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Abstract   Statistical analysis of non-normal data is usually more complicated than that for normal 
distribution. In this paper, a simple root/power transformation technique developed by Niaki, et al [1] 
is extended to transform right and left skewed distributions to nearly normal. The value of the 
root/power is explored such that the skewness of the transformed data becomes almost zero with an 
acceptable error. The proposed method is then compared to the well-known and complicated Box, et 
al [2] transformation method for different left and right skewed distributions using Monte Carlo 
simulation. While the proposed procedure is easy to understand and to implement, the results of the 
simulation study show that it works as good as the Box-Cox method. 
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پیچیده تر از روشهاي تحلیل داده هاي نرمال  "روشهاي تحلیل آماري داده هاي غیر نرمال معمولاچکیده      

در این مقاله، یک روش سادة تبدیل توانی براي توزیعهاي احتمالی که به سمت راست و چپ چولگی . است
عددي توان با استفاده از روش عددي مقدار . دارند توسعه داده می شود تا آنها را به توزیع نرمال نزدیک کند

عملکرد روش . از بین ببرد "وري جستجو و به دست می آید که چولگی موجود در داده ها را تقریباطبرش نیم 
کاکس براي توزیعهاي غیر نرمال متفاوت با - پیشنهادي آنگاه با عملکرد روش معروف و پیچیدة باکس

نتایج مقایسه نشان می دهد گه بر خلاف . . ازي مقایسه می شودچولگیهاي چپ و راست با استفاده از شبیه س
  . سادگی، روش پیشنهادي دست کم به خوبی روش باکس و کاکس عمل می کند

 
1. INTRODUCTION 

 
The statisticians George Box, et al [2] developed a 
procedure to identify an appropriate exponent (λ) 
to use to transform data (Y) into a “normal shape.” 
The λ value indicates the power to which all data 
should be raised. In order to do this, the Box-Cox 
power transformation searches for λ until the best 
value is found. Note that for λ = 0, the 
transformation is not Y0 (because this would be 1 
for every value), but instead the logarithm of Y. 
     The Box-Cox power transformation is not a 
guarantee for normality. This is because it actually 

does not really check for normality. The assumption 
is that amongst all transformations with λ values 
between -5 and +5, transformed data has the 
highest likelihood-but not a guarantee-to be 
normally distributed when standard deviation is the 
smallest. Therefore, it is absolutely necessary to 
always check for the normality of the transformed 
data using a probability plot for example. 
     The original form of the Box-Cox transformation 
takes the following form: 

1 0

0

 −
≠= 

 =

Y ; ifY ( )
Log (Y ) ; if

λ

λλ λ
λ

                            (1) 
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Additionally, the Box-Cox power transformation 
only works for positive-valued data. This, 
however, can usually be achieved easily by adding 
a constant (C) to all negative-valued data such that 
they all become positive before transformation. 
The transformation equation is then: 

( ) 1
0

0

'
Y C

; ifY ( )
Log (Y C ) ; if

λ

λλ λ
λ

 + −
 ≠= 
 + =

                    (2) 

 
As an extension to the Box-Cox power 
transformation technique, Manly [3] proposed the 
following exponential transformation: 

1 0

0

 −
≠= 

 =

Ye ; ifY ( )
Y ; if

λ

λλ λ
λ

                              (3) 

 
In which Y can take negative values. This 
transformation was reported to be successful in 
transforming uni-modal skewed distribution into 
normal distribution. However, its performance is 
not good for bimodal or U-shaped distributions [4]. 
     John, et al [5] proposed the "modulus 
transformation" as a modification to the Box-Cox 
power transformation method in which Y can take 
negative values. The modulus transformation takes 
the form  

( )

( )( )

1 1
0

1 1 0

 + −
 ≠= 
 + + =

Y
Sign(Y ) ; if

Y ( )
Sign(Y ) Log Y ;if

λ

λ
λ λ

λ

  (4) 

 

Where 
1 0
1 0

≥
= − <

; if Y
Sign(Y )

; if Y
                               (5) 

 
This transformation works best for distributions 
that are somewhat symmetric. We note that a 
power transformation on a symmetric distribution 
is likely going to introduce some degree of 
skewness. 
     Bickel, et al [6] gave the following slight 
modification in their examination of the asymptotic 
performance of the parameters in the Box-Cox 
transformations model: 

1
0

−
= >

Y Sign(Y )
Y ( ) ; for

λ

λ λ
λ

               (6) 

Yeo, et al [7] made a case for the following 
transformation: 

( )

( )2

1 1
0 0

1 0 0

1 1
2 0

2
1 0 0

−

 + −
 ≠ ≥

 + = ≥= 

− −
≠ < −

− − = <

Y
; if ,Y

Log (Y ) ; if ,Y
Y ( )

Y
; if ,Y

Log ( Y ) ; if ,Y

λ

λ

λ
λ

λ
λ

λ
λ

λ

         (7) 

 
When estimating the transformation parameter, 
they found the value of λ that minimizes the 
Kullback-Leibler distance between the normal 
distribution and the transformed distribution. 
 
