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Abstract Satistical analysis of non-normal datais usually more complicated than that for normal
distribution. In this paper, a simple root/power transformation technique devel oped by Niaki, et a [1]
is extended to transform right and left skewed distributions to nearly normal. The vaue of the
root/power is explored such that the skewness of the transformed data becomes almost zero with an
acceptable error. The proposed method is then compared to the well-known and complicated Box, et
a [2] transformation method for different left and right skewed distributions using Monte Carlo
simulation. While the proposed procedure is easy to understand and to implement, the results of the
simulation study show that it works as good as the Box-Cox method.
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1. INTRODUCTION

The statisticians George Box, et al [2] developed a
procedure to identify an appropriate exponent (1)
to use to transform data (Y) into a “normal shape.”
The A value indicates the power to which all data
should be raised. In order to do this, the Box-Cox
power transformation searches for A until the best
value is found. Note that for A = 0, the
transformation is not Y° (because this would be 1
for every value), but instead the logarithm of Y.
The Box-Cox power transformation is not a
guarantee for normality. This is because it actually
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does not really check for normality. The assumption
is that amongst all transformations with A values
between -5 and +5, transformed data has the
highest likelihood-but not a guarantee-to be
normally distributed when standard deviation is the
smallest. Therefore, it is absolutely necessary to
always check for the normality of the transformed
data using a probability plot for example.
Theoriginal form of the Box-Cox transformation
takes the following form:
py'-1
vay=f 7 O ®
fLog(Y ) ;if I =0
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Additionally, the Box-Cox power transformation
only works for positive-valued data. This,
however, can usually be achieved easily by adding
a constant (C) to all negative-valued data such that
they all become positive before transformation.
The transformation equation is then:

1y +C)' -

Y'(1)= Litiao

i )
LLog(y +C) ;if | =0

As an extenson to the Box-Cox power
transformation technique, Manly [3] proposed the
following exponential transformation:

e -1
IT——;if 110

Y(1)=i ] )
Loy qifl =0

In which Y can take negative values. This
transformation was reported to be successful in
transforming uni-modal skewed distribution into
normal distribution. However, its performance is
not good for bimodal or U-shaped distributions [4].

John, e a [5] proposed the "modulus
transformation” as a modification to the Box-Cox
power transformation method in which Y can take
negative values. The modulus transformation takes

theform
(hf|+) :
Yil)= 1 Sign(Y )~

TS|gn(Y )Log(([Y |+1)+1);if | =0

yif 110 @)

Where
Sian(Y 11 ;ify 3o 5

NYI=E i v <o ©)
This transformation works best for distributions
that are somewhat symmetric. We note that a
power transformation on a symmetric distribution
is likely going to introduce some degree of
skewness.

Bickel, e a [6] gave the following slight
modification in their examination of the asymptatic
performance of the parameters in the Box-Cox
transformations model:

| .
Y(I):IY' Sign(Y ) -1

I ; forl >0 (6)
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Yeo, & a [7] made a case for the following
transformation:

Iy +1) -1

:|:¢;ifI10,Y3O

|

Log(Y +1)'|fI=O,Y3O
Y(l)= 1 (7

(lY) 1. .

,—;lfl12,Y<O

: | -2

f-Log(l-Y) ;if I =0Y <O

When estimating the transformation parameter,
they found the value of A that minimizes the
Kullback-Leibler distance between the normal
distribution and the transformed distribution.

1.1. The Estimation Process of A in Box-Cox
Transformation Method The main objective
in the analysis of Box-Cox transformation model is
to make inference on the transformation parameter
A and Box, et al [2] considered two approaches. In
the first approach that employs the maximum
likelihood estimator (MLE), one first assumes that
the transformed responses Y (1) folow a

multivariate normal distribution, i.e,

Y (I )»N(Xb,szln). Then, in order to
estimate the model parameters (I b.,s 2), the

design matrix X and theraw dataY are observed.
Using the density for Y (1 ) as

f(Y(I)):
exp8 Lira- Xb)(Y(I)-Xb)g ®)

