional area (m2) 
B  width (m) 
C  local crack flexibility (1/Nm)  
Cr  rotational stiffness coefficient 
Cs  shear stiffness coefficient 
Cb  bending stiffness coefficient 
E  Young modulus (N/m2) 
G  shear modulus (N/m2) 
H  depth of beam(m) 
I  area moment of inertia (N/m2)                

 
Figure 20.  Natural frequency of a cracked stepped simply 
supported beam versus the reduction in beam cross section 
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k  shear coefficient 
KT  translational stiffness (N/m) 
KR  rotational stiffness (N/m) 
K*  foundation flexibility 
L  length of beam (m) 
M  bending moment (Nm) 
T  time (sec) 
V  shear force (N) 
y(x,t)  lateral displacement function 

t)(x,  lateral slop function     
    natural frequencies of beam(Hz)  
    Poisson's ratio 
µ  crack ratio  
   material density(kg/m3) 
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