1.1. The Estimation Process of λ in Box-Cox 
Transformation Method   The main objective 
in the analysis of Box-Cox transformation model is 
to make inference on the transformation parameter 
λ and Box, et al [2] considered two approaches. In 
the first approach that employs the maximum 
likelihood estimator (MLE), one first assumes that 
the transformed responses Y ( )λ follow a 
multivariate normal distribution, i.e., 

( )2≈ nY ( ) N X , Iλ β σ . Then, in order to 

estimate the model parameters ( )2, ,λ β σ , the 

design matrix X and the raw data Y are observed. 
Using the density for Y ( )λ as 

( )

( ) ( )

( )
2

22

1
2

2

'

n

f Y ( )

exp Y ( ) X Y ( ) X

λ

λ β λ β
σ

πσ

=

− − − 
                 (8) 

 

and letting ( )J ,Yλ to be the Jacobian of the 
transformation from Y to Y ( )λ , the density for 
Y (which is also the likelihood for the whole 
model) is 

( )
( ) ( )

( )

2

2

22

1
2

2

'

n

L , , f (Y ) (9)

exp Y ( ) X Y ( ) X
J ( ,Y )

λ β σ

λ β λ β
σ λ

πσ

= =

− − − 
 

To obtain the MLE from the likelihood Equation 9, 
we observe that for each fixed λ , the likelihood 
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equation is proportional to the likelihood equation 
for estimating ( )2,β σ for observed Y ( )λ . Thus 

the MLE for ( )2,β σ are 

 ( ) 1'( ) X X XY ( )β λ λ
−

=                                 (10) 

 ( )1
2

' ' '
nY ( ) I X ( X X ) X Y ( )

( )
n

λ λ
σ λ

−−
=  (11) 

 

Substituting  ( )β λ and  2( )σ λ into likelihood 
equation, the likelihood function (9) will be 
maximized for λ  [4].  
     This method is a commonly used procedure since 
it is conceptually easy and the profile likelihood 
function is easy to compute. Also, it is easy to 
obtain an approximate confidence interval (CI) for 
λ because of the asymptotic property of MLE. 
     For the second approach that is based on the 
Bayesian method, one needs to first ensure that the 
model is fully identifiable (see [8-10]).  
Other families of transformations such as the 
folded power family can be found in literature (see 
[11]). However, they are rarely used because the 
resulting transformations have poor properties. 
     In this paper, instead of using the above two 
commonly used approaches of Box-Cox 
transformation procedures to find the required 
power transformation, a simple procedure based on 
the bisection method is proposed to make the 
inherent skewness of the existing skewed 
distribution zero. The method is developed for both 
positive and negative data. 
     The rest of the text is organized as follows. In 
Section 2, the proposed transformation method is 
developed. In order to investigate the performance 
of the proposed procedure and to compare it with 
the ones of the Box-Cox transformation technique, 
a simulation experiment is performed in Section 3 
using different known skewed probability distributions.  

Finally, Section 4 presents the conclusion. 
 
 
 
2. ROOT TRANSFORMATION TECHNIQUE 

IN SKEWNESS REDUCTION 
 
The most serious issue in the statistical analysis of 
non-normal data is the existing skewness in their 

probability distributions such that the usual 
standard statistical analysis is not applicable. 
Originally, Niaki, et al [1] used a root 
transformation technique to design multi-attribute 
control charts that are applicable to non-normal 
attribute data. Since the discrete probability 
distributions of the attribute data are right-skewed, 
their technique is only applicable to right-skewed 
distributions. In this research, after describing this 
technique, we generalize it to be applicable to 
almost any kind of non-normal data.  
     In the proposed power/root transformation 
technique of Niaki, et al [1], one searches for the 
best power ( )r  within (0, 1) such that if the data is 
raised to the power of r (i.e. rY ), the transformed 
data will have almost zero skewness. The search is 
based on the bisection method to find the desired 
value of r .  
     The bisection method is a root-finding 
algorithm that repeatedly divides an interval in half 
and then selects the subinterval in which a root 
exists. Suppose one needs to solve the equation 