(Zps 2)n/Z

and letting J(I Y )to be the Jacobian of the

transformation from Y to Y (1 ), the density for

Y (which is also the likelihood for the whole
model) is

H{ oe7)=10)- .
eng Loy -xp)j(r(1)-xb)8
7z 231 y)

(20s°)

To obtain the MLE from the likelihood Equation 9,
we observe that for each fixed| , the likelihood
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equation is proportional to the likelihood equation
for estimating (b,s 2)for observed Y (1 ). Thus

theMLEfor(b,sZ)are
b(1)=(x'X ) XY (1) (10)
Y (1) (1 - X (XX) XN (1)

n

s*(1)= (11)

Substituting b(1 )and s?(1)into likelihood
equation, the likelihood function (9) will be
maximized for | [4].

This method is a commonly used procedure since
it is conceptually easy and the profile likelihood
function is easy to compute. Also, it is easy to
obtain an approximate confidence interval (Cl) for
| because of the asymptotic property of MLE.

For the second approach that is based on the

Bayesian method, one needs to first ensure that the
model is fully identifiable (see [8-10]).
Other families of transformations such as the
folded power family can be found in literature (see
[11]). However, they are rardly used because the
resulting transformations have poor properties.

In this paper, instead of using the above two
commonly used approaches of Box-Cox
transformation procedures to find the required
power transformation, a simple procedure based on
the bisection method is proposed to make the
inherent skewness of the existing skewed
distribution zero. The method is developed for both
positive and negative data.

The rest of the text is organized as follows. In
Section 2, the proposed transformation method is
developed. In order to investigate the performance
of the proposed procedure and to compare it with
the ones of the Box-Cox transformation technique,
a simulation experiment is performed in Section 3
using differentknownskewedprobability distributions.
Findly, Section 4 presents the conclusion.

2. ROOT TRANSFORMATION TECHNIQUE
IN SKEWNESS REDUCTION

The most serious issue in the statistical analysis of
non-normal data is the existing skewness in their
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probability distributions such that the usual
standard statistical analysis is not applicable.
Originally, Niaki, e a [1] used a root
transformation technique to design multi-attribute
control charts that are applicable to non-normal
attribute data. Since the discrete probability
distributions of the attribute data are right-skewed,
their technique is only applicable to right-skewed
distributions. In this research, after describing this
technique, we generalize it to be applicable to
almost any kind of non-normal data.

In the proposed power/root transformation
technique of Niaki, e al [1], one searches for the
best power (r) within (0, 1) such that if the datais
raised to the power of r (i.e. Y "), the transformed
data will have almost zero skewness. The search is
based on the bisection method to find the desired
valueof r .

The bisection method is a root-finding
algorithm that repeatedly divides aninterval in half
and then selects the subinterval in which a root
exists. Suppose one needs to solve the equation
f(r)=0 in the interval (a,b). The bisection
method starts with two points a, and b, in (a,b)
such that f (a,) and f (b,) have opposite signs.
The method then divides the interval in two by
computing ¢, =(a, +b,)/2. There are now two
possibilities, either f (a,) and f (b,) have
opposite signs, or f (c,) and f (b,) have opposite
signs. The location of the root is determined as
lying within the subinterval with opposite signs.
The bisection algorithm is then applied recursively
to the subinterval where the sign-change occurs

and eventually finds the root.
In order to find a root of f(r)=0 in the

interval (a,b), we start with the subinterval
(8y,by) such that f(a,)f (by) <0, pick a
tolerance e and then apply the following

algorithm:
k=0
While [f (1,,,|>e

_a thy
rk+1_ 2

If £ (r..,)f (a) <0 then
&= and b, =r,
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Else

b, =b,and a ,, =1,
End If

k =k +1

End while

ro=r,

In the root transformation technique if we
define f (r)to be the amount of skewness on

the rth power-transformed Y , ie Y', we
want to find r such that f (r) becomes zero.

Therefore, applying the bisection method, we
try to find a root (r) for f(r)=0 in the
interval (0,1) .

As mentioned previously, the procedure
described above is only applicable to right-skewed
or dlightly skewed (i.e. skewness very close to
zero, either negative or positive) distributions. In
cases where the distribution is heavily |eft-skewed
(i.e its skewness is a significant negative number),
the data should be raised to a power bigger than
one to dampen non-normality. To search for this
power, we modify the power transformation
technique for left-skewed data. This modification
is quite simple; if data is heavily left-skewed,
instead of raising Y to the power of r, it is raised
to the power of 1/r , where r is till within interval
(0,1) . Therefore, data is actually raised to a

power bigger than one. Furthermore, the results of
a simulation experiment for negative-skewed data
showed that if we initially subtract the data by its
minimum value, the resulted skewnesses would
become significantly less. Hence, before
employing the modified power transformation
technique for negative-skewed distributions, the
datais first subtracted from its minimum value.
The second moaodification to the original power
transformation technique applies to lognormal
data. The power transformation technique of Niaki,
et a [1]) is not able to make the skewness of
lognormal data close to zero and leaves them
almost unchanged (i.e. r >0.99.) Therefore, we
modify the proposed algorithm as follows; if the
power transformation technique leaves the data
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unchanged and skewness is still high, it means that
the data follows a logarithmic-type distribution,
and hence it is transformed by taking natural
logarithm.

Finally, it should be mentioned that similar to
the original Box-Cox transformation method, the
original data of the proposed power transformation
technique need to be positive. In this case, the
absolute value of the minimum-valued data should
be added to all to make them non-negatives. In
summary the flowchart of the proposed algorithm
isshownin Figure 1.

3. SIMULATION EXPERIMENTS

In order to investigate the performance of the
proposed procedure and to compare it with the one
of the complicated well-known Box-Cox
transformation, simulation experiments have been
conducted. In the simulation study, four different
probability distributions of gamma, beta, weibull,
and lognhormal were used to produce all major
types of non-normal skewed data. The simulation
experiments are categorized into four classes of
right-skewed, dlightly-skewed, left-skewed, and
logarithmic.

The results of the simulation experiments based
on 10,000 samples of sizes n = 30, n = 100, and
n=1,000, are presented in Tables 1 and 2. In both
of these tables, there are smaller 4-by-4 tables for
each distribution. The first column of each smaller
table represents the basic statistics of the original
data, the second and the third columns exhibit
information on the transformed data using the
proposed power transformation technique (namely
treatment 1: where the first modification described
in section two is employed, and treatment 2: in
which the second modification is also used), and
the fourth column represents information on the
Box-Cox transformation of the data. The
transformed data of treatment 2 has been subjected
to bigger sample sizes than those of treatment 1
(i.e, more than 30, 100, and 1000). That is why
treatment 2 outperforms treatment 1 in most cases.

IJE Transactions A: Basics


www.SID.ir

Start

Receive data and storethemin Y

Calculate skewness of Y
No Yes Using bisection method
Sskaupes sy search within (0, 1) for r such
that skewness (Y) =0

Using bisection method

search within (0,1) for r U= Y-min(Y) Find r

such that skewness of U ,
=0
Findr CadculateY' and its skewness

Calculate UY" and its skewness

No Yes

Isskewnessof Y >

iy 0.2andr > 0.99?
Return U™

Return’Y Return log(Y)

End

Figure 1. The flowchart of the proposed method.

The first and the second rows of the smaller
tables show the skewness and the kurtosis of the
data, respectively. The third and the fourth rows of
these tables show the results of JB-test (Jarque
Bera) for each column. The third row shows the
average value of the test statistics (h is zero if the
normality hypothesis is accepted, and one if
rejected) for 10000 runs, and the fourth row is the
average of the p-values. The less the third-row
value, and the more the fourth-row value are, the
better is the performance of the corresponding

IJE Transactions A: Basics

treatment. Hence, we can use these two values as
measures of performances to describe and compare
the effectiveness of the treatments.

The results of both Tables 1 and 2 show that the
proposed power transformation method performs
quite well in all right-skewed, left-skewed and
logarithmic distributions and transforms non-
normal datato normal data efficiently in almost all
cases (in most cases treatment 2 provides better
results than those of treatment 1). The Box-Cox
method also performs well and does slightly better
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TABLE 1. Results of Simulation in 10,000 Replications of Right-Skewed Distributions.