0f ( r ) =  in the interval ( a,b ) . The bisection 
method starts with two points 0a  and 0b  in ( a,b )  
such that 0f ( a ) and 0f ( b ) have opposite signs. 
The method then divides the interval in two by 
computing 0 0 0 2c ( a b )= + . There are now two 
possibilities; either 0f ( a ) and 0f ( b ) have 
opposite signs, or 0f ( c ) and 0f ( b ) have opposite 
signs. The location of the root is determined as 
lying within the subinterval with opposite signs. 
The bisection algorithm is then applied recursively 
to the subinterval where the sign-change occurs 
and eventually finds the root. 
     In order to find a root of 0f ( r ) =  in the 
interval ( a,b ) , we start with the subinterval 

0 0( a ,b ) such that 0 0 0f ( a ) f ( b ) < , pick a 
tolerance ε  and then apply the following 
algorithm: 
 

0k =  
While 1kf ( r ε+ >  

1 2
k k

k
a br +

+
=  

If 1 0k kf ( r ) f ( a )+ <  then 

1k ka a+ = and  1k kb r+ =  

Archive of SID

www.SID.ir

www.SID.ir


172 - Vol. 24, No. 2, June 2011 IJE Transactions A: Basics 

Else 
1k kb b+ = and 1k ka r+ =  

End If 
1k k= +  

End while 
*

kr r=  
 
 
In the root transformation technique, if we 
define f ( r ) to be the amount of skewness on 
the rth power-transformed Y , i.e. rY , we 
want to find r  such that f ( r ) becomes zero. 
Therefore, applying the bisection method, we 
try to find a root ( r ) for 0f ( r ) =  in the 
interval 0 1( , ) . 
     As mentioned previously, the procedure 
described above is only applicable to right-skewed 
or slightly skewed (i.e. skewness very close to 
zero, either negative or positive) distributions. In 
cases where the distribution is heavily left-skewed 
(i.e. its skewness is a significant negative number), 
the data should be raised to a power bigger than 
one to dampen non-normality. To search for this 
power, we modify the power transformation 
technique for left-skewed data. This modification 
is quite simple; if data is heavily left-skewed, 
instead of raising Y to the power of r, it is raised 
to the power of 1 r , where r is still within interval 

0 1( , ) . Therefore, data is actually raised to a 
power bigger than one. Furthermore, the results of 
a simulation experiment for negative-skewed data 
showed that if we initially subtract the data by its 
minimum value, the resulted skewnesses would 
become significantly less. Hence, before 
employing the modified power transformation 
technique for negative-skewed distributions, the 
data is first subtracted from its minimum value. 
     The second modification to the original power 
transformation technique applies to lognormal 
data. The power transformation technique of Niaki, 
et al [1]) is not able to make the skewness of 
lognormal data close to zero and leaves them 
almost unchanged (i.e. 0 99r .> .) Therefore, we 
modify the proposed algorithm as follows; if the 
power transformation technique leaves the data 

unchanged and skewness is still high, it means that 
the data follows a logarithmic-type distribution, 
and hence it is transformed by taking natural 
logarithm. 
     Finally, it should be mentioned that similar to 
the original Box-Cox transformation method, the 
original data of the proposed power transformation 
technique need to be positive. In this case, the 
absolute value of the minimum-valued data should 
be added to all to make them non-negatives. In 
summary the flowchart of the proposed algorithm 
is shown in Figure 1. 
 
 
 

3. SIMULATION EXPERIMENTS 
 
In order to investigate the performance of the 
proposed procedure and to compare it with the one 
of the complicated well-known Box-Cox 
transformation, simulation experiments have been 
conducted. In the simulation study, four different 
probability distributions of gamma, beta, weibull, 
and lognormal were used to produce all major 
types of non-normal skewed data. The simulation 
experiments are categorized into four classes of 
right-skewed, slightly-skewed, left-skewed, and 
logarithmic. 
     The results of the simulation experiments based 
on 10,000 samples of sizes n = 30, n = 100, and 
n=1,000, are presented in Tables 1 and 2. In both 
of these tables, there are smaller 4-by-4 tables for 
each distribution. The first column of each smaller 
table represents the basic statistics of the original 
data, the second and the third columns exhibit 
information on the transformed data using the 
proposed power transformation technique (namely 
treatment 1: where the first modification described 
in section two is employed, and treatment 2: in 
which the second modification is also used), and 
the fourth column represents information on the 
Box-Cox transformation of the data. The 
transformed data of treatment 2 has been subjected 
to bigger sample sizes than those of treatment 1 
(i.e., more than 30, 100, and 1000). That is why 
treatment 2 outperforms treatment 1 in most cases. 
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     The first and the second rows of the smaller 
tables show the skewness and the kurtosis of the 
data, respectively. The third and the fourth rows of 
these tables show the results of JB-test (Jarque 
Bera) for each column. The third row shows the 
average value of the test statistics (h is zero if the 
normality hypothesis is accepted, and one if 
rejected) for 10000 runs, and the fourth row is the 
average of the p-values. The less the third-row 
value, and the more the fourth-row value are, the 
better is the performance of the corresponding 

treatment. Hence, we can use these two values as 
measures of performances to describe and compare 
the effectiveness of the treatments. 
     The results of both Tables 1 and 2 show that the 
proposed power transformation method performs 
quite well in all right-skewed, left-skewed and 
logarithmic distributions and transforms non-
normal data to normal data efficiently in almost all 
cases (in most cases treatment 2 provides better 
results than those of treatment 1). The Box-Cox 
method also performs well and does slightly better 

 

Using bisection method 
search within (0, 1) for r such 

that skewness (Yr) = 0 

Return log(Y) 

Start 

Is skewness ≥ 0 

Receive data and store them in Y 

CalculateYr and its skewness 

Is skewness of Yr > 
0.2 and r > 0.99? 

Calculate skewness of Y 

Find  r  U = Y – min(Y) 

Find r  

Using bisection method 
search within (0,1) for r 

such that skewness of U1/r 
=0 

Calculate U1/r and its skewness 

Return U1/r 

Yes No 

Yes No 

Return Y 

End 
 

 
Figure 1. The flowchart of the proposed method. 
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than the proposed procedure for small sample 
sizes. In medium and large sample sizes, even 
treatment 1 performs better than the Box-Cox 
method. However, the difference is not significant. 
Combining this finding with the ease of 
understanding and conducting of the proposed 
method, one may conclude that the proposed 
procedure provides a better approach for practical 
applications. 
 
 
 

4. CONCLUSIONS 
 
In this paper, the power transformation technique 
that was developed by Niaki, et al [1] was extended 
to transform right and left skewed distributions to 
distributions that are closer to normal. The value of 
the power was searched such that the skewness of 
transformed data becomes almost zero with an 
acceptable error. The performance of the proposed 
method was then compared to the ones of the well-
known and complicated Box-Cox transformation 
method for different left-skewed, right-skewed 
and logarithmic distributions using Monte Carlo 
simulation. Besides simplicity in understanding and 

implementing, the results of the simulation study 
showed that the proposed method works well, and 
is quite compatible to the complicated method of 
Box, et al [2] in all of the simulated experiments. 
Although the p-values of the normality tests of the 
Box-Cox method are slightly more than the ones 
obtained by the proposed procedure, the simplicity 
of the latter method makes it preferable especially 
when large data are treated. 
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TABLE 2. Results of Simulation in 10,000 Replications of Left-Skewed and Logarithmic Distributions. 
 

 

Sample Size = 30 Sample Size = 100 Sample Size = 1000 

Original 
Data 1 2 Box-

Cox 
Original 

Data 1 2 Box-
Cox 

Original 
Data 1 2 Box-

Cox 

be
ta

 (5
,1

) 

Skewness -1.0243 -0.0009 -0.0005 -0.2814 -1.1367 -0.0008 0.0000 -0.2891 -1.1782 -0.0014 0.0000 -0.2911 
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w
ei

bu
ll 
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w
ei
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5)
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lo
gn

 (0
, 0
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h 0.6222 0.0244 0.0244 0.0018 0.9942 0.0269 0.0268 0.0072 1.0000 0.0332 0.0326 0.0123 

p 0.0760 0.4190 0.4191 0.4657 0.0035 0.4175 0.4177 0.4589 0.0010 0.4112 0.4136 0.4501 

lo
gn

 (0
, 5

) 

Skewness 4.4544 0.1581 0.1557 0.0003 8.2382 0.0930 0.0900 0.0001 24.7876 0.0240 0.0211 0.0000 

Kurtosis 22.2253 2.6885 2.6881 2.5800 74.0223 2.8892 2.8890 2.8397 678.2497 2.9901 2.9901 2.9824 

Jarque-
Bera 
test 

h 1.0000 0.0248 0.0248 0.0020 1.0000 0.0290 0.0289 0.0062 1.0000 0.0355 0.0353 0.0136 

p 0.0010 0.4198 0.4199 0.4654 0.0010 0.4152 0.4154 0.4575 0.0010 0.4061 0.4072 0.4492 
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