Sample Size = 30 Sample Size = 100 Sample Size = 1000
Original 1 5 Box- Original 1 5 Box- Original 1 5 Box-
Data Cox Data Cox Data Cox
o Skewness 1.0884 01500 | 01491 | -0.0403 1.2854 00100 | 00097 | -0.0231 1.3980 00008 | -0.0004 | -0.0135
\N&L Kurtosis 41470 28407 | 28401 | 25405 5.1440 27700 | 27692 | 27491 5.8738 28515 | 28508 | 28535
g Jarque- 05783 00868 | 00866 | 0.0013 0.9950 00076 | 00077 | 0.0020 1.0000 00279 | 00254 | 00245
S Ega 0.0756 04221 | 04222 | 04621 0.0044 04508 | 04515 | 04546 0.0010 03866 | 03926 | 03939
o Skewness 1.4788 00775 | 00765 | -0.0682 1.7868 00020 | 00004 | -0.0489 19725 00004 | -0.0001 | -0.0392
T:: Kurtosis 5.2355 26568 | 26562 | 24833 7.1596 26488 | 26397 | 26504 87169 27105 | 27093 | 27199
g Jarque- 0.8203 00373 | 00373 | 0.0005 1.0000 00011 | 00009 | 0.0008 1.0000 02179 | 02100 | 02074
S Ega 0.0269 04412 | 04414 | 04576 0.0013 04346 | 04353 | 04356 0.0010 02013 | 02081 | 02069
& | Skewness 0.1359 -0.0515 || -0.0530 | -0.0683 0.1546 -0.0292 || -0.0251 | -0.0494 0.1674 -0.0014 || -0.0002 | -0.0392
3‘, Kurtosis 26184 25437 || 25435 | 24814 26981 26508 | 26486 | 26510 27259 27100 | 27088 | 27193
% Jarque- 0.0311 00140 | 00140 | 0.0005 0.0357 00012 | 00009 | 0.0006 0.8291 02192 | 02113 | 02072
= Ega 0.3755 04316 | 04317 | 04581 0.3319 04310 | 04313 | 04358 0.0318 02009 | 02067 | 02055
g _|| Skewness -0.0026 -0.1074 || -0.1087 | -0.1560 0.0012 -0.0679 || -0.0602 | -0.1506 -0.0002 -0.0146 || -0.0205 | -0.1493
g g Kurtosis 21793 21756 | 21764 | 21816 21562 21697 | 21667 | 22144 21442 21484 || 21499 | 22205
’ﬁv g Jarque- 0.0016 00013 | 00013 | 0.0000 0.0434 00312 | 00319 | 00244 1.0000 10000 | 1.0000 | 1.0000
S 5| Bea
B et p 0.3359 03680 | 03680 | 0.3846 0.1465 01703 | 01692 | 0.1787 0.0010 00010 | 00010 | 00010

than the proposed procedure for small sample
sizes. In medium and large sample sizes, even
treatment 1 performs better than the Box-Cox
method. However, the differenceis not significant.
Combining this finding with the ease of
understanding and conducting of the proposed
method, one may conclude that the proposed
procedure provides a better approach for practical
applications.

4. CONCLUSIONS

In this paper, the power transformation technique
that was developed by Niaki, et al [1] was extended
to transform right and left skewed distributions to
distributions that are closer to normal. The value of
the power was searched such that the skewness of
transformed data becomes almost zero with an
acceptable error. The performance of the proposed
method was then compared to the ones of the well-
known and complicated Box-Cox transformation
method for different left-skewed, right-skewed
and logarithmic distributions using Monte Carlo
simulation. Besides simplicity in understanding and
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implementing, the results of the simulation study
showed that the proposed method works well, and
is quite compatible to the complicated method of
Box, et al [2] in al of the simulated experiments.
Although the p-values of the normality tests of the
Box-Cox method are slightly more than the ones
obtained by the proposed procedure, the simplicity
of the latter method makes it preferable especially
when large data are treated.
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